
Partial Differential Equation Toolbox™
User's Guide

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Partial Differential Equation Toolbox™ User's Guide
© COPYRIGHT 1995–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 1995 First printing New for Version 1.0
February 1996 Second printing Revised for Version 1.0.1
July 2002 Online only Revised for Version 1.0.4 (Release 13)
September 2002 Third printing Minor Revision for Version 1.0.4
June 2004 Online only Revised for Version 1.0.5 (Release 14)
October 2004 Online only Revised for Version 1.0.6 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.6 (Release 14SP2)
August 2005 Fourth printing Minor Revision for Version 1.0.6
September 2005 Online only Revised for Version 1.0.7 (Release 14SP3)
March 2006 Online only Revised for Version 1.0.8 (Release 2006a)
March 2007 Online only Revised for Version 1.0.10 (Release 2007a)
September 2007 Online only Revised for Version 1.0.11 (Release 2007b)
March 2008 Online only Revised for Version 1.0.12 (Release 2008a)
October 2008 Online only Revised for Version 1.0.13 (Release 2008b)
March 2009 Online only Revised for Version 1.0.14 (Release 2009a)
September 2009 Online only Revised for Version 1.0.15 (Release 2009b)
March 2010 Online only Revised for Version 1.0.16 (Release 2010a)
September 2010 Online only Revised for Version 1.0.17 (Release 2010b)
April 2011 Online only Revised for Version 1.0.18 (Release 2011a)
September 2011 Online only Revised for Version 1.0.19 (Release 2011b)
March 2012 Online only Revised for Version 1.0.20 (Release 2012a)
September 2012 Online only Revised for Version 1.1 (Release 2012b)
March 2013 Online only Revised for Version 1.2 (Release 2013a)
September 2013 Online only Revised for Version 1.3 (Release 2013b)
March 2014 Online only Revised for Version 1.4 (Release 2014a)
October 2014 Online only Revised for Version 1.5 (Release 2014b)
March 2015 Online only Revised for Version 2.0 (Release 2015a)
September 2015 Online only Revised for Version 2.1 (Release 2015b)
March 2016 Online only Revised for Version 2.2 (Release 2016a)
September 2016 Online only Revised for Version 2.3 (Release 2016b)
March 2017 Online only Revised for Version 2.4 (Release 2017a)
September 2017 Online only Revised for Version 2.5 (Release 2017b)
March 2018 Online only Revised for Version 3.0 (Release 2018a)
September 2018 Online only Revised for Version 3.1 (Release 2018b)
March 2019 Online only Revised for Version 3.2 (Release 2019a)
September 2019 Online only Revised for Version 3.3 (Release 2019b)
March 2020 Online only Revised for Version 3.4 (Release 2020a)
September 2020 Online only Revised for Version 3.5 (Release 2020b)
March 2021 Online only Revised for Version 3.6 (Release 2021a)
September 2021 Online only Revised for Version 3.7 (Release 2021b)

Getting Started
1

Partial Differential Equation Toolbox Product Description 1-2
Key Features . 1-2

Equations You Can Solve Using PDE Toolbox . 1-3

Solve 2-D PDEs Using the PDE Modeler App . 1-5
Tips . 1-5

Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App 1-7

Finite Element Method Basics . 1-11

Deflection Analysis of Bracket . 1-14

Heat Transfer in Block with Cavity . 1-21

Setting Up Your PDE
2

Solve Problems Using PDEModel Objects . 2-2

2-D Geometry Creation at Command Line . 2-4
Three Elements of Geometry . 2-4
Basic Shapes . 2-4
Rectangle with Circular End Cap and Another Circular Excision 2-5
Decomposed Geometry Data Structure . 2-8

Parametrized Function for 2-D Geometry Creation 2-10
Required Syntax . 2-10
Relation Between Parametrization and Region Labels 2-10
Geometry Function for a Circle . 2-11
Arc Length Calculations for a Geometry Function 2-12
Geometry Function Example with Subdomains and a Hole 2-21
Nested Function for Geometry with Additional Parameters 2-23

Geometry from polyshape . 2-27

STL File Import . 2-31

v

Contents

Geometry from Triangulated Mesh . 2-47
3-D Geometry from a Finite Element Mesh . 2-47
2-D Multidomain Geometry . 2-48

Geometry from alphaShape . 2-50

Cuboids, Cylinders, and Spheres . 2-52

Sphere in Cube . 2-59

3-D Multidomain Geometry from 2-D Geometry . 2-63

Multidomain Geometry Reconstructed from Mesh 2-67

Put Equations in Divergence Form . 2-71
Coefficient Matching for Divergence Form . 2-71
Boundary Conditions Can Affect the c Coefficient 2-72
Coefficient Conversion with Symbolic Math Toolbox 2-72
Some Equations Cannot Be Converted . 2-73

f Coefficient for specifyCoefficients . 2-74

c Coefficient for specifyCoefficients . 2-76
Overview of the c Coefficient . 2-76
Definition of the c Tensor Elements . 2-76
Some c Vectors Can Be Short . 2-78
Functional Form . 2-88

m, d, or a Coefficient for specifyCoefficients . 2-91
Coefficients m, d, or a . 2-91
Short m, d, or a vectors . 2-91
Nonconstant m, d, or a . 2-92

View, Edit, and Delete PDE Coefficients . 2-95
View Coefficients . 2-95
Delete Existing Coefficients . 2-96
Change a Coefficient Assignment . 2-97

Set Initial Conditions . 2-98
What Are Initial Conditions? . 2-98
Constant Initial Conditions . 2-98
Nonconstant Initial Conditions . 2-98
Nodal Initial Conditions . 2-99

Nonlinear System with Cross-Coupling Between Components 2-101

Set Initial Condition for Model with Fine Mesh Using Solution Obtained
with Coarser Mesh . 2-105

View, Edit, and Delete Initial Conditions . 2-107
View Initial Conditions . 2-107
Delete Existing Initial Conditions . 2-108
Change an Initial Conditions Assignment . 2-108

No Boundary Conditions Between Subdomains 2-110

vi Contents

Identify Boundary Labels . 2-112

Specify Boundary Conditions . 2-113
Dirichlet Boundary Conditions . 2-113
Neumann Boundary Conditions . 2-114
Mixed Boundary Conditions . 2-116
Nonconstant Boundary Conditions . 2-116

Solve PDEs with Constant Boundary Conditions 2-119

Solve PDEs with Nonconstant Boundary Conditions 2-123

View, Edit, and Delete Boundary Conditions . 2-128
View Boundary Conditions . 2-128
Delete Existing Boundary Conditions . 2-129
Change a Boundary Conditions Assignment . 2-130

Generate Mesh . 2-132

Find Mesh Elements and Nodes by Location . 2-140

Assess Quality of Mesh Elements . 2-146

Mesh Data as [p,e,t] Triples . 2-150

Mesh Data . 2-153

Solving PDEs
3

von Mises Effective Stress and Displacements: PDE Modeler App 3-3

Clamped Square Isotropic Plate with Uniform Pressure Load 3-7

Deflection of Piezoelectric Actuator . 3-11

Dynamics of Damped Cantilever Beam . 3-21

Dynamic Analysis of Clamped Beam . 3-28

Reduced-Order Modeling Technique for Beam with Point Load 3-33

Modal and Frequency Response Analysis for Single Part of Kinova® Gen3
Robotic Arm . 3-40

Thermal Stress Analysis of Jet Engine Turbine Blade 3-50

Finite Element Analysis of Electrostatically Actuated MEMS Device . . . 3-58

Deflection Analysis of Bracket . 3-71

vii

Vibration of Square Plate . 3-78

Structural Dynamics of Tuning Fork . 3-82

Modal Superposition Method for Structural Dynamics Problem 3-91

Stress Concentration in Plate with Circular Hole 3-95

Thermal Deflection of Bimetallic Beam . 3-103

Axisymmetric Thermal and Structural Analysis of Disc Brake 3-110

Electrostatic Potential in Air-Filled Frame . 3-121

Electrostatic Potential in Air-Filled Frame: PDE Modeler App 3-123

Electrostatic Analysis of Transformer Bushing Insulator 3-125

Magnetic Flux Density in H-Shaped Magnet . 3-131

Magnetic Flux Density in Electromagnet . 3-136

Linear Elasticity Equations . 3-146
Summary of the Equations of Linear Elasticity 3-146
3D Linear Elasticity Problem . 3-147
Plane Stress . 3-149
Plane Strain . 3-150

Magnetic Field in Two-Pole Electric Motor . 3-151

Magnetic Field in Two-Pole Electric Motor: PDE Modeler App 3-156

Scattering Problem . 3-160

Electrostatics and Magnetostatics . 3-165

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App
. 3-166

Current Density Between Two Metallic Conductors: PDE Modeler App
. 3-174

Heat Transfer Between Two Squares Made of Different Materials: PDE
Modeler App . 3-177

Temperature Distribution in Heat Sink . 3-181
Create 2-D Geometry in the PDE Modeler App 3-181
Extrude 2-D Geometry into 3-D Geometry of Heat Sink 3-182
Perform Thermal Analysis . 3-185

Nonlinear Heat Transfer in Thin Plate . 3-190

Poisson's Equation on Unit Disk: PDE Modeler App 3-198

viii Contents

Poisson's Equation on Unit Disk . 3-204

Scattering Problem: PDE Modeler App . 3-212

Minimal Surface Problem . 3-216

Minimal Surface Problem: PDE Modeler App . 3-220

Poisson's Equation with Point Source and Adaptive Mesh Refinement 3-222

Heat Transfer in Block with Cavity: PDE Modeler App 3-227

Heat Transfer in Block with Cavity . 3-231

Heat Transfer Problem with Temperature-Dependent Properties 3-235

Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux
. 3-243

Inhomogeneous Heat Equation on Square Domain 3-250

Heat Distribution in Circular Cylindrical Rod . 3-254

Thermal Analysis of Disc Brake . 3-260

Heat Distribution in Circular Cylindrical Rod: PDE Modeler App 3-268

Wave Equation on Square Domain . 3-271

Wave Equation on Square Domain: PDE Modeler App 3-275

Eigenvalues and Eigenmodes of L-Shaped Membrane 3-278

Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App
. 3-284

L-Shaped Membrane with Rounded Corner: PDE Modeler App 3-287

Eigenvalues and Eigenmodes of Square . 3-290

Eigenvalues and Eigenmodes of Square: PDE Modeler App 3-295

Vibration of Circular Membrane . 3-298

Solution and Gradient Plots with pdeplot and pdeplot3D 3-302

2-D Solution and Gradient Plots with MATLAB® Functions 3-311

3-D Solution and Gradient Plots with MATLAB® Functions 3-317
Types of 3-D Solution Plots Available in MATLAB 3-317
2-D Slices Through 3-D Geometry . 3-317
Contour Slices Through 3-D Solution . 3-320
Plots of Gradients and Streamlines . 3-324

ix

Dimensions of Solutions, Gradients, and Fluxes 3-329

PDE Modeler App
4

Open the PDE Modeler App . 4-2

2-D Geometry Creation in PDE Modeler App . 4-3
Create Basic Shapes . 4-3
Select Several Shapes . 4-4
Rotate Shapes . 4-4
Create Complex Geometries . 4-4
Adjust Axes Limits and Grid . 4-5
Create Geometry with Rounded Corners . 4-8

Specify Boundary Conditions in the PDE Modeler App 4-12

Specify Coefficients in PDE Modeler App . 4-14
Coefficients for Scalar PDEs . 4-14
Coefficients for Systems of PDEs . 4-16
Coefficients That Depend on Time and Space . 4-18

Specify Mesh Parameters in the PDE Modeler App 4-24

Adjust Solve Parameters in the PDE Modeler App 4-26
Elliptic Equations . 4-26
Parabolic Equations . 4-28
Hyperbolic Equations . 4-29
Eigenvalue Equations . 4-29
Nonlinear Equations . 4-30

Plot the Solution in the PDE Modeler App . 4-31
Additional Plot Control Options . 4-33
Tooltip Displays for Mesh and Plots . 4-35

Functions
5

x Contents

Getting Started

• “Partial Differential Equation Toolbox Product Description” on page 1-2
• “Equations You Can Solve Using PDE Toolbox” on page 1-3
• “Solve 2-D PDEs Using the PDE Modeler App” on page 1-5
• “Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App” on page 1-7
• “Finite Element Method Basics” on page 1-11
• “Deflection Analysis of Bracket” on page 1-14
• “Heat Transfer in Block with Cavity” on page 1-21

1

Partial Differential Equation Toolbox Product Description
Solve partial differential equations using finite element analysis

Partial Differential Equation Toolbox provides functions for solving structural mechanics, heat
transfer, and general partial differential equations (PDEs) using finite element analysis.

You can perform linear static analysis to compute deformation, stress, and strain. For modeling
structural dynamics and vibration, the toolbox provides a direct time integration solver. You can
analyze a component’s structural characteristics by performing modal analysis to find natural
frequencies and mode shapes. You can model conduction-dominant heat transfer problems to
calculate temperature distributions, heat fluxes, and heat flow rates through surfaces. You can also
solve standard problems such as diffusion, electrostatics, and magnetostatics, as well as custom
PDEs.

Partial Differential Equation Toolbox lets you import 2D and 3D geometries from STL or mesh data.
You can automatically generate meshes with triangular and tetrahedral elements. You can solve PDEs
by using the finite element method, and postprocess results to explore and analyze them.

Key Features
• Structural analysis, including linear static, dynamic, and modal analysis
• Heat transfer analysis for conduction-dominant problems
• General linear and nonlinear PDEs for stationary, time-dependent, and eigenvalue problems
• 2D and 3D geometry import from STL files and mesh data
• Automatic meshing using triangular and tetrahedral elements with linear or quadratic basis

functions
• User-defined functions for specifying PDE coefficients, boundary conditions, and initial conditions
• Plotting and animating results, as well as derived and interpolated values

1 Getting Started

1-2

Equations You Can Solve Using PDE Toolbox
Partial Differential Equation Toolbox solves scalar equations of the form

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

and eigenvalue equations of the form

−∇ · c∇u + au = λdu
or

−∇ · c∇u + au = λ2mu

For scalar PDEs, there are two choices of boundary conditions for each edge or face:

• Dirichlet — On the edge or face, the solution u satisfies the equation

hu = r,

where h and r can be functions of space (x, y, and, in 3-D case, z), the solution u, and time. Often,
you take h = 1, and set r to the appropriate value.

• Generalized Neumann boundary conditions — On the edge or face the solution u satisfies the
equation

n · c∇u + qu = g

n is the outward unit normal. q and g are functions defined on ∂Ω, and can be functions of x, y,
and, in 3-D case, z, the solution u, and, for time-dependent equations, time.

The toolbox also solves systems of equations of the form

m∂2u
∂t2 + d∂u∂t − ∇ · c⊗ ∇u + au = f

and eigenvalue systems of the form

−∇ · c⊗ ∇u + au = λdu
or

−∇ · c⊗ ∇u + au = λ2mu

A system of PDEs with N components is N coupled PDEs with coupled boundary conditions. Scalar
PDEs are those with N = 1, meaning just one PDE. Systems of PDEs generally means N > 1. The
documentation sometimes refers to systems as multidimensional PDEs or as PDEs with a vector
solution u. In all cases, PDE systems have a single geometry and mesh. It is only N, the number of
equations, that can vary.

The coefficients m, d, c, a, and f can be functions of location (x, y, and, in 3-D, z), and, except for
eigenvalue problems, they also can be functions of the solution u or its gradient. For eigenvalue
problems, the coefficients cannot depend on the solution u or its gradient.

For scalar equations, all the coefficients except c are scalar. The coefficient c represents a 2-by-2
matrix in 2-D geometry, or a 3-by-3 matrix in 3-D geometry. For systems of N equations, the

 Equations You Can Solve Using PDE Toolbox

1-3

coefficients m, d, and a are N-by-N matrices, f is an N-by-1 vector, and c is a 2N-by-2N tensor (2-D
geometry) or a 3N-by-3N tensor (3-D geometry). For the meaning of c⊗ u, see “c Coefficient for
specifyCoefficients” on page 2-76.

When both m and d are 0, the PDE is stationary. When either m or d are nonzero, the problem is time-
dependent. When any coefficient depends on the solution u or its gradient, the problem is called
nonlinear.

For systems of PDEs, there are generalized versions of the Dirichlet and Neumann boundary
conditions:

• hu = r represents a matrix h multiplying the solution vector u, and equaling the vector r.
• n · c⊗ ∇u + qu = g. For 2-D systems, the notation n · c⊗ ∇u means the N-by-1 matrix with

(i,1)-component

∑
j = 1

N
cos(α)ci, j, 1, 1

∂
∂x + cos(α)ci, j, 1, 2

∂
∂y + sin(α)ci, j, 2, 1

∂
∂x + sin(α)ci, j, 2, 2

∂
∂y u j

where the outward normal vector of the boundary n = cos(α), sin(α) .

For 3-D systems, the notation n · c⊗ ∇u means the N-by-1 vector with (i,1)-component

∑
j = 1

N
sin φ cos θ ci, j, 1, 1

∂
∂x + sin φ cos θ ci, j, 1, 2

∂
∂y + sin φ cos θ ci, j, 1, 3

∂
∂z u j

+ ∑
j = 1

N
sin φ sin θ ci, j, 2, 1

∂
∂x + sin φ sin θ ci, j, 2, 2

∂
∂y + sin φ sin θ ci, j, 2, 3

∂
∂z u j

+ ∑
j = 1

N
cos θ ci, j, 3, 1

∂
∂x + cos θ ci, j, 3, 2

∂
∂y + cos θ ci, j, 3, 3

∂
∂z u j

where the outward normal vector of the boundary n = sin(φ)cos(θ), sin(φ)sin(θ), cos(φ) .

For each edge or face segment, there are a total of N boundary conditions.

See Also

Related Examples
• “Put Equations in Divergence Form” on page 2-71
• “Solve Problems Using PDEModel Objects” on page 2-2
• “f Coefficient for specifyCoefficients” on page 2-74
• “c Coefficient for specifyCoefficients” on page 2-76
• “m, d, or a Coefficient for specifyCoefficients” on page 2-91

1 Getting Started

1-4

Solve 2-D PDEs Using the PDE Modeler App
To solve 2-D PDE problems using the PDE Modeler app follow these steps:

1 Start the PDE Modeler app by using the Apps tab or typing pdeModeler in the MATLAB®

Command Window. For details, see “Open the PDE Modeler App” on page 4-2.
2 Choose the application mode by selecting Application from the Options menu.
3 Create a 2-D geometry by drawing, rotating, and combining the basic shapes: circles, ellipses,

rectangles, and polygons. To draw and rotate shapes, use the Draw menu or the corresponding
toolbar buttons. To combine shapes, use the Set formula field. See “2-D Geometry Creation in
PDE Modeler App” on page 4-3.

4 Specify boundary conditions for each boundary segment. To do this, first switch to the Boundary
Mode by using the Boundary menu. Click the boundary to select it, then specify the boundary
condition for that boundary. You can have different types of boundary conditions on different
boundary segments. The default boundary condition is the Dirichlet condition hu = r with h = 1
and r = 0. You can remove unnecessary subdomain borders by selecting Remove Subdomain
Border or Remove All Subdomain Borders from the Boundary menu. For details, see
“Specify Boundary Conditions in the PDE Modeler App” on page 4-12.

5 Specify PDE coefficients by selecting PDE Mode from the PDE menu. Then select a region or
multiple regions for which you are specifying the coefficients. Select PDE Specification from
the PDE menu or click the PDE button on the toolbar. Type the coefficients in the resulting
dialog box. For details, see “Coefficients for Scalar PDEs” on page 4-14 and “Coefficients for
Systems of PDEs” on page 4-16.

You can specify the coefficients at any time before solving the PDE because the coefficients are
independent of the geometry and the boundaries. If the PDE coefficients are material-dependent,
specify them by double-clicking each particular region.

6 Generate a triangular mesh by selecting Initialize Mesh from the Mesh menu. Using the same
menu, you can also refine mesh, display node and triangle labels, and control mesh parameters,
letting you generate a mesh that is fine enough to adequately resolve the important features in
the geometry, but is coarse enough to run in a reasonable amount of time and memory. See
“Specify Mesh Parameters in the PDE Modeler App” on page 4-24.

7 Solve the PDE by clicking the = button or by selecting Solve PDE from the Solve menu. To use a
solver with non-default parameters, select Parameters from the Solve menu to. The resulting
dialog box lets you:

• Invoke and control the nonlinear and adaptive solvers for elliptic problems.
• Specify the initial values, and the times for which to generate the output for parabolic and

hyperbolic problems.
• Specify the interval in which to search for eigenvalues for eigenvalue problems.

See “Adjust Solve Parameters in the PDE Modeler App” on page 4-26.
8 When you solve the PDE, the app automatically plots the solution using the default settings. To

customize the plot or plot other physical properties calculated using the solution, select
Parameters from the Plot menu. See “Plot the Solution in the PDE Modeler App” on page 4-31.

Tips
After solving the problem, you can:

 Solve 2-D PDEs Using the PDE Modeler App

1-5

• Export the solution or the mesh or both to the MATLAB workspace for further analysis.
• Visualize other properties of the solution.
• Change the PDE and recompute the solution.
• Change the mesh and recompute the solution. If you select Initialize Mesh, the mesh is

initialized; if you select Refine Mesh, the current mesh is refined. From the Mesh menu, you can
also jiggle the mesh and undo previous mesh changes. You also can use the adaptive mesh refiner
and solver, adaptmesh. This option tries to find a mesh that fits the solution.

• Change the boundary conditions. To return to the mode where you can select boundaries, use the
∂Ω button or the Boundary Mode option from the Boundary menu.

• Change the geometry. You can switch to the draw mode again by selecting Draw Mode from the
Draw menu or by clicking one of the Draw Mode icons to add another shape.

The following are the shortcuts that you can use to skip one or more steps. In general, the PDE
Modeler app adds the necessary steps automatically.

• If you do not create a geometry, the PDE Modeler app uses an L-shaped geometry with the default
boundary conditions.

• If you initialize the mesh while in the draw mode, the PDE Modeler app first decomposes the
geometry using the current set formula and assigns the default boundary condition to the outer
boundaries. After that, it generate the mesh.

• If you refine the mesh before initializing it, the PDE Modeler app first initializes the mesh.
• If you solve the PDE without generating a mesh, the PDE Modeler app initializes a mesh before

solving the PDE.
• If you select a plot type and choose to plot the solution, the PDE Modeler app checks if the

solution to the current PDE is available. If not, the PDE Modeler app first solves the current PDE.
The app displays the solution using the selected plot options.

• If do not specify the coefficients and use the default Generic Scalar application mode, the PDE
Modeler app solves the default PDE, which is Poisson's equation:

–Δu = 10.

This corresponds to the generic elliptic PDE with c = 1, a = 0, and f = 10. The default PDE
settings depend on the application mode.

See Also

Related Examples
• “Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App” on page 1-7
• “Poisson's Equation on Unit Disk” on page 3-204
• “Current Density Between Two Metallic Conductors: PDE Modeler App” on page 3-174
• “Minimal Surface Problem” on page 3-216

1 Getting Started

1-6

Poisson’s Equation with Complex 2-D Geometry: PDE Modeler
App

This example shows how to solve the Poisson's equation, –Δu = f on a 2-D geometry created as a
combination of two rectangles and two circles.

To solve this problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines. To do this, select Options > Grid Spacing and clear the Auto checkbox for

the x-axis linear spacing. Enter X-axis linear spacing as -1.5:0.25:1.5. Then select Options
> Grid.

3 Align new shapes to the grid lines by selecting Options > Snap.
4 Draw two circles: one with the radius 0.4 and the center at (-0.5,0) and another with the radius

0.2 and the center at (0.5,0.2). To draw a circle, first click the button. Then right-click the
origin and drag to draw a circle. Right-clicking constrains the shape you draw so that it is a circle
rather than an ellipse.

5 Draw two rectangles: one with corners (-1,0.2), (1,0.2), (1,-0.2), and (-1,-0.2) and another with

corners (0.5,1), (1,1), (1,-0.6), and (0.5,-0.6). To draw a rectangle, first click the button.
Then click any corner and drag to draw the rectangle.

6 Model the geometry by entering (R1+C1+R2)-C2 in the Set formula field.
7 Save the model to a file by selecting FileSave As.
8 Remove the subdomain borders. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Then select Boundary > Remove All Subdomain Borders.
9 Specify the boundary conditions for all circle arcs. Using Shift+click, select these borders. Then

select Boundary > Specify Boundary Conditions and specify the Neumann boundary
condition with g = -5 and q = 0. This boundary condition means that the solution has a slope of –
5 in the normal direction for these boundary segments.

10 For all other boundaries, keep the default Dirichlet boundary condition: h = 1, r = 0.
11 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on

the toolbar. Specify c = 1, a = 0, and f = 10.
12 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >

Refine Mesh.

 Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App

1-7

13 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The
toolbox assembles the PDE problem, solves it, and plots the solution.

1 Getting Started

1-8

14 Plot the solution as a 3-D plot:

a Select Plot > Parameters.
b In the resulting dialog box, select Height (3-D plot).
c Click Plot.

 Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App

1-9

1 Getting Started

1-10

Finite Element Method Basics
The core Partial Differential Equation Toolbox algorithm uses the Finite Element Method (FEM) for
problems defined on bounded domains in 2-D or 3-D space. In most cases, elementary functions
cannot express the solutions of even simple PDEs on complicated geometries. The finite element
method describes a complicated geometry as a collection of subdomains by generating a mesh on the
geometry. For example, you can approximate the computational domain Ω with a union of triangles
(2-D geometry) or tetrahedra (3-D geometry). The subdomains form a mesh, and each vertex is called
a node. The next step is to approximate the original PDE problem on each subdomain by using
simpler equations.

For example, consider the basic elliptic equation.

−∇ ⋅ c∇u + au = f on domain Ω

Suppose that this equation is a subject to the Dirichlet boundary condition u = r on ∂ΩD and
Neumann boundary conditions on ∂ΩN. Here, ∂Ω = ∂ΩD∪ ∂ΩN is the boundary of Ω.

The first step in FEM is to convert the original differential (strong) form of the PDE into an integral
(weak) form by multiplying with test function v and integrating over the domain Ω.

∫
Ω

−∇ · c∇u + au− f v dΩ = 0 ∀v

The test functions are chosen from a collection of functions (functional space) that vanish on the
Dirichlet portion of the boundary, v = 0 on ∂ΩD. Above equation can be thought of as weighted
averaging of the residue using all possible weighting functions v. The collection of functions that are
admissible solutions, u, of the weak form of PDE are chosen so that they satisfy the Dirichlet BC,
u = r on ∂ΩD.

Integrating by parts (Green’s formula) the second-order term results in:

∫
Ω

c∇u ∇v + auv dΩ− ∫
∂ΩN

n · c∇u v d∂ΩN + ∫
∂ΩD

n · c∇u v d∂ΩD = ∫
Ω

f v dΩ ∀v

Use the Neumann boundary condition to substitute for second term on the left side of the equation.
Also, note that v = 0 on ∂ΩD nullifies the third term. The resulting equation is:

∫
Ω

c∇u ∇v + auv dΩ + ∫
∂ΩN

quv d∂ΩN = ∫
∂ΩN

gv d∂ΩN + ∫
Ω

f v dΩ ∀v

Note that all manipulations up to this stage are performed on continuum Ω, the global domain of the
problem. Therefore, the collection of admissible functions and trial functions span infinite-
dimensional functional spaces. Next step is to discretize the weak form by subdividing Ω into smaller
subdomains or elements Ωe, where Ω = ∪ Ωe. This step is equivalent to projection of the weak form
of PDEs onto a finite-dimensional subspace. Using the notations uh and vh to represent the finite-
dimensional equivalent of admissible and trial functions defined on Ωe, you can write the discretized
weak form of the PDE as:

∫
Ωe

c∇uh∇vh + auhvh dΩe + ∫
∂ΩN

e
quhv hd∂ΩN

e = ∫
∂ΩN

e
gv hd∂ΩN

e + ∫
Ωe

f vhdΩe ∀vh

 Finite Element Method Basics

1-11

Next, let ϕi, with i = 1, 2, ... , Np, be the piecewise polynomial basis functions for the subspace
containing the collections uh and vh, then any particular uh can be expressed as a linear combination
of basis functions:

uh = ∑
1

Np
Uiϕi

Here Ui are yet undetermined scalar coefficients. Substituting uh into to the discretized weak form of
PDE and using each vh = φi as test functions and performing integration over element yields a system
of Np equations in terms of Np unknowns Ui.

Note that finite element method approximates a solution by minimizing the associated error function.
The minimizing process automatically finds the linear combination of basis functions which is closest
to the solution u.

FEM yields a system KU = F where the matrix K and the right side F contain integrals in terms of the
test functions ϕi, ϕj, and the coefficients c, a, f, q, and g defining the problem. The solution vector U
contains the expansion coefficients of uh, which are also the values of uh at each node xk (k = 1,2 for a
2-D problem or k = 1,2,3 for a 3-D problem) since uh(xk) = Ui.

FEM techniques are also used to solve more general problems, such as:

• Time-dependent problems. The solution u(x,t) of the equation

d∂u∂t − ∇ ⋅ c∇u + au = f

can be approximated by

uh(x, t) = ∑
i = 1

N
Ui(t)ϕi(x)

The result is a system of ordinary differential equations (ODEs)

MdU
dt + KU = F

Two time derivatives result in a second-order ODE

Md2U
dt2 + KU = F

• Eigenvalue problems. Solve

−∇ ⋅ c∇u + au = λdu

for the unknowns u and λ, where λ is a complex number. Using the FEM discretization, you solve
the algebraic eigenvalue problem KU = λMU to find uh as an approximation to u. To solve
eigenvalue problems, use solvepdeeig.

• Nonlinear problems. If the coefficients c, a, f, q, or g are functions of u or ∇u, the PDE is called
nonlinear and FEM yields a nonlinear system K(U)U = F(U).

To summarize, the FEM approach:

1 Getting Started

1-12

1 Represents the original domain of the problem as a collection of elements.
2 For each element, substitutes the original PDE problem by a set of simple equations that locally

approximate the original equations. Applies boundary conditions for boundaries of each element.
For stationary linear problems where the coefficients do not depend on the solution or its
gradient, the result is a linear system of equations. For stationary problems where the
coefficients depend on the solution or its gradient, the result is a system of nonlinear equations.
For time-dependent problems, the result is a set of ODEs.

3 Assembles the resulting equations and boundary conditions into a global system of equations that
models the entire problem.

4 Solves the resulting system of algebraic equations or ODEs using linear solvers or numerical
integration, respectively. The toolbox internally calls appropriate MATLAB solvers for this task.

References
[1] Cook, Robert D., David S. Malkus, and Michael E. Plesha. Concepts and Applications of Finite

Element Analysis. 3rd edition. New York, NY: John Wiley & Sons, 1989.

[2] Gilbert Strang and George Fix. An Analysis of the Finite Element Method. 2nd edition. Wellesley,
MA: Wellesley-Cambridge Press, 2008.

See Also
assembleFEMatrices | solvepde | solvepdeeig

 Finite Element Method Basics

1-13

Deflection Analysis of Bracket
This example shows how to analyze a 3-D mechanical part under an applied load using finite element
analysis (FEA) and determine the maximal deflection.

Create Structural Analysis Model

The first step in solving a linear elasticity problem is to create a structural analysis model. This is a
container that holds the geometry, structural material properties, damping parameters, body loads,
boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and
mesh.

model = createpde('structural','static-solid');

Import Geometry

Import an STL file of a simple bracket model using the importGeometry function. This function
reconstructs the faces, edges and vertices of the model. It can merge some faces and edges, so the
numbers can differ from those of the parent CAD model.

importGeometry(model,'BracketWithHole.stl');

Plot the geometry, displaying face labels.

figure
pdegplot(model,'FaceLabels','on')
view(30,30);
title('Bracket with Face Labels')

1 Getting Started

1-14

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

Specify Structural Properties of Material

Specify Young's modulus and Poisson's ratio of the material.

structuralProperties(model,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3);

Apply Boundary Conditions and Loads

The problem has two boundary conditions: the back face (face 4) is fixed, and the front face has an
applied load. All other boundary conditions, by default, are free boundaries.

structuralBC(model,'Face',4,'Constraint','fixed');

Apply a distributed load in the negative z-direction to the front face (face 8).

structuralBoundaryLoad (model,'Face',8,'SurfaceTraction',[0;0;-1e4]);

Generate Mesh

Generate and plot a mesh.

generateMesh(model);
figure

 Deflection Analysis of Bracket

1-15

pdeplot3D(model)
title('Mesh with Quadratic Tetrahedral Elements');

Calculate Solution

Use the solve function to calculate the solution.

result = solve(model)

result =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [5993x1 double]
 Mesh: [1x1 FEMesh]

Examine Solution

Find the maximal deflection of the bracket in the z-direction.

minUz = min(result.Displacement.uz);
fprintf('Maximal deflection in the z-direction is %g meters.', minUz)

Maximal deflection in the z-direction is -4.43075e-05 meters.

1 Getting Started

1-16

Plot Displacement Components

Plot the components of the solution vector. The maximal deflections are in the z-direction. Because
the part and the loading are symmetric, the x-displacement and z-displacement are symmetric, and
the y-displacement is antisymmetric with respect to the center line.

Here, the plotting routine uses the 'jet' colormap, which has blue as the color representing the
lowest value and red representing the highest value. The bracket loading causes face 8 to dip down,
so the maximum z-displacement appears blue.

figure
pdeplot3D(model,'ColorMapData',result.Displacement.ux)
title('x-displacement')
colormap('jet')

figure
pdeplot3D(model,'ColorMapData',result.Displacement.uy)
title('y-displacement')
colormap('jet')

 Deflection Analysis of Bracket

1-17

figure
pdeplot3D(model,'ColorMapData',result.Displacement.uz)
title('z-displacement')
colormap('jet')

1 Getting Started

1-18

Plot von Mises Stress

Plot values of the von Mises stress at nodal locations. Use the same jet colormap.

figure
pdeplot3D(model,'ColorMapData',result.VonMisesStress)
title('von Mises stress')
colormap('jet')

 Deflection Analysis of Bracket

1-19

1 Getting Started

1-20

Heat Transfer in Block with Cavity
This example shows how to solve for the heat distribution in a block with cavity.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100
degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at
a constant rate, for example −10W /m2. All the other boundaries are insulated. The temperature in
the block at the starting time t0 = 0 is 0 degrees. The goal is to model the heat distribution during the
first five seconds.

Create Thermal Analysis Model

The first step in solving a heat transfer problem is to create a thermal analysis model. This is a
container that holds the geometry, thermal material properties, internal heat sources, temperature on
the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

thermalmodel = createpde('thermal','transient');

Import Geometry

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges(thermalmodel,@crackg);

Plot the geometry, displaying edge labels.

pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

 Heat Transfer in Block with Cavity

1-21

Specify Thermal Properties of Material

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1,...
 'MassDensity',1,...
 'SpecificHeat',1);

Apply Boundary Conditions

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. The toolbox uses the default insulating boundary condition for all other
boundaries.

thermalBC(thermalmodel,'Edge',6,'Temperature',100);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10);

Set Initial Conditions

Set an initial value of 0 for the temperature.

thermalIC(thermalmodel,0);

Generate Mesh

Create and plot a mesh.

generateMesh(thermalmodel);
figure

1 Getting Started

1-22

pdemesh(thermalmodel)
title('Mesh with Quadratic Triangular Elements')

Specify Solution Times

Set solution times to be 0 to 5 seconds in steps of 1/2.

tlist = 0:0.5:5;

Calculate Solution

Use the solve function to calculate the solution.

thermalresults = solve(thermalmodel,tlist)

thermalresults =
 TransientThermalResults with properties:

 Temperature: [1320x11 double]
 SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5]
 XGradients: [1320x11 double]
 YGradients: [1320x11 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Evaluate Heat Flux

Compute the heat flux density.

 Heat Transfer in Block with Cavity

1-23

[qx,qy] = evaluateHeatFlux(thermalresults);

Plot Temperature Distribution and Heat Flux

Plot the solution at the final time step, t = 5.0 seconds, with isothermal lines using a contour plot, and
plot the heat flux vector field using arrows.

pdeplot(thermalmodel,'XYData',thermalresults.Temperature(:,end), ...
 'Contour','on',...
 'FlowData',[qx(:,end),qy(:,end)], ...
 'ColorMap','hot')

1 Getting Started

1-24

Setting Up Your PDE

• “Solve Problems Using PDEModel Objects” on page 2-2
• “2-D Geometry Creation at Command Line” on page 2-4
• “Parametrized Function for 2-D Geometry Creation” on page 2-10
• “Geometry from polyshape” on page 2-27
• “STL File Import” on page 2-31
• “Geometry from Triangulated Mesh” on page 2-47
• “Geometry from alphaShape” on page 2-50
• “Cuboids, Cylinders, and Spheres” on page 2-52
• “Sphere in Cube” on page 2-59
• “3-D Multidomain Geometry from 2-D Geometry” on page 2-63
• “Multidomain Geometry Reconstructed from Mesh” on page 2-67
• “Put Equations in Divergence Form” on page 2-71
• “f Coefficient for specifyCoefficients” on page 2-74
• “c Coefficient for specifyCoefficients” on page 2-76
• “m, d, or a Coefficient for specifyCoefficients” on page 2-91
• “View, Edit, and Delete PDE Coefficients” on page 2-95
• “Set Initial Conditions” on page 2-98
• “Nonlinear System with Cross-Coupling Between Components” on page 2-101
• “Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh”

on page 2-105
• “View, Edit, and Delete Initial Conditions” on page 2-107
• “No Boundary Conditions Between Subdomains” on page 2-110
• “Identify Boundary Labels” on page 2-112
• “Specify Boundary Conditions” on page 2-113
• “Solve PDEs with Constant Boundary Conditions” on page 2-119
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-123
• “View, Edit, and Delete Boundary Conditions” on page 2-128
• “Generate Mesh” on page 2-132
• “Find Mesh Elements and Nodes by Location” on page 2-140
• “Assess Quality of Mesh Elements” on page 2-146
• “Mesh Data as [p,e,t] Triples” on page 2-150
• “Mesh Data” on page 2-153

2

Solve Problems Using PDEModel Objects
1 Put your problem in the correct form for Partial Differential Equation Toolbox solvers. For details,

see “Equations You Can Solve Using PDE Toolbox” on page 1-3. If you need to convert your
problem to divergence form, see “Put Equations in Divergence Form” on page 2-71.

2 Create a PDEModel model container. For scalar PDEs, use createpde with no arguments.

model = createpde();

If N is the number of equations in your system, use createpde with input argument N.

model = createpde(N);
3 Import or create the geometry. For details, see “Geometry and Mesh”.

importGeometry(model,'geometry.stl'); % importGeometry for 3-D
geometryFromEdges(model,g); % geometryFromEdges for 2-D

4 View the geometry so that you know the labels of the boundaries.

pdegplot(model,'FaceLabels','on') % 'FaceLabels' for 3-D
pdegplot(model,'EdgeLabels','on') % 'EdgeLabels' for 2-D

To see labels of a 3-D model, you might need to rotate the model, or make it transparent, or zoom
in on it. See “STL File Import” on page 2-31.

5 Create the boundary conditions. For details, see “Specify Boundary Conditions” on page 2-113.

% 'face' for 3-D
applyBoundaryCondition(model,'dirichlet','face',[2,3,5],'u',[0,0]);
% 'edge' for 2-D
applyBoundaryCondition(model,'neumann','edge',[1,4],'g',1,'q',eye(2));

6 Create the PDE coefficients.

f = [1;2];
a = 0;
c = [1;3;5];
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

• You can specify coefficients as numeric or as functions.
• Each coefficient m, d, c, a, and f, has a specific format. See “f Coefficient for
specifyCoefficients” on page 2-74, “c Coefficient for specifyCoefficients” on page 2-76, and
“m, d, or a Coefficient for specifyCoefficients” on page 2-91.

7 For time-dependent equations, or optionally for nonlinear stationary equations, create an initial
condition. See “Set Initial Conditions” on page 2-98.

8 Create the mesh.

generateMesh(model);
9 Call the appropriate solver. For all problems except for eigenvalue problems, call solvepde.

result = solvepde(model); % for stationary problems
result = solvepde(model,tlist); % for time-dependent problems

For eigenvalue problems, use solvepdeeig:

result = solvepdeeig(model);

2 Setting Up Your PDE

2-2

10 Examine the solution. See “Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-
302, “2-D Solution and Gradient Plots with MATLAB® Functions” on page 3-311, and “3-D
Solution and Gradient Plots with MATLAB® Functions” on page 3-317.

See Also
createpde | importGeometry | geometryFromEdges | pdegplot | applyBoundaryCondition |
generateMesh | pdeplot3D | pdeplot

 Solve Problems Using PDEModel Objects

2-3

2-D Geometry Creation at Command Line

Three Elements of Geometry
To describe your geometry through Constructive Solid Geometry (CSG) modeling, use three data
structures.

1 A matrix whose columns describe the basic shapes. When you export geometry from the PDE
Modeler app, this matrix has the default name gd (geometry description).

2 A matrix whose columns contain names for the basic shapes. Pad the columns with zeros or 32
(blanks) so that every column has the same length.

3 A set of characters describing the unions, intersections, and set differences of the basic shapes
that make the geometry.

Basic Shapes
To create basic shapes at the command line, create a matrix whose columns each describe a basic
shape. If necessary, add extra zeros to some columns so that all columns have the same length. Write
each column using the following encoding.

Circle

Row Value
1 1 (indicates a circle)
2 x-coordinate of circle center
3 y-coordinate of circle center
4 Radius (strictly positive)

Polygon

Row Value
1 2 (indicates a polygon)
2 Number of line segments n
3 through 3+n-1 x-coordinate of edge starting points
3+n through 2*n+2 y-coordinate of edge starting points

Note Your polygon must not contain any self-intersections.

Rectangle

Row Value
1 3 (indicates a rectangle)
2 4 (number of line segments)
3 through 6 x-coordinate of edge starting points
7 through 10 y-coordinate of edge starting points

2 Setting Up Your PDE

2-4

The encoding of a rectangle is the same as that of a polygon, except that the first row is 3 instead of
2.

Ellipse

Row Value
1 4 (indicates an ellipse)
2 x-coordinate of ellipse center
3 y-coordinate of ellipse center
4 First semiaxis length (strictly positive)
5 Second semiaxis length (strictly positive)
6 Angle in radians from x axis to first semiaxis

Rectangle with Circular End Cap and Another Circular Excision
Specify a matrix that has a rectangle with a circular end cap and another circular excision.

Create Basic Shapes

First, create a rectangle and two adjoining circles.

rect1 = [3
 4
 -1
 1
 1
 -1
 0
 0
 -0.5
 -0.5];
C1 = [1
 1
 -0.25
 0.25];
C2 = [1
 -1
 -0.25
 0.25];

Append extra zeros to the circles so they have the same number of rows as the rectangle.

C1 = [C1;zeros(length(rect1) - length(C1),1)];
C2 = [C2;zeros(length(rect1) - length(C2),1)];

Combine the shapes into one matrix.

gd = [rect1,C1,C2];

Create Names for the Basic Shapes

In order to create a formula describing the unions and intersections of basic shapes, you need a name
for each basic shape. Give the names as a matrix whose columns contain the names of the

 2-D Geometry Creation at Command Line

2-5

corresponding columns in the basic shape matrix. Pad the columns with 0 or 32 if necessary so that
each has the same length.

One easy way to create the names is by specifying a character array whose rows contain the names,
and then taking the transpose. Use the char function to create the array. This function pads the rows
as needed so all have the same length. Continuing the example, give names for the three shapes.

ns = char('rect1','C1','C2');
ns = ns';

Set Formula

Obtain the final geometry by writing a set of characters that describes the unions and intersections of
basic shapes. Use + for union, * for intersection, - for set difference, and parentheses for grouping. +
and * have the same grouping precedence. - has higher grouping precedence.

Continuing the example, specify the union of the rectangle and C1, and subtract C2.

sf = '(rect1+C1)-C2';

Create Geometry and Remove Face Boundaries

After you have created the basic shapes, given them names, and specified a set formula, create the
geometry using decsg. Often, you also remove some or all of the resulting face boundaries.
Completing the example, combine the basic shapes using the set formula.

[dl,bt] = decsg(gd,sf,ns);

View the geometry with and without boundary removal.

pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5,1.5])
axis equal

2 Setting Up Your PDE

2-6

Remove the face boundaries.

[dl2,bt2] = csgdel(dl,bt);
figure
pdegplot(dl2,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5,1.5])
axis equal

 2-D Geometry Creation at Command Line

2-7

Decomposed Geometry Data Structure
A decomposed geometry matrix has the following encoding. Each column of the matrix corresponds
to one boundary segment. Any 0 entry means no encoding is necessary for this row. So, for example,
if only line segments appear in the matrix, then the matrix has 7 rows. But if there is also a circular
segment, then the matrix has 10 rows. The extra three rows of the line columns are filled with 0.

Row Circle Line Ellipse
1 1 2 4
2 Starting x coordinate Starting x coordinate Starting x coordinate
3 Ending x coordinate Ending x coordinate Ending x coordinate
4 Starting y coordinate Starting y coordinate Starting y coordinate
5 Ending y coordinate Ending y coordinate Ending y coordinate
6 Region label to left of

segment, with direction
induced by start and end
points (0 is exterior label)

Region label to left of
segment, with direction
induced by start and end
points (0 is exterior label)

Region label to left of
segment, with direction
induced by start and end
points (0 is exterior label)

7 Region label to right of
segment, with direction
induced by start and end
points (0 is exterior label)

Region label to right of
segment, with direction
induced by start and end
points (0 is exterior label)

Region label to right of
segment, with direction
induced by start and end
points (0 is exterior label)

2 Setting Up Your PDE

2-8

Row Circle Line Ellipse
8 x coordinate of circle

center
0 x coordinate of ellipse

center
9 y coordinate of circle

center
0 y coordinate of ellipse

center
10 Radius 0 Length of first semiaxis
11 0 0 Length of second semiaxis
12 0 0 Angle in radians between x

axis and first semiaxis

 2-D Geometry Creation at Command Line

2-9

Parametrized Function for 2-D Geometry Creation

Required Syntax
A geometry function describes the curves that bound the geometry regions. A curve is a parametrized
function (x(t),y(t)). The variable t ranges over a fixed interval. For best results, t must be proportional
to the arc length plus a constant.

You must specify at least two curves for each geometric region. For example, the 'circleg'
geometry function, which is available in Partial Differential Equation Toolbox, uses four curves to
describe a circle. Curves can intersect only at the beginning or end of parameter intervals.

Toolbox functions query your geometry function by passing in 0, 1, or 2 arguments. Conditionalize
your geometry function based on the number of input arguments to return the data described in this
table.

Number of Input Arguments Returned Data
0 (ne = pdegeom) ne is the number of edges in the geometry.
1 (d = pdegeom(bs)) bs is a vector of edge segments. Your function returns d as a

matrix with one column for each edge segment specified in
bs. The rows of d are:

1 Start parameter value
2 End parameter value
3 Left region label, where “left” is with respect to the

direction from the start to the end parameter value
4 Right region label

A region label is the same as a subdomain number. The region
label of the exterior of the geometry is 0.

2 ([x,y] = pdegeom(bs,s)) s is an array of arc lengths, and bs is a scalar or an array of
the same size as s that gives the edge numbers. If bs is a
scalar, then it applies to every element in s. Your function
returns x and y, which are the x and y coordinates of the
edge segments specified in bs at the parameter value s. The
x and y arrays have the same size as s.

Relation Between Parametrization and Region Labels
The following figure shows how the direction of parameter increase relates to label numbering. The
arrows in the figure show the directions of increasing parameter values. The black dots indicate
curve beginning and end points. The red numbers indicate region labels. The red 0 in the center of
the figure indicates that the center square is a hole.

• The arrows by curves 1 and 2 show region 1 to the left and region 0 to the right.
• The arrows by curves 3 and 4 show region 0 to the left and region 1 to the right.
• The arrows by curves 5 and 6 show region 0 to the left and region 1 to the right.
• The arrows by curves 7 and 8 show region 1 to the left and region 0 to the right.

2 Setting Up Your PDE

2-10

Geometry Function for a Circle
This example shows how to write a geometry function for creating a circular region. Parametrize a
circle with radius 1 centered at the origin (0,0), as follows:

x = cos t ,
y = sin t ,
0 ≤ t ≤ 2π .

A geometry function must have at least two segments. To satisfy this requirement, break up the circle
into four segments.

• 0 ≤ t ≤ π/2
• π/2 ≤ t ≤ π
• π ≤ t ≤ 3π/2
• 3π/2 ≤ t ≤ 2π

Now that you have a parametrization, write the geometry function. Save this function file as
circlefunction.m on your MATLAB® path. This geometry is simple to create because the
parametrization does not change depending on the segment number.

function [x,y] = circlefunction(bs,s)
% Create a unit circle centered at (0,0) using four segments.
switch nargin
 case 0

 Parametrized Function for 2-D Geometry Creation

2-11

 x = 4; % four edge segments
 return
 case 1
 A = [0,pi/2,pi,3*pi/2; % start parameter values
 pi/2,pi,3*pi/2,2*pi; % end parameter values
 1,1,1,1; % region label to left
 0,0,0,0]; % region label to right
 x = A(:,bs); % return requested columns
 return
 case 2
 x = cos(s);
 y = sin(s);
end

Plot the geometry displaying the edge numbers and the face label.

pdegplot(@circlefunction,'EdgeLabels','on','FaceLabels','on')
axis equal

Arc Length Calculations for a Geometry Function
This example shows how to create a cardioid geometry using four distinct techniques. The techniques
are ways to parametrize your geometry using arc length calculations. The cardioid satisfies the
equation r = 2 1 + cos Φ .

ezpolar('2*(1+cos(Phi))')

2 Setting Up Your PDE

2-12

The following are the four ways to parametrize the cardioid as a function of the arc length:

• Use the pdearcl function with a polygonal approximation to the geometry. This approach is
general, accurate enough, and computationally fast.

• Use the integral and fzero functions to compute the arc length. This approach is more
computationally costly, but can be accurate without requiring you to choose an arbitrary polygon.

• Use an analytic calculation of the arc length. This approach is the best when it applies, but there
are many cases where it does not apply.

• Use a parametrization that is not proportional to the arc length plus a constant. This approach is
the simplest, but can yield a distorted mesh that does not give the most accurate solution to your
PDE problem.

Polygonal Approximation

The finite element method uses a triangular mesh to approximate the solution to a PDE numerically.
You can avoid loss in accuracy by taking a sufficiently fine polygonal approximation to the geometry.
The pdearcl function maps between parametrization and arc length in a form well suited to a
geometry function. Write the following geometry function for the cardioid.

function [x,y] = cardioid1(bs,s)
% CARDIOID1 Geometry file defining the geometry of a cardioid.

if nargin == 0
 x = 4; % four segments in boundary
 return
end

 Parametrized Function for 2-D Geometry Creation

2-13

if nargin == 1
 dl = [0 pi/2 pi 3*pi/2
 pi/2 pi 3*pi/2 2*pi
 1 1 1 1
 0 0 0 0];
 x = dl(:,bs);
 return
end

x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
 bs = bs*ones(size(s)); % expand bs
end

nth = 400; % fine polygon, 100 segments per quadrant
th = linspace(0,2*pi,nth); % parametrization
r = 2*(1 + cos(th));
xt = r.*cos(th); % Points for interpolation of arc lengths
yt = r.*sin(th);
% Compute parameters corresponding to the arc length values in s
th = pdearcl(th,[xt;yt],s,0,2*pi); % th contains the parameters
% Now compute x and y for the parameters th
r = 2*(1 + cos(th));
x(:) = r.*cos(th);
y(:) = r.*sin(th);
end

Plot the geometry function.

pdegplot('cardioid1','EdgeLabels','on')
axis equal

2 Setting Up Your PDE

2-14

With 400 line segments, the geometry looks smooth.

The built-in cardg function gives a slightly different version of this technique.

Integral for Arc Length

You can write an integral for the arc length of a curve. If the parametrization is in terms of x u and
y u , then the arc length s t is

s t =∫0 t dx
du

2
+ dy

du
2
du .

For a given value s0, you can find t as the root of the equation s t = s0. The fzero function solves
this type of nonlinear equation.

Write the following geometry function for the cardioid example.

function [x,y] = cardioid2(bs,s)
% CARDIOID2 Geometry file defining the geometry of a cardioid.

if nargin == 0
 x = 4; % four segments in boundary
 return
end

if nargin == 1
 dl = [0 pi/2 pi 3*pi/2

 Parametrized Function for 2-D Geometry Creation

2-15

 pi/2 pi 3*pi/2 2*pi
 1 1 1 1
 0 0 0 0];
 x = dl(:,bs);
 return
end

x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
 bs = bs*ones(size(s)); % expand bs
end

cbs = find(bs < 3); % upper half of cardioid
fun = @(ss)integral(@(t)sqrt(4*(1 + cos(t)).^2 + 4*sin(t).^2),0,ss);
sscale = fun(pi);
for ii = cbs(:)' % ensure a row vector
 myfun = @(rr)fun(rr)-s(ii)*sscale/pi;
 theta = fzero(myfun,[0,pi]);
 r = 2*(1 + cos(theta));
 x(ii) = r*cos(theta);
 y(ii) = r*sin(theta);
end
cbs = find(bs >= 3); % lower half of cardioid
s(cbs) = 2*pi - s(cbs);
for ii = cbs(:)'
 theta = fzero(@(rr)fun(rr)-s(ii)*sscale/pi,[0,pi]);
 r = 2*(1 + cos(theta));
 x(ii) = r*cos(theta);
 y(ii) = -r*sin(theta);
end
end

Plot the geometry function displaying the edge labels.

pdegplot('cardioid2','EdgeLabels','on')
axis equal

2 Setting Up Your PDE

2-16

The geometry looks identical to the polygonal approximation. This integral version takes much longer
to calculate than the polygonal version.

Analytic Arc Length

You also can find an analytic expression for the arc length as a function of the parametrization. Then
you can give the parametrization in terms of arc length. For example, find an analytic expression for
the arc length by using Symbolic Math Toolbox™.

syms t real
r = 2*(1+cos(t));
x = r*cos(t);
y = r*sin(t);
arcl = simplify(sqrt(diff(x)^2+diff(y)^2));
s = int(arcl,t,0,t,'IgnoreAnalyticConstraints',true)

s =

8 sin t
2

In terms of the arc length s, the parameter t is t = 2*asin(s/8), where s ranges from 0 to 8,
corresponding to t ranging from 0 to π. For s between 8 and 16, by symmetry of the cardioid, t =
pi + 2*asin((16-s)/8). Furthermore, you can express x and y in terms of s by these analytic
calculations.

syms s real
th = 2*asin(s/8);

 Parametrized Function for 2-D Geometry Creation

2-17

r = 2*(1 + cos(th));
r = expand(r)

r =

4 − s2
16

x = r*cos(th);
x = simplify(expand(x))

x =
s4

512 −
3 s2
16 + 4

y = r*sin(th);
y = simplify(expand(y))

y =

s 64 − s2 3/2

512

Now that you have analytic expressions for x and y in terms of the arc length s, write the geometry
function.

function [x,y] = cardioid3(bs,s)
% CARDIOID3 Geometry file defining the geometry of a cardioid.

if nargin == 0
 x = 4; % four segments in boundary
 return
end

if nargin == 1
dl = [0 4 8 12
 4 8 12 16
 1 1 1 1
 0 0 0 0];
 x = dl(:,bs);
 return
end

x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % bs might need scalar expansion
 bs = bs*ones(size(s)); % expand bs
end

cbs = find(bs < 3); % upper half of cardioid
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs >= 3); % lower half
s(cbs) = 16 - s(cbs); % take the reflection
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512; % negate y
end

Plot the geometry function displaying the edge labels.

2 Setting Up Your PDE

2-18

pdegplot('cardioid3','EdgeLabels','on')
axis equal

This analytic geometry looks slightly smoother than the previous versions. However, the difference is
inconsequential in terms of calculations.

Geometry Not Proportional to Arc Length

You also can write a geometry function where the parameter is not proportional to the arc length.
This approach can yield a distorted mesh.

function [x,y] = cardioid4(bs,s)
% CARDIOID4 Geometry file defining the geometry of a cardioid.

if nargin == 0
 x = 4; % four segments in boundary
 return
end

if nargin == 1
 dl = [0 pi/2 pi 3*pi/2
 pi/2 pi 3*pi/2 2*pi
 1 1 1 1
 0 0 0 0];
 x = dl(:,bs);
 return
end

 Parametrized Function for 2-D Geometry Creation

2-19

r = 2*(1 + cos(s)); % s is not proportional to arc length
x = r.*cos(s);
y = r.*sin(s);
end

Plot the geometry function displaying the edge labels.

pdegplot('cardioid4','EdgeLabels','on')
axis equal

The labels are not evenly spaced on the edges because the parameter is not proportional to the arc
length.

Examine the default mesh for each of the four methods of creating a geometry.

subplot(2,2,1)
model = createpde;
geometryFromEdges(model,@cardioid1);
generateMesh(model);
pdeplot(model)
title('Polygons')
axis equal

subplot(2,2,2)
model = createpde;
geometryFromEdges(model,@cardioid2);
generateMesh(model);
pdeplot(model)

2 Setting Up Your PDE

2-20

title('Integral')
axis equal

subplot(2,2,3)
model = createpde;
geometryFromEdges(model,@cardioid3);
generateMesh(model);
pdeplot(model)
title('Analytic')
axis equal

subplot(2,2,4)
model = createpde;
geometryFromEdges(model,@cardioid4);
generateMesh(model);
pdeplot(model)
title('Distorted')
axis equal

The distorted mesh looks a bit less regular than the other meshes. It has some very narrow triangles
near the cusp of the cardioid. Nevertheless, all of the meshes appear to be usable.

Geometry Function Example with Subdomains and a Hole
This example shows how to create a geometry file for a region with subdomains and a hole. It uses
the "Analytic Arc Length" section of the "Arc Length Calculations for a Geometry Function" example

 Parametrized Function for 2-D Geometry Creation

2-21

and a variant of the circle function from "Geometry Function for a Circle". The geometry consists of
an outer cardioid that is divided into an upper half called subdomain 1 and a lower half called
subdomain 2. Also, the lower half has a circular hole centered at (1,-1) and of radius 1/2. The
following is the code of the geometry function.

function [x,y] = cardg3(bs,s)
% CARDG3 Geometry File defining
% the geometry of a cardioid with two
% subregions and a hole.
if nargin == 0
 x = 9; % 9 segments
 return
end
if nargin == 1
 % Outer cardioid
 dl = [0 4 8 12
 4 8 12 16
 % Region 1 to the left in
 % the upper half, 2 in the lower
 1 1 2 2
 0 0 0 0];
 % Dividing line between top and bottom
 dl2 = [0
 4
 1 % Region 1 to the left
 2]; % Region 2 to the right
 % Inner circular hole
 dl3 = [0 pi/2 pi 3*pi/2
 pi/2 pi 3*pi/2 2*pi
 0 0 0 0 % Empty to the left
 2 2 2 2]; % Region 2 to the right
 % Combine the three edge matrices
 dl = [dl,dl2,dl3];
 x = dl(:,bs);
 return
end
x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
 bs = bs*ones(size(s)); % Expand bs
end
cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid
s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs == 5); % Index of straight line
x(cbs) = s(cbs);
y(cbs) = zeros(size(cbs));
cbs = find(bs > 5); % Inner circle radius 0.25 center (1,-1)
x(cbs) = 1 + 0.25*cos(s(cbs));
y(cbs) = -1 + 0.25*sin(s(cbs));
end

Plot the geometry, including edge labels and subdomain labels.

2 Setting Up Your PDE

2-22

pdegplot(@cardg3,'EdgeLabels','on', ...
 'FaceLabels','on')
axis equal

Nested Function for Geometry with Additional Parameters
This example shows how to include additional parameters into a function for creating a 2-D geometry.

When a 2-D geometry function requires additional parameters, you cannot use a standard anonymous
function approach because geometry functions return a varying number of arguments. Instead, you
can use global variables or nested functions. In most cases, the recommended approach is to use
nested functions.

The example solves a Poisson's equation with zero Dirichlet boundary conditions on all boundaries.
The geometry is a cardioid with an elliptic hole that has a center at (1,-1) and variable semiaxes. To
set up and solve the PDE model with this geometry, use a nested function. Here, the parent function
accepts the lengths of the semiaxes, rr and ss, as input parameters. The reason to nest
cardioidWithEllipseGeom within cardioidWithEllipseModel is that nested functions share
the workspace of their parent functions. Therefore, the cardioidWithEllipseGeom function can
access the values of rr and ss that you pass to cardioidWithEllipseModel.

function cardioidWithEllipseModel(rr,ss)

if (rr > 0) & (ss > 0)
 model = createpde();

 Parametrized Function for 2-D Geometry Creation

2-23

 geometryFromEdges(model,@cardioidWithEllipseGeom);
 pdegplot(model,'EdgeLabels','on','FaceLabels','on')
 axis equal

 applyBoundaryCondition(model,'dirichlet','Edge',1:8,'u',0);
 specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);

 generateMesh(model);
 u = solvepde(model);
 figure
 pdeplot(model,'XYData',u.NodalSolution)
 axis equal

else
 display('Semiaxes values must be positive numbers.')
end

function [x,y] = cardioidWithEllipseGeom(bs,s)

if nargin == 0
 x = 8; % eight segments in boundary
 return
end

if nargin == 1
 % Cardioid
 dlc = [0 4 8 12
 4 8 12 16
 1 1 1 1
 0 0 0 0];
 % Ellipse
 dle = [0 pi/2 pi 3*pi/2
 pi/2 pi 3*pi/2 2*pi
 0 0 0 0
 1 1 1 1];
 % Combine the edge matrices
 dl = [dlc,dle];
 x = dl(:,bs);
 return
end

x = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
 bs = bs*ones(size(s)); % Expand bs
end

cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid
s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).^4/512 - 3*s(cbs).^2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).^2).^(3/2)/512;
cbs = find(bs > 4); % Inner ellipse center (1,-1) axes rr and ss
x(cbs) = 1 + rr*cos(s(cbs));
y(cbs) = -1 + ss*sin(s(cbs));

end

2 Setting Up Your PDE

2-24

end

When calling cardioidWithEllipseModel, ensure that the semiaxes values are small enough, so
that the elliptic hole appears entirely within the outer cardioid. Otherwise, the geometry becomes
invalid.

For example, call the function for the ellipse with the major semiaxis rr = 0.5 and the minor
semiaxis ss = 0.25. This function call returns the following geometry and the solution.

cardioidWithEllipseModel(0.5,0.25)

 Parametrized Function for 2-D Geometry Creation

2-25

2 Setting Up Your PDE

2-26

Geometry from polyshape
This example shows how to create a polygonal geometry using the MATLAB polyshape function.
Then use the triangulated representation of the geometry as an input mesh for the
geometryFromMesh function.

Create and plot a polyshape object of a square with a hole.

t = pi/12:pi/12:2*pi;
pgon = polyshape({[-0.5 -0.5 0.5 0.5], 0.25*cos(t)}, ...
 {[0.5 -0.5 -0.5 0.5], 0.25*sin(t)})

pgon =
 polyshape with properties:

 Vertices: [29x2 double]
 NumRegions: 1
 NumHoles: 1

plot(pgon)
axis equal

Create a triangulation representation of this object.

tr = triangulation(pgon);

Create a PDE model.

 Geometry from polyshape

2-27

model = createpde;

With the triangulation data as a mesh, use the geometryFromMesh function to create a geometry.
Plot the geometry.

tnodes = tr.Points';
telements = tr.ConnectivityList';

geometryFromMesh(model,tnodes,telements);
pdegplot(model)

Plot the mesh.

figure
pdemesh(model)

2 Setting Up Your PDE

2-28

Because the triangulation data resulted in a low-quality mesh, generate a new finer mesh for further
analysis.

generateMesh(model)

ans =
 FEMesh with properties:

 Nodes: [2x1259 double]
 Elements: [6x579 double]
 MaxElementSize: 0.0566
 MinElementSize: 0.0283
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

Plot the mesh.

figure
pdemesh(model)

 Geometry from polyshape

2-29

2 Setting Up Your PDE

2-30

STL File Import
This example shows how to import a geometry from an STL file, and then plot the geometry.
Generally, you create the STL file by exporting from a CAD system, such as SolidWorks®. For best
results, export a fine (not coarse) STL file in binary (not ASCII) format. After importing, view the
geometry using the pdegplot function. To see the face IDs, set the FaceLabels name-value pair to
'on'.

View the geometry examples included with Partial Differential Equation Toolbox™.

figure
gm = importGeometry('Torus.stl');
pdegplot(gm)

figure
gm = importGeometry('Block.stl');
pdegplot(gm,'FaceLabels','on')

 STL File Import

2-31

figure
gm = importGeometry('Plate10x10x1.stl');
pdegplot(gm,'FaceLabels','on')

2 Setting Up Your PDE

2-32

figure
gm = importGeometry('Tetrahedron.stl');
pdegplot(gm,'FaceLabels','on')

 STL File Import

2-33

figure
gm = importGeometry('BracketWithHole.stl');
pdegplot(gm,'FaceLabels','on')

2 Setting Up Your PDE

2-34

figure
gm = importGeometry('DampingMounts.stl');
pdegplot(gm,'CellLabels','on')

 STL File Import

2-35

figure
gm = importGeometry('MotherboardFragment1.stl');
pdegplot(gm)

2 Setting Up Your PDE

2-36

figure
gm = importGeometry('PlateHoleSolid.stl');
pdegplot(gm,'FaceLabels','on')

 STL File Import

2-37

figure
gm = importGeometry('PlateSquareHoleSolid.stl');
pdegplot(gm)

2 Setting Up Your PDE

2-38

figure
gm = importGeometry('SquareBeam.stl');
pdegplot(gm,'FaceLabels','on')

 STL File Import

2-39

figure
gm = importGeometry('BracketTwoHoles.stl');
pdegplot(gm,'FaceLabels','on')

2 Setting Up Your PDE

2-40

To see hidden portions of the geometry, rotate the figure using Rotate 3D button or the view
function. You can rotate the angle bracket to obtain the following view.

figure
pdegplot(gm,'FaceLabels','on')
view([-24 -19])

 STL File Import

2-41

figure
gm = importGeometry('ForearmLink.stl');
pdegplot(gm,'FaceLabels','on');

2 Setting Up Your PDE

2-42

figure
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.5)

 STL File Import

2-43

When you import a planar STL geometry, the toolbox converts it to a 2-D geometry by mapping it to
the X-Y plane.

figure
gm = importGeometry('PlateHolePlanar.stl');
pdegplot(gm,'EdgeLabels','on')

2 Setting Up Your PDE

2-44

figure
gm = importGeometry('PlateSquareHolePlanar.stl');
pdegplot(gm);

 STL File Import

2-45

2 Setting Up Your PDE

2-46

Geometry from Triangulated Mesh

3-D Geometry from a Finite Element Mesh
This example shows how to import a 3-D mesh into a PDE model. Importing a mesh creates the
corresponding geometry in the model.

The tetmesh file that ships with your software contains a 3-D mesh. Load the data into your
Workspace.

load tetmesh

Examine the node and element sizes.

size(tet)

ans = 1×2

 4969 4

size(X)

ans = 1×2

 1456 3

The data is transposed from the required form as described in geometryFromMesh.

Create data matrices of the appropriate sizes.

nodes = X';
elements = tet';

Create a PDE model and import the mesh.

model = createpde();
geometryFromMesh(model,nodes,elements);

The model contains the imported mesh.

model.Mesh

ans =
 FEMesh with properties:

 Nodes: [3x1456 double]
 Elements: [4x4969 double]
 MaxElementSize: 8.2971
 MinElementSize: 1.9044
 MeshGradation: []
 GeometricOrder: 'linear'

View the geometry and face numbers.

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

 Geometry from Triangulated Mesh

2-47

2-D Multidomain Geometry
Create a 2-D multidomain geometry from a mesh.

Load information about nodes, elements, and element-to-domain correspondence into your
workspace. The file MultidomainMesh2D ships with your software.

load MultidomainMesh2D

Create a PDE model.

model = createpde;

Import the mesh into the model.

geometryFromMesh(model,nodes,elements,ElementIdToRegionId);

View the geometry and face numbers.

pdegplot(model,'FaceLabels','on')

2 Setting Up Your PDE

2-48

 Geometry from Triangulated Mesh

2-49

Geometry from alphaShape
Create a 3-D geometry using the MATLAB alphaShape function. First, create an alphaShape object
of a block with a cylindrical hole. Then import the geometry into a PDE model from the alphaShape
boundary.

Create a 2-D mesh grid.

[xg,yg] = meshgrid(-3:0.25:3);
xg = xg(:);
yg = yg(:);

Create a unit disk. Remove all the mesh grid points that fall inside the unit disk, and include the unit
disk points.

t = (pi/24:pi/24:2*pi)';
x = cos(t);
y = sin(t);
circShp = alphaShape(x,y,2);
in = inShape(circShp,xg,yg);
xg = [xg(~in); cos(t)];
yg = [yg(~in); sin(t)];

Create 3-D copies of the remaining mesh grid points, with the z-coordinates ranging from 0 through
1. Combine the points into an alphaShape object.

zg = ones(numel(xg),1);
xg = repmat(xg,5,1);
yg = repmat(yg,5,1);
zg = zg*(0:.25:1);
zg = zg(:);
shp = alphaShape(xg,yg,zg);

Obtain a surface mesh of the alphaShape object.

[elements,nodes] = boundaryFacets(shp);

Put the data in the correct shape for geometryFromMesh.

nodes = nodes';
elements = elements';

Create a PDE model and import the surface mesh.

model = createpde();
geometryFromMesh(model,nodes,elements);

View the geometry and face numbers.

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

2 Setting Up Your PDE

2-50

To use the geometry in an analysis, create a volume mesh.

generateMesh(model);

 Geometry from alphaShape

2-51

Cuboids, Cylinders, and Spheres
This example shows how to create 3-D geometries formed by one or more cubic, cylindrical, and
spherical cells by using the multicuboid, multicylinder, and multisphere functions,
respectively. With these functions, you can create stacked or nested geometries. You also can create
geometries where some cells are empty; for example, hollow cylinders, cubes, or spheres.

All cells in a geometry must be of the same type: either cuboids, or cylinders, or spheres. These
functions do not combine cells of different types in one geometry.

Single Sphere

Create a geometry that consists of a single sphere and include this geometry in a PDE model.

Use the multisphere function to create a single sphere. The resulting geometry consists of one cell.

gm = multisphere(5)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 1
 NumEdges: 0
 NumVertices: 0
 Vertices: []

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []

2 Setting Up Your PDE

2-52

 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on')

Nested Cuboids of Same Height

Create a geometry that consists of three nested cuboids of the same height and include this geometry
in a PDE model.

Create the geometry by using the multicuboid function. The resulting geometry consists of three
cells.

gm = multicuboid([2 3 5],[4 6 10],3)

gm =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 18
 NumEdges: 36
 NumVertices: 24
 Vertices: [24x3 double]

 Cuboids, Cylinders, and Spheres

2-53

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

2 Setting Up Your PDE

2-54

Stacked Cylinders

Create a geometry that consists of three stacked cylinders and include this geometry in a PDE model.

Create the geometry by using the multicylinder function with the ZOffset argument. The
resulting geometry consists of four cells stacked on top of each other.

gm = multicylinder(10,[1 2 3 4],'ZOffset',[0 1 3 6])

gm =
 DiscreteGeometry with properties:

 NumCells: 4
 NumFaces: 9
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0

 Cuboids, Cylinders, and Spheres

2-55

 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

2 Setting Up Your PDE

2-56

Hollow Cylinder

Create a hollow cylinder and include it as a geometry in a PDE model.

Create a hollow cylinder by using the multicylinder function with the Void argument. The
resulting geometry consists of one cell.

gm = multicylinder([9 10],10,'Void',[true,false])

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 4
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

 Cuboids, Cylinders, and Spheres

2-57

2 Setting Up Your PDE

2-58

Sphere in Cube
This example shows how to create a nested multidomain geometry consisting of a unit sphere and a
cube. The first part of the example creates a cube with a spherical cavity by using alphaShape. The
second part creates a solid sphere using tetrahedral elements, and then combines all tetrahedral
elements to obtain a solid sphere embedded in a cube.

Cube with Spherical Cavity

First, create a geometry consisting of a cube with a spherical cavity. This geometry has one cell.

Create a 3-D rectangular mesh grid.

[xg, yg, zg] = meshgrid(-2:0.25:2);
Pcube = [xg(:) yg(:), zg(:)];

Extract the grid points located outside of the unit spherical region.

Pcavitycube = Pcube(vecnorm(Pcube') > 1,:);

Create points on the unit sphere.

[x1,y1,z1] = sphere(24);
Psphere = [x1(:) y1(:) z1(:)];
Psphere = unique(Psphere,'rows');

Combine the coordinates of the rectangular grid (without the points inside the sphere) and the
surface coordinates of the unit sphere.

Pcombined = [Pcavitycube;Psphere];

Create an alphaShape object representing the cube with the spherical cavity.

shpCubeWithSphericalCavity = alphaShape(Pcombined(:,1), ...
 Pcombined(:,2), ...
 Pcombined(:,3));

figure
plot(shpCubeWithSphericalCavity,'FaceAlpha',0.4)
title('alphaShape: Cube with Spherical Cavity')

 Sphere in Cube

2-59

Recover the triangulation that defines the domain of the alphaShape object.

[tri,loc] = alphaTriangulation(shpCubeWithSphericalCavity);

Create a PDE model.

modelCube = createpde;

Create a geometry from the mesh and import the geometry and the mesh into the model.

[gCube,mshCube] = geometryFromMesh(modelCube,loc',tri');

Plot the resulting geometry.

figure
pdegplot(modelCube,'FaceAlpha',0.5,'CellLabels','on')
title('PDEModel: Cube with Spherical Cavity')

2 Setting Up Your PDE

2-60

Solid Sphere Nested in Cube

Create tetrahedral elements to form a solid sphere by using the spherical shell and adding a new
node at the center. First, obtain the spherical shell by extracting facets of the spherical boundary.

sphereFacets = boundaryFacets(mshCube,'Face',3);
sphereNodes = findNodes(mshCube,'region','Face',3);

Add a new node at the center.

newNodeID = size(mshCube.Nodes,2) + 1;

Construct the tetrahedral elements by using each of the three nodes on the spherical boundary facets
and the new node at the origin.

sphereTets = [sphereFacets; newNodeID*ones(1,size(sphereFacets,2))];

Create a model that combines the cube with the spherical cavity and a sphere.

model = createpde;

Create a vector that maps all mshCube elements to cell 1, and all elements of the solid sphere to cell
2.

e2c = [ones(1,size(mshCube.Elements,2)), 2*ones(1,size(sphereTets,2))];

Add a new node at the center [0;0;0] to the nodes of the cube with the cavity.

 Sphere in Cube

2-61

combinedNodes = [mshCube.Nodes,[0;0;0]];

Combine the element connectivity matrices.

combinedElements = [mshCube.Elements,sphereTets];

Create a two-cell geometry from the mesh.

[g,msh] = geometryFromMesh(model,combinedNodes,combinedElements,e2c);

figure
pdegplot(model,'FaceAlpha',0.5,'CellLabels','on')
title('Solid Sphere in Cube')

2 Setting Up Your PDE

2-62

3-D Multidomain Geometry from 2-D Geometry
This example shows how to create a 3-D multidomain geometry by extruding a 2-D geometry
imported from STL data. The original 2-D geometry represents a cooled turbine blade section defined
by a 2-D profile.

Before extruding the geometry, this example modifies the original 2-D profile as follows:

• Translates the geometry to move the tip to the origin
• Aligns the chord with the x-axis
• Changes the dimensions from inches to millimeters

First, create a PDE model.

model = createpde;

Import the geometry into the model.

g = importGeometry(model,'CooledBlade2D.STL');

Plot the geometry with the face labels.

figure
pdegplot(model,'FaceLabels','on')

Translate the geometry to align the tip of the blade with the origin.

 3-D Multidomain Geometry from 2-D Geometry

2-63

tip = [1.802091,-127.98192215];
translate(g,tip);

Rotate the geometry to align the chord with the x-axis.

angle = -36.26005;
rotate(g,angle);

Scale the geometry to convert from inches to millimeters.

scale(g,[25.4 -25.4]);

Plot the resulting geometry with the face labels.

figure
pdegplot(model,'FaceLabels','on')

Fill the void regions with faces and plot the resulting geometry.

g = addFace(g,{3, 4, 5, 6, 7});

figure
pdegplot(model,'FaceLabels','on')

2 Setting Up Your PDE

2-64

Extrude the geometry to create a stacked multilayer 3-D model of the blade. The thickness of each
layer is 200 mm.

g = extrude(g,[200 200 200]);

Plot the geometry with the cell labels.

figure
pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

 3-D Multidomain Geometry from 2-D Geometry

2-65

2 Setting Up Your PDE

2-66

Multidomain Geometry Reconstructed from Mesh
This example shows how to split a single-domain block geometry into two domains. The first part of
the example generates a mesh and divides the mesh elements into two groups. The second part of the
example creates a two-domain geometry based on this division.

Generate Mesh and Split Its Elements into Two Groups

Create a PDE model.

modelSingleDomain = createpde;

Import the geometry.

importGeometry(modelSingleDomain,'Block.stl');

Generate and plot a mesh.

msh = generateMesh(modelSingleDomain);

figure
pdemesh(modelSingleDomain)

Obtain the nodes and elements of the mesh.

nodes = msh.Nodes;
elements = msh.Elements;

 Multidomain Geometry Reconstructed from Mesh

2-67

Find the x-coordinates of the geometric centers of all elements of the mesh. First, create an array of
the same size as elements that contains the x-coordinates of the nodes forming the mesh elements.
Each column of this vector contains the x-coordinates of 10 nodes that form an element.

elemXCoords = reshape(nodes(1,elements),10,[]);

Compute the mean of each column of this array to get a vector of the x-coordinates of the element
geometric centers.

elemXCoordsGeometricCenter = mean(elemXCoords);

Assume that all elements have the same region ID and create a matrix ElementIdToRegionId.

ElementIdToRegionId = ones(1,size(elements,2));

Find IDs of all elements for which the x-coordinate of the geometric center exceeds 30.

idx = mean(elemXCoords) > 30;

For the elements with centers located beyond x = 30, change the region IDs to 2.

ElementIdToRegionId(idx) = 2;

Create Geometry with Two Cells

Create a new PDE model.

modelTwoDomain = createpde;

Using geometryFromMesh, import the mesh. Assign the elements to two cells based on their IDs.

geometryFromMesh(modelTwoDomain,nodes,elements,ElementIdToRegionId)

ans =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 108
 NumEdges: 205
 NumVertices: 100
 Vertices: [100x3 double]

Plot the geometry, displaying the cell labels.

pdegplot(modelTwoDomain,'CellLabels','on','FaceAlpha',0.5)

2 Setting Up Your PDE

2-68

Highlight the elements from cell 1 in red and the elements from cell 2 in green.

elementIDsCell1 = findElements(modelTwoDomain.Mesh,'region','Cell',1);
elementIDsCell2 = findElements(modelTwoDomain.Mesh,'region','Cell',2);

figure
pdemesh(modelTwoDomain.Mesh.Nodes, ...
 modelTwoDomain.Mesh.Elements(:,elementIDsCell1), ...
 'FaceColor','red')
hold on
pdemesh(modelTwoDomain.Mesh.Nodes, ...
 modelTwoDomain.Mesh.Elements(:,elementIDsCell2), ...
 'FaceColor','green')

 Multidomain Geometry Reconstructed from Mesh

2-69

2 Setting Up Your PDE

2-70

Put Equations in Divergence Form
In this section...
“Coefficient Matching for Divergence Form” on page 2-71
“Boundary Conditions Can Affect the c Coefficient” on page 2-72
“Coefficient Conversion with Symbolic Math Toolbox” on page 2-72
“Some Equations Cannot Be Converted” on page 2-73

Coefficient Matching for Divergence Form
As explained in “Equations You Can Solve Using PDE Toolbox” on page 1-3, Partial Differential
Equation Toolbox solvers address equations of the form

−∇ ⋅ c∇u + au = f

or variants that have derivatives with respect to time, or that have eigenvalues, or are systems of
equations. These equations are in divergence form, where the differential operator begins ∇ ·. The
coefficients a, c, and f are functions of position (x, y, z) and possibly of the solution u.

However, you can have equations in a form with all the derivatives explicitly expanded, such as

1 + x2 ∂2u
∂x2 − 3xy ∂

2u
∂x∂y +

1 + y2

2
∂2u
∂y2 = 0

In order to transform this expanded equation into the required form, you can try to match the
coefficients of the equation in divergence form to the expanded form. In divergence form, if

c =
c1 c3
c2 c4

then

∇ · c∇u = c1uxx + c2 + c3 uxy + c4uyy

+
∂c1
∂x +

∂c2
∂y ux +

∂c3
∂x +

∂c4
∂y uy

Matching coefficients in the uxx and uyy terms in −∇ ⋅ c∇u to the equation, you get

c1 = − 1 + x2

c4 = − 1 + y2 /2

Then looking at the coefficients of ux and uy, which should be zero, you get

 Put Equations in Divergence Form

2-71

∂c1
∂x +

∂c2
∂y = − 2x +

∂c2
∂y

so
c2 = 2xy .
∂c3
∂x +

∂c4
∂y =

∂c3
∂x − y

so
c3 = xy

This completes the conversion of the equation to the divergence form

−∇ ⋅ c∇u = 0

Boundary Conditions Can Affect the c Coefficient
The c coefficient appears in the generalized Neumann condition

n · c∇u + qu = g

So when you derive a divergence form of the c coefficient, keep in mind that this coefficient appears
elsewhere.

For example, consider the 2-D Poisson equation –uxx – uyy = f. Obviously, you can take c = 1. But there
are other c matrices that lead to the same equation: any that have c(2) + c(3) = 0.

∇ · c∇u = ∇ ·
c1 c3
c2 c4

ux
uy

= ∂
∂x c1ux + c3uy + ∂

∂y c2ux + c4uy

= c1uxx + c4uyy + c2 + c3 uxy

So there is freedom in choosing a c matrix. If you have a Neumann boundary condition such as

n · c∇u = 2

the boundary condition depends on which version of c you use. In this case, make sure that you take a
version of c that is compatible with both the equation and the boundary condition.

Coefficient Conversion with Symbolic Math Toolbox
You can transform a partial differential equation into the required form by using Symbolic Math
Toolbox™. The toolbox offers these two functions to help with the conversion:

• pdeCoefficients converts a PDE into the required form and extracts the coefficients into a
structure of double-precision numbers and function handles, which can be used by
specifyCoefficients. The pdeCoefficients function also can return a structure of symbolic
expressions, in which case you need to convert these expressions to double format before passing
them to specifyCoefficients.

• pdeCoefficientsToDouble converts symbolic PDE coefficients to double format.

2 Setting Up Your PDE

2-72

“Solve Partial Differential Equation of Nonlinear Heat Transfer” (Symbolic Math Toolbox) shows how
the Symbolic Math Toolbox functions can help you convert a PDE to the required form. “Nonlinear
Heat Transfer in Thin Plate” on page 3-190 shows the same example without the use of Symbolic
Math Toolbox.

Some Equations Cannot Be Converted
Sometimes it is not possible to find a conversion to a divergence form such as

−∇ ⋅ c∇u + au = f

For example, consider the equation

∂2u
∂x2 + cos(x + y)

4
∂2u
∂x∂y + 1

2
∂2u
∂y2 = 0

By simple coefficient matching, you see that the coefficients c1 and c4 are –1 and –1/2 respectively.
However, there are no c2 and c3 that satisfy the remaining equations,

c2 + c3 = −cos(x + y)
4

∂c1
∂x +

∂c2
∂y =

∂c2
∂y = 0

∂c3
∂x +

∂c4
∂y =

∂c3
∂x = 0

See Also

Related Examples
• “Equations You Can Solve Using PDE Toolbox” on page 1-3
• “Solve Problems Using PDEModel Objects” on page 2-2
• “Solve Partial Differential Equation of Nonlinear Heat Transfer” (Symbolic Math Toolbox)

 Put Equations in Divergence Form

2-73

f Coefficient for specifyCoefficients
This section describes how to write the coefficient f in the equation

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

or in similar equations. The question is how to write the coefficient f for inclusion in the PDE model
via specifyCoefficients.

N is the number of equations, see “Equations You Can Solve Using PDE Toolbox” on page 1-3. Give f
as either of the following:

• If f is constant, give a column vector with N components. For example, if N = 3, f could be:

f = [3;4;10];

• If f is not constant, give a function handle. The function must be of the form

fcoeff = fcoeffunction(location,state)

Pass the coefficient to specifyCoefficients as a function handle, such as

specifyCoefficients(model,'f',@fcoeffunction,...)

solvepde or solvepdeeig compute and populate the data in the location and state
structure arrays and pass this data to your function. You can define your function so that its output
depends on this data. You can use any names instead of location and state, but the function
must have exactly two arguments. To use additional arguments in your function, wrap your
function (that takes additional arguments) with an anonymous function that takes only the
location and state arguments. For example:

fcoeff = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
specifyCoefficients(model,'f',fcoeff,...

• location is a structure with these fields:

• location.x
• location.y
• location.z
• location.subdomain

The fields x, y, and z represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The subdomain field represents the subdomain numbers, which
currently apply only to 2-D models. The location fields are row vectors.

• state is a structure with these fields:

• state.u
• state.ux
• state.uy
• state.uz

2 Setting Up Your PDE

2-74

• state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy,
and state.uz fields are estimates of the solution’s partial derivatives (∂u/∂x, ∂u/∂y, and ∂u/∂z)
at the corresponding points of the location structure. The solution and gradient estimates are
N-by-Nr matrices. The state.time field is a scalar representing time for time-dependent
models.

Your function must return a matrix of size N-by-Nr, where Nr is the number of points in the location
that solvepde passes. Nr is equal to the length of the location.x or any other location field.
The function should evaluate f at these points.

For example, if N = 3, f could be:

function f = fcoeffunction(location,state)

N = 3; % Number of equations
nr = length(location.x); % Number of columns
f = zeros(N,nr); % Allocate f

% Now the particular functional form of f
f(1,:) = location.x - location.y + state.u(1,:);
f(2,:) = 1 + tanh(state.ux(1,:)) + tanh(state.uy(3,:));
f(3,:) = (5 + state.u(3,:)).*sqrt(location.x.^2 + location.y.^2);

This represents the coefficient function

f =
x− y + u(1)

1 + tanh(∂u(1)/ ∂x) + tanh(∂u(3)/ ∂y)

(5 + u(3)) x2 + y2

See Also

Related Examples
• “Put Equations in Divergence Form” on page 2-71
• “Solve Problems Using PDEModel Objects” on page 2-2
• “m, d, or a Coefficient for specifyCoefficients” on page 2-91
• “c Coefficient for specifyCoefficients” on page 2-76

 f Coefficient for specifyCoefficients

2-75

c Coefficient for specifyCoefficients

In this section...
“Overview of the c Coefficient” on page 2-76
“Definition of the c Tensor Elements” on page 2-76
“Some c Vectors Can Be Short” on page 2-78
“Functional Form” on page 2-88

Overview of the c Coefficient
This topic describes how to write the coefficient c in equations such as

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

The topic applies to the recommended workflow for including coefficients in your model using
specifyCoefficients.

For 2-D systems, c is a tensor with 4N2 elements. For 3-D systems, c is a tensor with 9N2 elements.
For a definition of the tensor elements, see “Definition of the c Tensor Elements” on page 2-76. N is
the number of equations, see “Equations You Can Solve Using PDE Toolbox” on page 1-3.

To write the coefficient c for inclusion in the PDE model via specifyCoefficients, give c as either
of the following:

• If c is constant, give a column vector representing the elements in the tensor.
• If c is not constant, give a function handle. The function must be of the form

ccoeffunction(location,state)

solvepde or solvepdeeig pass the location and state structures to ccoeffunction. The
function must return a matrix of size N1-by-Nr, where:

• N1 is the length of the vector representing the c coefficient. There are several possible values
of N1, detailed in “Some c Vectors Can Be Short” on page 2-78. For 2-D geometry,
1 ≤ N1 ≤ 4N2, and for 3-D geometry, 1 ≤ N1 ≤ 9N2.

• Nr is the number of points in the location that the solver passes. Nr is equal to the length of
the location.x or any other location field. The function should evaluate c at these points.

Definition of the c Tensor Elements
For 2-D systems, the notation ∇ ⋅ (c⊗ ∇u) represents an N-by-1 matrix with an (i,1)-component

∑
j = 1

N ∂
∂x ci, j, 1, 1

∂
∂x + ∂

∂x ci, j, 1, 2
∂
∂y + ∂

∂y ci, j, 2, 1
∂
∂x + ∂

∂y ci, j, 2, 2
∂
∂y u j

For 3-D systems, the notation ∇ ⋅ (c⊗ ∇u) represents an N-by-1 matrix with an (i,1)-component

2 Setting Up Your PDE

2-76

∑
j = 1

N ∂
∂x ci, j, 1, 1

∂
∂x + ∂

∂x ci, j, 1, 2
∂
∂y + ∂

∂x ci, j, 1, 3
∂
∂z u j

+ ∑
j = 1

N ∂
∂y ci, j, 2, 1

∂
∂x + ∂

∂y ci, j, 2, 2
∂
∂y + ∂

∂y ci, j, 2, 3
∂
∂z u j

+ ∑
j = 1

N ∂
∂z ci, j, 3, 1

∂
∂x + ∂

∂z ci, j, 3, 2
∂
∂y + ∂

∂z ci, j, 3, 3
∂
∂z u j

All representations of the c coefficient begin with a “flattening” of the tensor to a matrix. For 2-D
systems, the N-by-N-by-2-by-2 tensor flattens to a 2N-by-2N matrix, where the matrix is logically an
N-by-N matrix of 2-by-2 blocks.

c(1, 1, 1, 1) c(1, 1, 1, 2) c(1, 2, 1, 1) c(1, 2, 1, 2) ⋯ c(1, N, 1, 1) c(1, N, 1, 2)
c(1, 1, 2, 1) c(1, 1, 2, 2) c(1, 2, 2, 1) c(1, 2, 2, 2) ⋯ c(1, N, 2, 1) c(1, N, 2, 2)

c(2, 1, 1, 1) c(2, 1, 1, 2) c(2, 2, 1, 1) c(2, 2, 1, 2) ⋯ c(2, N, 1, 1) c(2, N, 1, 2)
c(2, 1, 2, 1) c(2, 1, 2, 2) c(2, 2, 2, 1) c(2, 2, 2, 2) ⋯ c(2, N, 2, 1) c(2, N, 2, 2)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
c(N, 1, 1, 1) c(N, 1, 1, 2) c(N, 2, 1, 1) c(N, 2, 1, 2) ⋯ c(N, N, 1, 1) c(N, N, 1, 2)
c(N, 1, 2, 1) c(N, 1, 2, 2) c(N, 2, 2, 1) c(N, 2, 2, 2) ⋯ c(N, N, 2, 1) c(N, N, 2, 2)

For 3-D systems, the N-by-N-by-3-by-3 tensor flattens to a 3N-by-3N matrix, where the matrix is
logically an N-by-N matrix of 3-by-3 blocks.

c(1, 1, 1, 1) c(1, 1, 1, 2) c(1, 1, 1, 3) c(1, 2, 1, 1) c(1, 2, 1, 2) c(1, 2, 1, 3) ⋯ c(1, N, 1, 1) c(1, N, 1, 2) c(1, N, 1, 3)
c(1, 1, 2, 1) c(1, 1, 2, 2) c(1, 1, 2, 3) c(1, 2, 2, 1) c(1, 2, 2, 2) c(1, 2, 2, 3) ⋯ c(1, N, 2, 1) c(1, N, 2, 2) c(1, N, 2, 3)
c(1, 1, 3, 1) c(1, 1, 3, 2) c(1, 1, 3, 3) c(1, 2, 3, 1) c(1, 2, 3, 2) c(1, 2, 3, 3) ⋯ c(1, N, 3, 1) c(1, N, 3, 2) c(1, N, 3, 3)

c(2, 1, 1, 1) c(2, 1, 1, 2) c(2, 1, 1, 3) c(2, 2, 1, 1) c(2, 2, 1, 2) c(2, 2, 1, 3) ⋯ c(2, N, 1, 1) c(2, N, 1, 2) c(2, N, 1, 3)
c(2, 1, 2, 1) c(2, 1, 2, 2) c(2, 1, 2, 3) c(2, 2, 2, 1) c(2, 2, 2, 2) c(2, 2, 2, 3) ⋯ c(2, N, 2, 1) c(2, N, 2, 2) c(2, N, 2, 3)
c(2, 1, 3, 1) c(2, 1, 3, 2) c(2, 1, 3, 3) c(2, 2, 3, 1) c(2, 2, 3, 2) c(2, 2, 3, 3) ⋯ c(2, N, 3, 1) c(2, N, 3, 2) c(2, N, 3, 3)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
c(N, 1, 1, 1) c(N, 1, 1, 2) c(N, 1, 1, 3) c(N, 2, 1, 1) c(N, 2, 1, 2) c(N, 2, 1, 3) ⋯ c(N, N, 1, 1) c(N, N, 1, 2) c(N, N, 1, 3)
c(N, 1, 2, 1) c(N, 1, 2, 2) c(N, 1, 2, 3) c(N, 2, 2, 1) c(N, 2, 2, 2) c(N, 2, 2, 3) ⋯ c(N, N, 2, 1) c(N, N, 2, 2) c(N, N, 2, 3)
c(N, 1, 3, 1) c(N, 1, 3, 2) c(N, 1, 3, 3) c(N, 2, 3, 1) c(N, 2, 3, 2) c(N, 2, 3, 3) ⋯ c(N, N, 3, 1) c(N, N, 3, 2) c(N, N, 3, 3)

These matrices further get flattened into a column vector. First the N-by-N matrices of 2-by-2
and 3-by-3 blocks are transformed into "vectors" of 2-by-2 and 3-by-3 blocks. Then the blocks are
turned into vectors in the usual column-wise way.

The coefficient vector c relates to the tensor c as follows. For 2-D systems,

 c Coefficient for specifyCoefficients

2-77

c(1) c(3) c(4N + 1) c(4N + 3) ⋯ c(4N(N − 1) + 1) c(4N(N − 1) + 3)
c(2) c(4) c(4N + 2) c(4N + 4) ⋯ c(4N(N − 1) + 2) c(4N(N − 1) + 4)

c(5) c(7) c(4N + 5) c(4N + 7) ⋯ c(4N(N − 1) + 5) c(4N(N − 1) + 7)
c(6) c(8) c(4N + 6) c(4N + 8) ⋯ c(4N(N − 1) + 6) c(4N(N − 1) + 8)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
c(4N − 3) c(4N − 1) c(8N − 3) c(8N − 1) ⋯ c(4N2− 3) c(4N2− 1)

c(4N − 2) c(4N) c(8N − 2) c(8N) ⋯ c(4N2− 2) c(4N2)

Coefficient c(i,j,k,l) is in row (4N(j–1) + 4i + 2l + k – 6) of the vector c.

For 3-D systems,
c(1) c(4) c(7) c(9N + 1) c(9N + 4) c(9N + 7) ⋯ c(9N(N − 1) + 1) c(9N(N − 1) + 4) c(9N(N − 1) + 7)
c(2) c(5) c(8) c(9N + 2) c(9N + 5) c(9N + 8) ⋯ c(9N(N − 1) + 2) c(9N(N − 1) + 5) c(9N(N − 1) + 8)
c(3) c(6) c(9) c(9N + 3) c(9N + 6) c(9N + 9) ⋯ c(9N(N − 1) + 3) c(9N(N − 1) + 6) c(9N(N − 1) + 9)

c(10) c(13) c(16) c(9N + 10) c(9N + 13) c(9N + 16) ⋯ c(9N(N − 1) + 10) c(9N(N − 1) + 13) c(9N(N − 1) + 16)
c(11) c(14) c(17) c(9N + 11) c(9N + 14) c(9N + 17) ⋯ c(9N(N − 1) + 11) c(9N(N − 1) + 14) c(9N(N − 1) + 17)
c(12) c(15) c(18) c(9N + 12) c(9N + 15) c(9N + 18) ⋯ c(9N(N − 1) + 12) c(9N(N − 1) + 15) c(9N(N − 1) + 18)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

c(9N − 8) c(9N − 5) c(9N − 2) c(18N − 8) c(18N − 5) c(18N − 2) ⋯ c(9N2− 8) c(9N2− 5) c(9N2− 2)

c(9N − 7) c(9N − 4) c(9N − 1) c(18N − 7) c(18N − 4) c(18N − 1) ⋯ c(9N2− 7) c(9N2− 4) c(9N2− 1)

c(9N − 6) c(9N − 3) c(9N) c(18N − 6) c(18N − 3) c(18N) ⋯ c(9N2− 6) c(9N2− 3) c(9N2)

Coefficient c(i,j,k,l) is in row (9N(j–1) + 9i + 3l + k – 12) of the vector c.

Some c Vectors Can Be Short
Often, your tensor c has structure, such as symmetric or block diagonal. In many cases, you can
represent c using a smaller vector than one with 4N2 components for 2-D or 9N2 components for 3-D.
The following sections give the possibilities.

• “2-D Systems” on page 2-78
• “3-D Systems” on page 2-82

2-D Systems

• “Scalar c, 2-D Systems” on page 2-79
• “Two-Element Column Vector c, 2-D Systems” on page 2-79
• “Three-Element Column Vector c, 2-D Systems” on page 2-79
• “Four-Element Column Vector c, 2-D Systems” on page 2-79
• “N-Element Column Vector c, 2-D Systems” on page 2-80
• “2N-Element Column Vector c, 2-D Systems” on page 2-80
• “3N-Element Column Vector c, 2-D Systems” on page 2-81

2 Setting Up Your PDE

2-78

• “4N-Element Column Vector c, 2-D Systems” on page 2-81
• “2N(2N+1)/2-Element Column Vector c, 2-D Systems” on page 2-82
• “4N2-Element Column Vector c, 2-D Systems” on page 2-82

Scalar c, 2-D Systems

The software interprets a scalar c as a diagonal matrix, with c(i,i,1,1) and c(i,i,2,2) equal to the scalar,
and all other entries 0.

c 0 0 0 ⋯ 0 0
0 c 0 0 ⋯ 0 0

0 0 c 0 ⋯ 0 0
0 0 0 c ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c 0
0 0 0 0 ⋯ 0 c

Two-Element Column Vector c, 2-D Systems

The software interprets a two-element column vector c as a diagonal matrix, with c(i,i,1,1) and
c(i,i,2,2) as the two entries, and all other entries 0.

c(1) 0 0 0 ⋯ 0 0
0 c(2) 0 0 ⋯ 0 0

0 0 c(1) 0 ⋯ 0 0
0 0 0 c(2) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(1) 0
0 0 0 0 ⋯ 0 c(2)

Three-Element Column Vector c, 2-D Systems

The software interprets a three-element column vector c as a symmetric block diagonal matrix, with
c(i,i,1,1) = c(1), c(i,i,2,2) = c(3), and c(i,i,1,2) = c(i,i,2,1) = c(2).

c(1) c(2) 0 0 ⋯ 0 0
c(2) c(3) 0 0 ⋯ 0 0

0 0 c(1) c(2) ⋯ 0 0
0 0 c(2) c(3) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(1) c(2)
0 0 0 0 ⋯ c(2) c(3)

Four-Element Column Vector c, 2-D Systems

The software interprets a four-element column vector c as a block diagonal matrix.

 c Coefficient for specifyCoefficients

2-79

c(1) c(3) 0 0 ⋯ 0 0
c(2) c(4) 0 0 ⋯ 0 0

0 0 c(1) c(3) ⋯ 0 0
0 0 c(2) c(4) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(1) c(3)
0 0 0 0 ⋯ c(2) c(4)

N-Element Column Vector c, 2-D Systems

The software interprets an N-element column vector c as a diagonal matrix.

c(1) 0 0 0 ⋯ 0 0
0 c(1) 0 0 ⋯ 0 0

0 0 c(2) 0 ⋯ 0 0
0 0 0 c(2) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(N) 0
0 0 0 0 ⋯ 0 c(N)

Caution If N = 2, 3, or 4, the 2-, 3-, or 4-element column vector form takes precedence over the N-
element form. For example, if N = 3, and you have a c matrix of the form

c1 0 0 0 0 0
0 c1 0 0 0 0
0 0 c2 0 0 0
0 0 0 c2 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3

you cannot use the N-element form of c. Instead, you must use the 2N-element form. If you give c as
the vector [c1;c2;c3], the software interprets c as a 3-element form:

c1 c2 0 0 0 0
c2 c3 0 0 0 0
0 0 c1 c2 0 0
0 0 c2 c3 0 0
0 0 0 0 c1 c2
0 0 0 0 c2 c3

Instead, use the 2N-element form [c1;c1;c2;c2;c3;c3].

2N-Element Column Vector c, 2-D Systems

The software interprets a 2N-element column vector c as a diagonal matrix.

2 Setting Up Your PDE

2-80

c(1) 0 0 0 ⋯ 0 0
0 c(2) 0 0 ⋯ 0 0

0 0 c(3) 0 ⋯ 0 0
0 0 0 c(4) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(2N − 1) 0
0 0 0 0 ⋯ 0 c(2N)

Caution If N = 2, the 4-element form takes precedence over the 2N-element form. For example, if
your c matrix is

c1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c4

you cannot give c as [c1;c2;c3;c4], because the software interprets this vector as the 4-element
form

c1 c3 0 0
c2 c4 0 0
0 0 c1 c3
0 0 c2 c4

Instead, use the 3N-element form [c1;0;c2;c3;0;c4] or the 4N-element form
[c1;0;0;c2;c3;0;0;c4].

3N-Element Column Vector c, 2-D Systems

The software interprets a 3N-element column vector c as a symmetric block diagonal matrix.

c(1) c(2) 0 0 ⋯ 0 0
c(2) c(3) 0 0 ⋯ 0 0

0 0 c(4) c(5) ⋯ 0 0
0 0 c(5) c(6) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(3N − 2) c(3N − 1)
0 0 0 0 ⋯ c(3N − 1) c(3N)

Coefficient c(i,j,k,l) is in row (3i + k + l – 4) of the vector c.

4N-Element Column Vector c, 2-D Systems

The software interprets a 4N-element column vector c as a block diagonal matrix.

 c Coefficient for specifyCoefficients

2-81

c(1) c(3) 0 0 ⋯ 0 0
c(2) c(4) 0 0 ⋯ 0 0

0 0 c(5) c(7) ⋯ 0 0
0 0 c(6) c(8) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(4N − 3) c(4N − 1)
0 0 0 0 ⋯ c(4N − 2) c(4N)

Coefficient c(i,j,k,l) is in row (4i + 2l + k – 6) of the vector c.

2N(2N+1)/2-Element Column Vector c, 2-D Systems

The software interprets a 2N(2N+1)/2-element column vector c as a symmetric matrix. In the
following diagram, • means the entry is symmetric.

c(1) c(2) c(4) c(6) ⋯ c((N − 1)(2N − 1) + 1) c((N − 1)(2N − 1) + 3)
• c(3) c(5) c(7) ⋯ c((N − 1)(2N − 1) + 2) c((N − 1)(2N − 1) + 4)

• • c(8) c(9) ⋯ c((N − 1)(2N − 1) + 5) c((N − 1)(2N − 1) + 7)
• • • c(10) ⋯ c((N − 1)(2N − 1) + 6) c((N − 1)(2N − 1) + 8)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
• • • • ⋯ c(N(2N + 1) − 2) c(N(2N + 1) − 1)
• • • • ⋯ • c(N(2N + 1))

Coefficient c(i,j,k,l), for i < j, is in row (2j2 – 3j + 4i + 2l + k – 5) of the vector c. For i = j, coefficient
c(i,j,k,l) is in row (2i2 + i + l + k – 4) of the vector c.

4N2-Element Column Vector c, 2-D Systems

The software interprets a 4N2-element column vector c as a matrix.

c(1) c(3) c(4N + 1) c(4N + 3) ⋯ c(4N(N − 1) + 1) c(4N(N − 1) + 3)
c(2) c(4) c(4N + 2) c(4N + 4) ⋯ c(4N(N − 1) + 2) c(4N(N − 1) + 4)

c(5) c(7) c(4N + 5) c(4N + 7) ⋯ c(4N(N − 1) + 5) c(4N(N − 1) + 7)
c(6) c(8) c(4N + 6) c(4N + 8) ⋯ c(4N(N − 1) + 6) c(4N(N − 1) + 8)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
c(4N − 3) c(4N − 1) c(8N − 3) c(8N − 1) ⋯ c(4N2− 3) c(4N2− 1)

c(4N − 2) c(4N) c(8N − 2) c(8N) ⋯ c(4N2− 2) c(4N2)

Coefficient c(i,j,k,l) is in row (4N(j–1) + 4i + 2l + k – 6) of the vector c.

3-D Systems

• “Scalar c, 3-D Systems” on page 2-83
• “Three-Element Column Vector c, 3-D Systems” on page 2-83
• “Six-Element Column Vector c, 3-D Systems” on page 2-83
• “Nine-Element Column Vector c, 3-D Systems” on page 2-84

2 Setting Up Your PDE

2-82

• “N-Element Column Vector c, 3-D Systems” on page 2-84
• “3N-Element Column Vector c, 3-D Systems” on page 2-85
• “6N-Element Column Vector c, 3-D Systems” on page 2-87
• “9N-Element Column Vector c, 3-D Systems” on page 2-87
• “3N(3N+1)/2-Element Column Vector c, 3-D Systems” on page 2-87
• “9N2-Element Column Vector c, 3-D Systems” on page 2-88

Scalar c, 3-D Systems

The software interprets a scalar c as a diagonal matrix, with c(i,i,1,1), c(i,i,2,2), and c(i,i,3,3) equal to
the scalar, and all other entries 0.

c 0 0 0 0 0 ⋯ 0 0 0
0 c 0 0 0 0 ⋯ 0 0 0
0 0 c 0 0 0 ⋯ 0 0 0

0 0 0 c 0 0 ⋯ 0 0 0
0 0 0 0 c 0 ⋯ 0 0 0
0 0 0 0 0 c ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c 0 0
0 0 0 0 0 0 ⋯ 0 c 0
0 0 0 0 0 0 ⋯ 0 0 c

Three-Element Column Vector c, 3-D Systems

The software interprets a three-element column vector c as a diagonal matrix, with c(i,i,1,1), c(i,i,2,2),
and c(i,i,3,3) as the three entries, and all other entries 0.

c(1) 0 0 0 0 0 ⋯ 0 0 0
0 c(2) 0 0 0 0 ⋯ 0 0 0
0 0 c(3) 0 0 0 ⋯ 0 0 0

0 0 0 c(1) 0 0 ⋯ 0 0 0
0 0 0 0 c(2) 0 ⋯ 0 0 0
0 0 0 0 0 c(3) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(1) 0 0
0 0 0 0 0 0 ⋯ 0 c(2) 0
0 0 0 0 0 0 ⋯ 0 0 c(3)

Six-Element Column Vector c, 3-D Systems

The software interprets a six-element column vector c as a symmetric block diagonal matrix, with

c(i,i,1,1) = c(1)
c(i,i,2,2) = c(3)
c(i,i,1,2) = c(i,i,2,1) = c(2)
c(i,i,1,3) = c(i,i,3,1) = c(4)

 c Coefficient for specifyCoefficients

2-83

c(i,i,2,3) = c(i,i,3,2) = c(5)
c(i,i,3,3) = c(6).

In the following diagram, • means the entry is symmetric.

c(1) c(2) c(4) 0 0 0 ⋯ 0 0 0
• c(3) c(5) 0 0 0 ⋯ 0 0 0
• • c(6) 0 0 0 ⋯ 0 0 0

0 0 0 c(1) c(2) c(4) ⋯ 0 0 0
0 0 0 • c(3) c(5) ⋯ 0 0 0
0 0 0 • • c(6) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(1) c(2) c(4)
0 0 0 0 0 0 ⋯ • c(3) c(5)
0 0 0 0 0 0 ⋯ • • c(6)

Nine-Element Column Vector c, 3-D Systems

The software interprets a nine-element column vector c as a block diagonal matrix.

c(1) c(4) c(7) 0 0 0 ⋯ 0 0 0
c(2) c(5) c(8) 0 0 0 ⋯ 0 0 0
c(3) c(6) c(9) 0 0 0 ⋯ 0 0 0

0 0 0 c(1) c(4) c(7) ⋯ 0 0 0
0 0 0 c(2) c(5) c(8) ⋯ 0 0 0
0 0 0 c(3) c(6) c(9) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(1) c(4) c(7)
0 0 0 0 0 0 ⋯ c(2) c(5) c(8)
0 0 0 0 0 0 ⋯ c(3) c(6) c(3)

N-Element Column Vector c, 3-D Systems

The software interprets an N-element column vector c as a diagonal matrix.

c(1) 0 0 0 0 0 ⋯ 0 0 0
0 c(1) 0 0 0 0 ⋯ 0 0 0
0 0 c(1) 0 0 0 ⋯ 0 0 0

0 0 0 c(2) 0 0 ⋯ 0 0 0
0 0 0 0 c(2) 0 ⋯ 0 0 0
0 0 0 0 0 c(2) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(N) 0 0
0 0 0 0 0 0 ⋯ 0 c(N) 0
0 0 0 0 0 0 ⋯ 0 0 c(N)

2 Setting Up Your PDE

2-84

Caution If N = 3, 6, or 9, the 3-, 6-, or 9-element column vector form takes precedence over the N-
element form. For example, if N = 3, and you have a c matrix of the form

c(1) 0 0 0 0 0 0 0 0
0 c(1) 0 0 0 0 0 0 0
0 0 c(1) 0 0 0 0 0 0

0 0 0 c(2) 0 0 0 0 0
0 0 0 0 c(2) 0 0 0 0
0 0 0 0 0 c(2) 0 0 0

0 0 0 0 0 0 c(3) 0 0
0 0 0 0 0 0 0 c(3) 0
0 0 0 0 0 0 0 0 c(3)

you cannot use the N-element form of c. If you give c as the vector [c1;c2;c3], the software
interprets c as a 3-element form:

c(1) 0 0 0 0 0 0 0 0
0 c(2) 0 0 0 0 0 0 0
0 0 c(3) 0 0 0 0 0 0

0 0 0 c(1) 0 0 0 0 0
0 0 0 0 c(2) 0 0 0 0
0 0 0 0 0 c(3) 0 0 0

0 0 0 0 0 0 c(1) 0 0
0 0 0 0 0 0 0 c(2) 0
0 0 0 0 0 0 0 0 c(3)

Instead, use one of these forms:

• 6N-element form — [c1;0;c1;0;0;c1;c2;0;c2;0;0;c2;c3;0;c3;0;0;c3]
• 9N-element form —

[c1;0;0;0;c1;0;0;0;c1;c2;0;0;0;c2;0;0;0;c2;c3;0;0;0;c3;0;0;0;c3]

3N-Element Column Vector c, 3-D Systems

The software interprets a 3N-element column vector c as a diagonal matrix.

 c Coefficient for specifyCoefficients

2-85

c(1) 0 0 0 0 0 ⋯ 0 0 0
0 c(2) 0 0 0 0 ⋯ 0 0 0
0 0 c(3) 0 0 0 ⋯ 0 0 0

0 0 0 c(4) 0 0 ⋯ 0 0 0
0 0 0 0 c(5) 0 ⋯ 0 0 0
0 0 0 0 0 c(6) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(3N − 2) 0 0
0 0 0 0 0 0 ⋯ 0 c(3N − 1) 0
0 0 0 0 0 0 ⋯ 0 0 c(3N)

Caution If N = 3, the 9-element form takes precedence over the 3N-element form. For example, if
your c matrix is

c(1) 0 0 0 0 0 0 0 0
0 c(2) 0 0 0 0 0 0 0
0 0 c(3) 0 0 0 0 0 0

0 0 0 c(4) 0 0 0 0 0
0 0 0 0 c(5) 0 0 0 0
0 0 0 0 0 c(6) 0 0 0

0 0 0 0 0 0 c(7) 0 0
0 0 0 0 0 0 0 c(8) 0
0 0 0 0 0 0 0 0 c(9)

you cannot give c as [c1;c2;c3;c4;c5;c6;c7;c8;c9], because the software interprets this vector
as the 9-element form

c(1) c(4) c(7) 0 0 0 0 0 0
c(2) c(5) c(8) 0 0 0 0 0 0
c(3) c(6) c(9) 0 0 0 0 0 0

0 0 0 c(1) c(4) c(7) 0 0 0
0 0 0 c(2) c(5) c(8) 0 0 0
0 0 0 c(3) c(6) c(9) 0 0 0

0 0 0 0 0 0 c(1) c(4) c(7)
0 0 0 0 0 0 c(2) c(5) c(8)
0 0 0 0 0 0 c(3) c(6) c(3)

Instead, use one of these forms:

• 6N-element form — [c1;0;c2;0;0;c3;c4;0;c5;0;0;c6;c7;0;c8;0;0;c9]
• 9N-element form —

[c1;0;0;0;c2;0;0;0;c3;c4;0;0;0;c5;0;0;0;c6;c7;0;0;0;c8;0;0;0;c9]

2 Setting Up Your PDE

2-86

6N-Element Column Vector c, 3-D Systems

The software interprets a 6N-element column vector c as a symmetric block diagonal matrix. In the
following diagram, • means the entry is symmetric.

c(1) c(2) c(4) 0 0 0 ⋯ 0 0 0
• c(3) c(5) 0 0 0 ⋯ 0 0 0
• • c(6) 0 0 0 ⋯ 0 0 0

0 0 0 c(7) c(8) c(10) ⋯ 0 0 0
0 0 0 • c(9) c(11) ⋯ 0 0 0
0 0 0 • • c(12) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(6N − 5) c(6N − 4) c(6N − 2)
0 0 0 0 0 0 ⋯ • c(6N − 3) c(6N − 1)
0 0 0 0 0 0 ⋯ • • c(6N)

Coefficient c(i,j,k,l) is in row (6i + k + 1/2l(l–1) – 6) of the vector c.

9N-Element Column Vector c, 3-D Systems

The software interprets a 9N-element column vector c as a block diagonal matrix.

c(1) c(4) c(7) 0 0 0 ⋯ 0 0 0
c(2) c(5) c(8) 0 0 0 ⋯ 0 0 0
c(3) c(6) c(9) 0 0 0 ⋯ 0 0 0

0 0 0 c(10) c(13) c(16) ⋯ 0 0 0
0 0 0 c(11) c(14) c(17) ⋯ 0 0 0
0 0 0 c(12) c(15) c(18) ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 ⋯ c(9N − 8) c(9N − 5) c(9N − 2)
0 0 0 0 0 0 ⋯ c(9N − 7) c(9N − 4) c(9N − 1)
0 0 0 0 0 0 ⋯ c(9N − 6) c(9N − 3) c(9N)

Coefficient c(i,j,k,l) is in row (9i + 3l + k – 12) of the vector c.

3N(3N+1)/2-Element Column Vector c, 3-D Systems

The software interprets a 3N(3N+1)/2-element column vector c as a symmetric matrix. In the
following diagram, • means the entry is symmetric.

 c Coefficient for specifyCoefficients

2-87

c(1) c(2) c(4) c(7) c(10) c(13) ⋯ c(3(N − 1)(3(N − 1) + 1)/2 + 1 c(3(N − 1)(3(N − 1) + 1)/2 + 4 c(3(N − 1)(3(N − 1) + 1)/2 + 7
• c(3) c(5) c(8) c(11) c(14) ⋯ c(3(N − 1)(3(N − 1) + 1)/2 + 2 c(3(N − 1)(3(N − 1) + 1)/2 + 5 c(3(N − 1)(3(N − 1) + 1)/2 + 8
• • c(6) c(9) c(12) c(15) ⋯ c(3(N − 1)(3(N − 1) + 1)/2 + 3 c(3(N − 1)(3(N − 1) + 1)/2 + 6 c(3(N − 1)(3(N − 1) + 1)/2 + 9

• • • c(16) c(17) c(19) ⋯ c(3(N − 1)(3(N − 1) + 1)/2 + 10 c(3(N − 1)(3(N − 1) + 1)/2 + 13 c(3(N − 1)(3(N − 1) + 1)/2 + 16
• • • • c(18) c(20) ⋯ c(3(N − 1)(3(N − 1) + 1)/2 + 11 c(3(N − 1)(3(N − 1) + 1)/2 + 14 c(3(N − 1)(3(N − 1) + 1)/2 + 17
• • • • • c(21) ⋯ c(3(N − 1)(3(N − 1) + 1)/2 + 12 c(3(N − 1)(3(N − 1) + 1)/2 + 15 c(3(N − 1)(3(N − 1) + 1)/2 + 18
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
• • • • • • ⋯ c(3N(3N + 1)/2 − 5) c(3N(3N + 1)/2 − 4) c(3N(3N + 1)/2 − 2)
• • • • • • ⋯ • c(3N(3N + 1)/2 − 3) c(3N(3N + 1)/2 − 1)
• • • • • • ⋯ • • c(3N(3N + 1)/2)

Coefficient c(i,j,k,l), for i < j, is in row (9(j–1)(j–2)/2 + 6(j–1) + 9i + 3l + k – 12) of the vector c. For
i = j, coefficient c(i,j,k,l) is in row (9(i–1)(i–2)/2 + 15(i–1) + 1/2l(l–1) + k) of the vector c.

9N2-Element Column Vector c, 3-D Systems

The software interprets a 9N2-element column vector c as a matrix.
c(1) c(4) c(7) c(9N + 1) c(9N + 4) c(9N + 7) ⋯ c(9N(N − 1) + 1) c(9N(N − 1) + 4) c(9N(N − 1) + 7)
c(2) c(5) c(8) c(9N + 2) c(9N + 5) c(9N + 8) ⋯ c(9N(N − 1) + 2) c(9N(N − 1) + 5) c(9N(N − 1) + 8)
c(3) c(6) c(9) c(9N + 3) c(9N + 6) c(9N + 9) ⋯ c(9N(N − 1) + 3) c(9N(N − 1) + 6) c(9N(N − 1) + 9)

c(10) c(13) c(16) c(9N + 10) c(9N + 13) c(9N + 16) ⋯ c(9N(N − 1) + 10) c(9N(N − 1) + 13) c(9N(N − 1) + 16)
c(11) c(14) c(17) c(9N + 11) c(9N + 14) c(9N + 17) ⋯ c(9N(N − 1) + 11) c(9N(N − 1) + 14) c(9N(N − 1) + 17)
c(12) c(15) c(18) c(9N + 12) c(9N + 15) c(9N + 18) ⋯ c(9N(N − 1) + 12) c(9N(N − 1) + 15) c(9N(N − 1) + 18)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

c(9N − 8) c(9N − 5) c(9N − 2) c(18N − 8) c(18N − 5) c(18N − 2) ⋯ c(9N2− 8) c(9N2− 5) c(9N2− 2)

c(9N − 7) c(9N − 4) c(9N − 1) c(18N − 7) c(18N − 4) c(18N − 1) ⋯ c(9N2− 7) c(9N2− 4) c(9N2− 1)

c(9N − 6) c(9N − 3) c(9N) c(18N − 6) c(18N − 3) c(18N) ⋯ c(9N2− 6) c(9N2− 3) c(9N2)

Coefficient c(i,j,k,l) is in row (9N(j–1) + 9i + 3l + k – 12) of the vector c.

Functional Form
If your c coefficient is not constant, represent it as a function of the form

ccoeff = ccoeffunction(location,state)

Pass the coefficient to specifyCoefficients as a function handle, such as

specifyCoefficients(model,'c',@ccoeffunction,...)

solvepde or solvepdeeig compute and populate the data in the location and state structure
arrays and pass this data to your function. You can define your function so that its output depends on
this data. You can use any names instead of location and state, but the function must have exactly
two arguments. To use additional arguments in your function, wrap your function (that takes
additional arguments) with an anonymous function that takes only the location and state
arguments. For example:

2 Setting Up Your PDE

2-88

ccoeff = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
specifyCoefficients(model,'c',ccoeff,...

• location is a structure with these fields:

• location.x
• location.y
• location.z
• location.subdomain

The fields x, y, and z represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The subdomain field represents the subdomain numbers, which
currently apply only to 2-D models. The location fields are row vectors.

• state is a structure with these fields:

• state.u
• state.ux
• state.uy
• state.uz
• state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy, and
state.uz fields are estimates of the solution’s partial derivatives (∂u/∂x, ∂u/∂y, and ∂u/∂z) at the
corresponding points of the location structure. The solution and gradient estimates are N-by-Nr
matrices. The state.time field is a scalar representing time for time-dependent models.

Your function must return a matrix of size N1-by-Nr, where:

• N1 is the number of coefficients you pass to the solver. There are several possible values of N1,
detailed in “Some c Vectors Can Be Short” on page 2-78. For 2-D geometry, 1 ≤ N1 ≤ 4N2, and for
3-D geometry, 1 ≤ N1 ≤ 9N2.

• Nr is the number of points in the location that the solver passes. Nr is equal to the length of the
location.x or any other location field. The function should evaluate c at these points.

For example, suppose N = 3, and you have 2-D geometry. Suppose your c matrix is of the form

c =

1 2
2 8

1 + x2 + y2 u(2)
1 + u(1)2 + u(3)2

u(2)
1 + u(1)2 + u(3)2

1 + x2 + y2

s1(x, y) −1
−1 s1(x, y)

where unlisted elements are zero. Here s1(x,y) is 5 in subdomain 1, and is 10 in subdomain 2.

 c Coefficient for specifyCoefficients

2-89

This c is a symmetric, block-diagonal matrix with different coefficients in each block. So it is natural
to represent c as a “3N-Element Column Vector c, 2-D Systems” on page 2-81:

c(1) c(2) 0 0 ⋯ 0 0
c(2) c(3) 0 0 ⋯ 0 0

0 0 c(4) c(5) ⋯ 0 0
0 0 c(5) c(6) ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ c(3N − 2) c(3N − 1)
0 0 0 0 ⋯ c(3N − 1) c(3N)

For that form, the following function is appropriate.

function cmatrix = ccoeffunction(location,state)

n1 = 9;
nr = numel(location.x);
cmatrix = zeros(n1,nr);
cmatrix(1,:) = ones(1,nr);
cmatrix(2,:) = 2*ones(1,nr);
cmatrix(3,:) = 8*ones(1,nr);
cmatrix(4,:) = 1+location.x.^2 + location.y.^2;
cmatrix(5,:) = state.u(2,:)./(1 + state.u(1,:).^2 + state.u(3,:).^2);
cmatrix(6,:) = cmatrix(4,:);
cmatrix(7,:) = 5*location.subdomain;
cmatrix(8,:) = -ones(1,nr);
cmatrix(9,:) = cmatrix(7,:);

To include this function as your c coefficient, pass the function handle @ccoeffunction:

specifyCoefficients(model,'c',@ccoeffunction,...

See Also

Related Examples
• “Put Equations in Divergence Form” on page 2-71
• “Solve Problems Using PDEModel Objects” on page 2-2
• “f Coefficient for specifyCoefficients” on page 2-74
• “m, d, or a Coefficient for specifyCoefficients” on page 2-91

2 Setting Up Your PDE

2-90

m, d, or a Coefficient for specifyCoefficients
In this section...
“Coefficients m, d, or a” on page 2-91
“Short m, d, or a vectors” on page 2-91
“Nonconstant m, d, or a” on page 2-92

Coefficients m, d, or a
This section describes how to write the m, d, or a coefficients in the system of equations

m∂2u
∂t2 + d∂u∂t − ∇ · c⊗ ∇u + au = f

or in the eigenvalue system

−∇ · c⊗ ∇u + au = λdu
or

−∇ · c⊗ ∇u + au = λ2mu

The topic applies to the recommended workflow for including coefficients in your model using
specifyCoefficients.

If there are N equations in the system, then these coefficients represent N-by-N matrices.

For constant (numeric) coefficient matrices, represent each coefficient using a column vector with N2

components. This column vector represents, for example, m(:).

For nonconstant coefficient matrices, see “Nonconstant m, d, or a” on page 2-92.

Note The d coefficient takes a special matrix form when m is nonzero. See “d Coefficient When m is
Nonzero” on page 5-1074.

Short m, d, or a vectors
Sometimes, your m, d, or a matrices are diagonal or symmetric. In these cases, you can represent m,
d, or a using a smaller vector than one with N2 components. The following sections give the
possibilities.

• “Scalar m, d, or a” on page 2-91
• “N-Element Column Vector m, d, or a” on page 2-92
• “N(N+1)/2-Element Column Vector m, d, or a” on page 2-92
• “N2-Element Column Vector m, d, or a” on page 2-92

Scalar m, d, or a

The software interprets a scalar m, d, or a as a diagonal matrix.

 m, d, or a Coefficient for specifyCoefficients

2-91

a 0 ⋯ 0
0 a ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ a

N-Element Column Vector m, d, or a

The software interprets an N-element column vector m, d, or a as a diagonal matrix.

d(1) 0 ⋯ 0
0 d(2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ d(N)

N(N+1)/2-Element Column Vector m, d, or a

The software interprets an N(N+1)/2-element column vector m, d, or a as a symmetric matrix. In the
following diagram, • means the entry is symmetric.

a(1) a(2) a(4) ⋯ a(N(N − 1)/2)
• a(3) a(5) ⋯ a(N(N − 1)/2 + 1)
• • a(6) ⋯ a(N(N − 1)/2 + 2)
⋮ ⋮ ⋮ ⋱ ⋮
• • • ⋯ a(N(N + 1)/2)

Coefficient a(i,j) is in row (j(j–1)/2+i) of the vector a.

N2-Element Column Vector m, d, or a

The software interprets an N2-element column vector m, d, or a as a matrix.

d(1) d(N + 1) ⋯ d(N2− N + 1)

d(2) d(N + 2) ⋯ d(N2− N + 2)
⋮ ⋮ ⋱ ⋮

d(N) d(2N) ⋯ d(N2)

Coefficient a(i,j) is in row (N(j–1)+i) of the vector a.

Nonconstant m, d, or a

Note If both m and d are nonzero, then d must be a constant scalar or vector, not a function.

If any of the m, d, or a coefficients is not constant, represent it as a function of the form

dcoeff = dcoeffunction(location,state)

Pass the coefficient to specifyCoefficients as a function handle, such as

specifyCoefficients(model,'d',@dcoeffunction,...)

2 Setting Up Your PDE

2-92

solvepde or solvepdeeig compute and populate the data in the location and state structure
arrays and pass this data to your function. You can define your function so that its output depends on
this data. You can use any names instead of location and state, but the function must have exactly
two arguments. To use additional arguments in your function, wrap your function (that takes
additional arguments) with an anonymous function that takes only the location and state
arguments. For example:

dcoeff = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
specifyCoefficients(model,'d',dcoeff,...

• location is a structure with these fields:

• location.x
• location.y
• location.z
• location.subdomain

The fields x, y, and z represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The subdomain field represents the subdomain numbers, which
currently apply only to 2-D models. The location fields are row vectors.

• state is a structure with these fields:

• state.u
• state.ux
• state.uy
• state.uz
• state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy, and
state.uz fields are estimates of the solution’s partial derivatives (∂u/∂x, ∂u/∂y, and ∂u/∂z) at the
corresponding points of the location structure. The solution and gradient estimates are N-by-Nr
matrices. The state.time field is a scalar representing time for time-dependent models.

Your function must return a matrix of size N1-by-Nr, where:

• N1 is the length of the vector representing the coefficient. There are several possible values of
N1, detailed in “Short m, d, or a vectors” on page 2-91. 1 ≤ N1 ≤ N2.

• Nr is the number of points in the location that the solver passes. Nr is equal to the length of the
location.x or any other location field. The function should evaluate m, d, or a at these points.

For example, suppose N = 3, and you have 2-D geometry. Suppose your d matrix is of the form

d =
1 s1(x, y) x2 + y2

s1(x, y) 4 −1

x2 + y2 −1 9

where s1(x,y) is 5 in subdomain 1, and is 10 in subdomain 2.

This d is a symmetric matrix. So it is natural to represent d as a “N(N+1)/2-Element Column Vector
m, d, or a” on page 2-92:

 m, d, or a Coefficient for specifyCoefficients

2-93

a(1) a(2) a(4) ⋯ a(N(N − 1)/2)
• a(3) a(5) ⋯ a(N(N − 1)/2 + 1)
• • a(6) ⋯ a(N(N − 1)/2 + 2)
⋮ ⋮ ⋮ ⋱ ⋮
• • • ⋯ a(N(N + 1)/2)

For that form, the following function is appropriate.

function dmatrix = dcoeffunction(location,state)

n1 = 6;
nr = numel(location.x);
dmatrix = zeros(n1,nr);
dmatrix(1,:) = ones(1,nr);
dmatrix(2,:) = 5*location.subdomain;
dmatrix(3,:) = 4*ones(1,nr);
dmatrix(4,:) = sqrt(location.x.^2 + location.y.^2);
dmatrix(5,:) = -ones(1,nr);
dmatrix(6,:) = 9*ones(1,nr);

To include this function as your d coefficient, pass the function handle @dcoeffunction:

specifyCoefficients(model,'d',@dcoeffunction,...

See Also

Related Examples
• “Put Equations in Divergence Form” on page 2-71
• “Solve Problems Using PDEModel Objects” on page 2-2
• “f Coefficient for specifyCoefficients” on page 2-74
• “c Coefficient for specifyCoefficients” on page 2-76

2 Setting Up Your PDE

2-94

View, Edit, and Delete PDE Coefficients

View Coefficients
A PDE model stores coefficients in its EquationCoefficients property. Suppose model is the
name of your model. Obtain the coefficients:

coeffs = model.EquationCoefficients;

To see the active coefficient assignment for a region, call the findCoefficients function. For
example, create a model and view the geometry.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal

Specify constant coefficients over all the regions in the model.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',2);

Specify a different f coefficient on each subregion.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',3,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',4,'Face',3);

 View, Edit, and Delete PDE Coefficients

2-95

Change the specification to have nonzero a on region 2.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',1,'f',3,'Face',2);

View the coefficient assignment for region 2.

coeffs = model.EquationCoefficients;
findCoefficients(coeffs,'Face',2)

ans =
 CoefficientAssignment with properties:

 RegionType: 'face'
 RegionID: 2
 m: 0
 d: 0
 c: 1
 a: 1
 f: 3

This shows the "last assignment wins" characteristic.

View the coefficient assignment for region 1.

findCoefficients(coeffs,'Face',1)

ans =
 CoefficientAssignment with properties:

 RegionType: 'face'
 RegionID: [1 2 3]
 m: 0
 d: 0
 c: 1
 a: 0
 f: 2

The active coefficient assignment for region 1 includes all three regions, though this assignment is no
longer active for regions 2 and 3.

Delete Existing Coefficients
To delete all the coefficients in your PDE model, use delete. Suppose model is the name of your
model. Remove all coefficients from model.

delete(model.EquationCoefficients)

To delete specific coefficient assignments, delete them from the
model.EquationCoefficients.CoefficientAssignments vector.

coefv = model.EquationCoefficients.CoefficientAssignments;
delete(coefv(2))

2 Setting Up Your PDE

2-96

Tip You do not need to delete coefficients; you can override them by calling specifyCoefficients
again. However, deleting unused assignments can make your model smaller.

Change a Coefficient Assignment
To change a coefficient assignment, you need the coefficient handle. To get the coefficient handle:

• Retain the handle when using specifyCoefficients. For example,

coefh1 = specifyCoefficients(model,'m',m,'d',d,'c',c,'a',a,'f',f);
• Obtain the handle using findCoefficients. For example,

coeffs = model.EquationCoefficients;
coefh1 = findCoefficients(coeffs,'face',2);

You can change any property of the coefficient handle. For example,

coefh1.RegionID = [1,3];
coefh1.a = 2;
coefh1.c = @ccoeffun;

Note Editing an existing assignment in this way does not change its priority. For example, if the
active coefficient in region 3 was assigned after coefh1, then editing coefh1 to include region 3
does not make coefh1 the active coefficient in region 3.

 View, Edit, and Delete PDE Coefficients

2-97

Set Initial Conditions

What Are Initial Conditions?
The term initial condition has two meanings:

• For time-dependent problems, the initial condition is the solution u at the initial time, and also the
initial time-derivative if the m coefficient is nonzero. Set the initial condition in the model using
setInitialConditions.

• For nonlinear stationary problems, the initial condition is a guess or approximation of the solution
u at the initial iteration of the nonlinear solver. Set the initial condition in the model using
setInitialConditions.

If you do not specify the initial condition for a stationary problem, solvepde uses the zero
function for the initial iteration.

Constant Initial Conditions
For a system of N equations, you can give constant initial conditions as either a scalar or as a vector
with N components. For example, if the initial condition is u = 15 for all components, use the
following command.

setInitialConditions(model,15);

If N = 3, and the initial condition is 15 for the first equation, 0 for the second equation, and –3 for the
third equation, use the following commands.

u0 = [15,0,-3];
setInitialConditions(model,u0);

If the m coefficient is nonzero, give an initial condition for the time derivative as well. Set this initial
derivative in the same form as the first initial condition. For example, if the initial derivative of the
solution is [4,3,0], use the following commands.

u0 = [15,0,-3];
ut0 = [4,3,0];
setInitialConditions(model,u0,ut0);

Nonconstant Initial Conditions
If your initial conditions are not constant, set them by writing a function of the form.

function u0 = initfun(location)

solvepde computes and populates the data in the location structure array and passes this data to
your function. You can define your function so that its output depends on this data. You can use any
name instead of location. To use additional arguments in your function, wrap your function (that
takes additional arguments) with an anonymous function that takes only the location argument. For
example:

u0 = @(location) initfunWithAdditionalArgs(location,arg1,arg2...)
setInitialConditions(model,u0)

2 Setting Up Your PDE

2-98

location is a structure array with fields location.x, location.y, and, for 3-D problems,
location.z. Your function must return a matrix u0 of size N-by-M, where N is the number of
equations in your PDE and M = length(location.x). The fields in location are row vectors.

For example, suppose you have a 2-D problem with N = 2 equations:

∂2u
∂t2 − ∇ · ∇u =

3 + x
4 − x− y

u(0) = 4 + x2 + y2

0
∂u
∂t (0) =

0
sin(xy)

This problem has m = 1, c = 1, and f =
3 + x

4 − x− y
. Because m is nonzero, give both an initial value of

u and an initial value of the derivative of u.

Write the following function files. Save them to a location on your MATLAB path.

function uinit = u0fun(location)

M = length(location.x);
uinit = zeros(2,M);
uinit(1,:) = 4 + location.x.^2 + location.y.^2;

function utinit = ut0fun(location)

M = length(location.x);
utinit = zeros(2,M);
utinit(2,:) = sin(location.x.*location.y);

Pass the initial conditions to your PDE model:

u0 = @u0fun;
ut0 = @ut0fun;
setInitialConditions(model,u0,ut0);

Nodal Initial Conditions
You can use results of previous analysis as nodal initial conditions for your current model. The
geometry and mesh of the model you used to obtain the results and the current model must be the
same. For example, solve a time-dependent PDE problem for times from t0 to t1 with a time step
tstep.

results = solvepde(model,t0:tstep:t1);

If later you need to solve this PDE problem for times from t1 to t2, you can use results to set
initial conditions. If you do not explicitly specify the time step, setInitialConditions uses
results corresponding to the last solution time, t1.

setInitialConditions(model,results)

 Set Initial Conditions

2-99

To use results for a particular solution time instead of the last one, specify the solution time index
as a third parameter of setInitialConditions. For example, to use the solution at time t0 +
10*tstep, specify 11 as the third parameter.

setInitialConditions(model,results,11)

See Also

Related Examples
• “Solve Problems Using PDEModel Objects” on page 2-2
• “Wave Equation on Square Domain” on page 3-271
• “Inhomogeneous Heat Equation on Square Domain” on page 3-250
• “Heat Distribution in Circular Cylindrical Rod” on page 3-254
• “Heat Transfer Problem with Temperature-Dependent Properties” on page 3-235
• “Dynamic Analysis of Clamped Beam” on page 3-28

2 Setting Up Your PDE

2-100

Nonlinear System with Cross-Coupling Between Components
This example shows how to solve a nonlinear PDE system of two equations with cross-coupling
between the two components. The system is a Schnakenberg system

∂u1
∂t − D1Δu1 = κ a− u1 + u1

2u2

∂u2
∂t − D2Δu2 = κ b− u1

2u2

with the steady-state solution u1S = a + b and u2S = b
a + b 2 . The initial conditions are a small

perturbation of the steady-state solution.

Solution for First Time Span

First, create a PDE model for a system of two equations.

model = createpde(2);

Create a cubic geometry and assign it to the model.

gm = multicuboid(1,1,1);
model.Geometry = gm;

Generate the mesh using the linear geometric order to save memory.

generateMesh(model,'GeometricOrder','linear');

Define the parameters of the system.

D1 = 0.05;
D2 = 1;
kappa = 100;
a = 0.2;
b = 0.8;

Based on these parameters, specify the PDE coefficients in the toolbox format.

d = [1;1];
c = [D1;D2];
f = @(region,state) [kappa*(a - state.u(1,:) + ...
 state.u(1,:).^2.*state.u(2,:));
 kappa*(b - state.u(1,:).^2.*state.u(2,:))
];
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',0,'f',f);

Set the initial conditions. The first component is a small perturbation of the steady-state solution
u1S = a + b. The second component is the steady-state solution u2S = b

a + b 2 .

icFcn = @(region) [a + b + 10^(-3)*exp(-100*((region.x - 1/3).^2 ...
 + (region.y - 1/2).^2)); ...
 (b/(a + b)^2)*ones(size(region.x))];

setInitialConditions(model,icFcn);

 Nonlinear System with Cross-Coupling Between Components

2-101

Solve the system for times 0 through 2 seconds.

tlist = linspace(0,2,10);
results = solvepde(model,tlist);

Plot the first component of the solution at the last time step.

pdeplot3D(model,'ColorMapData',results.NodalSolution(:,1,end));

Initial Condition for Second Time Span Based on Previous Solution

Now, resume the analysis and solve the problem for times from 2 to 5 seconds. Reduce the magnitude
of the previously obtained solution for time 2 seconds to 10% of the original value.

u2 = results.NodalSolution(:,:,end);
newResults = createPDEResults(model,u2(:)*0.1);

Use newResults as the initial condition for further analysis.

setInitialConditions(model,newResults);

Solve the system for times 2 through 5 seconds.

tlist = linspace(2,5,10);
results25 = solvepde(model,tlist);

Plot the first component of the solution at the last time step.

2 Setting Up Your PDE

2-102

figure
pdeplot3D(model,'ColorMapData',results25.NodalSolution(:,1,end));

Alternatively, you can write a function that uses the results returned by the solver and computes the
initial conditions based on the results of the previous analysis.

NewIC = @(location) computeNewIC(results)

NewIC = function_handle with value:
 @(location)computeNewIC(results)

Remove the previous initial conditions.

delete(model.InitialConditions);

Set the initial conditions using the function NewIC.

setInitialConditions(model,NewIC)

ans =
 GeometricInitialConditions with properties:

 RegionType: 'cell'
 RegionID: 1
 InitialValue: @(location)computeNewIC(results)
 InitialDerivative: []

 Nonlinear System with Cross-Coupling Between Components

2-103

Solve the system for times 2 through 5 seconds.

results25f = solvepde(model,tlist);

Plot the first component of the solution at the last time step.

figure
pdeplot3D(model,'ColorMapData',results25f.NodalSolution(:,1,end));

Function Computing Initial Conditions

function newU0 = computeNewIC(resultsObject)
newU0 = 0.1*resultsObject.NodalSolution(:,:,end).';
end

2 Setting Up Your PDE

2-104

Set Initial Condition for Model with Fine Mesh Using Solution
Obtained with Coarser Mesh

Set initial conditions for a model with a fine mesh by using the coarse-mesh solution from a previous
analysis.

Create a PDE model and include the geometry of the built-in function squareg.

model = createpde;
geometryFromEdges(model,@squareg);

Specify the coefficients, apply boundary conditions, and set initial conditions.

specifyCoefficients(model,'m',0,'d',1,'c',5,'a',0,'f',0.1);
applyBoundaryCondition(model,'dirichlet','Edge',1,'u',1);
setInitialConditions(model,10);

Generate a comparatively coarse mesh with the target maximum element edge length of 0.1.

generateMesh(model,'Hmax',0.1);

Solve the model for the entire time span of 0 through 0.02 seconds.

tlist = linspace(0,2E-2,20);
Rtotal = solvepde(model,tlist);

Interpolate the solution at the origin for the entire time span.

singleSpanSol = Rtotal.interpolateSolution(0,0,1:numel(tlist));

Now solve the model for the first half of the time span. You will use this solution as an initial condition
when solving the model with a finer mesh for the second half of the time span.

tlist1 = linspace(0,1E-2,10);
R1 = solvepde(model,tlist1);

Create an interpolant to interpolate the initial condition.

x = model.Mesh.Nodes(1,:)';
y = model.Mesh.Nodes(2,:)';
interpolant = scatteredInterpolant(x,y,R1.NodalSolution(:,end));

Generate a finer mesh by setting the target maximum element edge length to 0.05.

generateMesh(model,'Hmax',0.05);

Use the coarse mesh model results as the initial condition for the model with the finer mesh. For the
definition of the icFcn function, see Initial Conditions Function on page 2-0 .

setInitialConditions(model,@(region) icFcn(region,interpolant));

Solve the model for the second half of the time span.

tlist2 = linspace(1E-2,2E-2,10);
R2 = solvepde(model,tlist2);

Interpolate the solutions at the origin for the first and the second halves of the time span.

 Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh

2-105

multispanSol1 = R1.interpolateSolution(0,0,1:numel(tlist1));
multispanSol2 = R2.interpolateSolution(0,0,1:numel(tlist2));

Plot all three solutions at the origin.

figure
plot(tlist,singleSpanSol)
hold on
plot(tlist1, multispanSol1,'r*')
plot(tlist2, multispanSol2,'ko')
legend('Overall solution','Coarse mesh solution', 'Fine mesh solution')

Initial Conditions Function

function u0 = icFcn(region,interpolant)
u0 = interpolant(region.x',region.y');
end

2 Setting Up Your PDE

2-106

View, Edit, and Delete Initial Conditions

View Initial Conditions
A PDE model stores initial conditions in its InitialConditions property. Suppose model is the
name of your model. Obtain the initial conditions:

inits = model.InitialConditions;

To see the active initial conditions assignment for a region, call the findInitialConditions
function. For example, create a model and view the geometry.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal

Specify constant initial conditions over all the regions in the model.

setInitialConditions(model,2);

Specify a different initial condition on each subregion.

setInitialConditions(model,3,'Face',2);
setInitialConditions(model,4,'Face',3);

 View, Edit, and Delete Initial Conditions

2-107

View the initial condition assignment for region 2.

ics = model.InitialConditions;
findInitialConditions(ics,'Face',2)

ans =
 GeometricInitialConditions with properties:

 RegionType: 'face'
 RegionID: 2
 InitialValue: 3
 InitialDerivative: []

This shows the "last assignment wins" characteristic.

View the initial conditions assignment for region 1.

findInitialConditions(ics,'Face',1)

ans =
 GeometricInitialConditions with properties:

 RegionType: 'face'
 RegionID: [1 2 3]
 InitialValue: 2
 InitialDerivative: []

The active initial conditions assignment for region 1 includes all three regions, though this
assignment is no longer active for regions 2 and 3.

Delete Existing Initial Conditions
To delete all the initial conditions in your PDE model, use delete. Suppose model is the name of
your model. Remove all initial conditions from model.

delete(model.InitialConditions)

To delete specific initial conditions assignments, delete them from the
model.InitialConditions.InitialConditionAssignments vector.

icv = model.InitialConditions.InitialConditionAssignments;
delete(icv(2))

Tip You do not need to delete initial conditions; you can override them by calling
setInitialConditions again. However, deleting unused assignments can make your model
smaller.

Change an Initial Conditions Assignment
To change an initial conditions assignment, you need the initial conditions handle. To get the initial
condition handle:

2 Setting Up Your PDE

2-108

• Retain the handle when using setInitialConditions. For example,

ics1 = setInitialConditions(model,2);
• Obtain the handle using findInitialConditions. For example,

ics = model.InitialConditions;
ics1 = findInitialConditions(ics,'Face',2);

You can change any property of the initial conditions handle. For example,

ics1.RegionID = [1,3];
ics1.InitialValue = 2;
ics1.InitialDerivative = @ut0fun;

Note Editing an existing assignment in this way does not change its priority. For example, if the
active initial conditions in region 3 was assigned after ics1, then editing ics1 to include region 3
does not make ics1 the active initial condition in region 3.

 View, Edit, and Delete Initial Conditions

2-109

No Boundary Conditions Between Subdomains
There are two types of boundaries:

• Boundaries between the interior of the region and the exterior of the region
• Boundaries between subdomains - these are boundaries in the interior of the region

Boundary conditions, either Dirichlet or generalized Neumann, apply only to boundaries between the
interior and exterior of the region. This is because the toolbox formulation uses the weak form of
PDEs. See “Finite Element Method Basics” on page 1-11. In the weak formulation you do not specify
boundary conditions between subdomains, even if coefficients are discontinuous between
subdomains. So the toolbox does not support defining boundary conditions on subdomain boundaries.

For example, look at a rectangular region with a circular subdomain. The red numbers are the
subdomain labels, the black numbers are the edge segment labels.

% Rectangle is code 3, 4 sides,
% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
% Circle is code 1, center (.5,0), radius .2
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];

% Names for the two geometric objects
ns = (char('R1','C1'))';

% Set formula
sf = 'R1 + C1';

% Create geometry
gd = decsg(geom,sf,ns);

% View geometry
pdegplot(gd,'EdgeLabels','on', ...
 'FaceLabels','on')
xlim([-1.1 1.1])
axis equal

2 Setting Up Your PDE

2-110

You need not give boundary conditions on segments 5, 6, 7, and 8, because these are subdomain
boundaries, not exterior boundaries.

However, if the circle is a hole, meaning it is not part of the region, then you do give boundary
conditions on segments 5, 6, 7, and 8.

 No Boundary Conditions Between Subdomains

2-111

Identify Boundary Labels
You can see the edge labels by using the pdegplot function with the EdgeLabels name-value pair set
to 'on':

pdegplot(g,'EdgeLabels','on')

For 3-D problems, set the FaceLabels name-value pair to 'on'.

For example, look at the edge labels for a simple annulus geometry:

e1 = [4;0;0;1;.5;0]; % Outside ellipse
e2 = [4;0;0;.5;.25;0]; % Inside ellipse
ee = [e1 e2]; % Both ellipses
lbls = char('outside','inside'); % Ellipse labels
lbls = lbls'; % Change to columns
sf = 'outside-inside'; % Set formula
dl = decsg(ee,sf,lbls); % Geometry now done
pdegplot(dl,'EdgeLabels','on')

2 Setting Up Your PDE

2-112

Specify Boundary Conditions
Before you create boundary conditions, you need to create a PDEModel container. For details, see
“Solve Problems Using PDEModel Objects” on page 2-2. Suppose that you have a container named
model, and that the geometry is stored in model. Examine the geometry to see the label of each edge
or face.

pdegplot(model,'EdgeLabels','on') % for 2-D
pdegplot(model,'FaceLabels','on') % for 3-D

Now you can specify the boundary conditions for each edge or face. If you have a system of PDEs, you
can set a different boundary condition for each component on each boundary edge or face.

If you do not specify a boundary condition for an edge or face, the default is the Neumann boundary
condition with the zero values for 'g' and 'q'.

If the boundary condition is a function of position, time, or the solution u, set boundary conditions by
using the syntax in “Nonconstant Boundary Conditions” on page 2-116.

Dirichlet Boundary Conditions
Scalar PDEs

The Dirichlet boundary condition implies that the solution u on a particular edge or face satisfies the
equation

hu = r,

where h and r are functions defined on ∂Ω, and can be functions of space (x, y, and, in 3-D, z), the
solution u, and, for time-dependent equations, time. Often, you take h = 1, and set r to the
appropriate value. You can specify Dirichlet boundary conditions as the value of the solution u on the
boundary or as a pair of the parameters h and r.

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3], where the
solution u must equal 2. Specify this boundary condition as follows.

% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet','Face',[e1,e2,e3],'u',2);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet','Edge',[e1,e2,e3],'u',2);

If the solution on edges or faces [e1,e2,e3] satisfies the equation 2u = 3, specify the boundary
condition as follows.

% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet','Face',[e1,e2,e3],'r',3,'h',2);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet','Edge',[e1,e2,e3],'r',3,'h',2);

• If you do not specify 'r', applyBoundaryCondition sets its value to 0.
• If you do not specify 'h', applyBoundaryCondition sets its value to 1.

 Specify Boundary Conditions

2-113

Systems of PDEs

The Dirichlet boundary condition for a system of PDEs is hu = r, where h is a matrix, u is the solution
vector, and r is a vector.

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3] where the
first component of the solution u must equal 1, while the second and third components must equal 2.
Specify this boundary condition as follows.

% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet','Face',[e1,e2,e3],...
 'u',[1,2,2],'EquationIndex',[1,2,3]);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet','Edge',[e1,e2,e3],...
 'u',[1,2,2],'EquationIndex',[1,2,3]);

• The 'u' and 'EquationIndex' arguments must have the same length.
• If you exclude the 'EquationIndex' argument, the 'u' argument must have length N.
• If you exclude the 'u' argument, applyBoundaryCondition sets the components in

'EquationIndex' to 0.

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3] where the
first, second, and third components of the solution u must satisfy the equations 2u1 = 3, 4u2 = 5, and
6u3 = 7, respectively. Specify this boundary condition as follows.

H0 = [2 0 0;
 0 4 0;
 0 0 6];
R0 = [3;5;7];
% For 3-D geometry:
applyBoundaryCondition(model,'dirichlet', ...
 'Face',[e1,e2,e3], ...
 'h',H0,'r',R0);
% For 2-D geometry:
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[e1,e2,e3], ...
 'h',H0,'r',R0);

• The 'r' parameter must be a numeric vector of length N. If you do not specify 'r',
applyBoundaryCondition sets the values to 0.

• The 'h' parameter can be an N-by-N numeric matrix or a vector of length N2 corresponding to
the linear indexing form of the N-by-N matrix. For details about the linear indexing form, see
“Array Indexing”. If you do not specify 'h', applyBoundaryCondition sets the value to the
identity matrix.

Neumann Boundary Conditions
Scalar PDEs

Generalized Neumann boundary conditions imply that the solution u on the edge or face satisfies the
equation

n · c∇u + qu = g

2 Setting Up Your PDE

2-114

The coefficient c is the same as the coefficient of the second-order differential operator in the PDE
equation

−∇ ⋅ c∇u + au = f on domain Ω

n is the outward unit normal. q and g are functions defined on ∂Ω, and can be functions of space (x, y,
and, in 3-D, z), the solution u, and, for time-dependent equations, time.

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3] where the
solution u must satisfy the Neumann boundary condition with q = 2 and g = 3. Specify this
boundary condition as follows.

% For 3-D geometry:
applyBoundaryCondition(model,'neumann','Face',[e1,e2,e3],'q',2,'g',3);
% For 2-D geometry:
applyBoundaryCondition(model,'neumann','Edge',[e1,e2,e3],'q',2,'g',3);

• If you do not specify 'g', applyBoundaryCondition sets its value to 0.
• If you do not specify 'q', applyBoundaryCondition sets its value to 0.

Systems of PDEs

Neumann boundary conditions for a system of PDEs is n · c⊗ ∇u + qu = g. For 2-D systems, the
notation n · c⊗ ∇u means the N-by-1 vector with (i,1)-component

∑
j = 1

N
cos(α)ci, j, 1, 1

∂
∂x + cos(α)ci, j, 1, 2

∂
∂y + sin(α)ci, j, 2, 1

∂
∂x + sin(α)ci, j, 2, 2

∂
∂y u j

where the outward normal vector of the boundary n = cos(α), sin(α) .

For 3-D systems, the notation n · c⊗ ∇u means the N-by-1 vector with (i,1)-component

∑
j = 1

N
sin φ cos θ ci, j, 1, 1

∂
∂x + sin φ cos θ ci, j, 1, 2

∂
∂y + sin φ cos θ ci, j, 1, 3

∂
∂z u j

+ ∑
j = 1

N
sin φ sin θ ci, j, 2, 1

∂
∂x + sin φ sin θ ci, j, 2, 2

∂
∂y + sin φ sin θ ci, j, 2, 3

∂
∂z u j

+ ∑
j = 1

N
cos θ ci, j, 3, 1

∂
∂x + cos θ ci, j, 3, 2

∂
∂y + cos θ ci, j, 3, 3

∂
∂z u j

where the outward normal vector of the boundary n = sin(φ)cos(θ), sin(φ)sin(θ), cos(φ) . For each
edge or face segment, there are a total of N boundary conditions.

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3] where the first
component of the solution u must satisfy the Neumann boundary condition with q = 2 and g = 3,
and the second component must satisfy the Neumann boundary condition with q = 4 and g = 5.
Specify this boundary condition as follows.

Q = [2 0; 0 4];
G = [3;5];
% For 3-D geometry:
applyBoundaryCondition(model,'neumann','Face',[e1,e2,e3],'q',Q,'g',G);
% For 2-D geometry:
applyBoundaryCondition(model,'neumann','Edge',[e1,e2,e3],'q',Q,'g',G);

 Specify Boundary Conditions

2-115

• The 'g' parameter must be a numeric vector of length N. If you do not specify 'g',
applyBoundaryCondition sets the values to 0.

• The 'q' parameter can be an N-by-N numeric matrix or a vector of length N2 corresponding to
the linear indexing form of the N-by-N matrix. For details about the linear indexing form, see
“Array Indexing”. If you do not specify 'q', applyBoundaryCondition sets the values to 0.

Mixed Boundary Conditions
If some equations in your system of PDEs must satisfy the Dirichlet boundary condition and some
must satisfy the Neumann boundary condition for the same geometric region, use the 'mixed'
parameter to apply boundary conditions in one call. Note that applyBoundaryCondition uses the
default Neumann boundary condition with g = 0 and q = 0 for equations for which you do not
explicitly specify a boundary condition.

Suppose that you have a PDE model named model, and edge or face labels [e1,e2,e3] where the
first component of the solution u must equal 11, the second component must equal 22, and the third
component must satisfy the Neumann boundary condition with q = 3 and g = 4. Express this
boundary condition as follows.

Q = [0 0 0; 0 0 0; 0 0 3];
G = [0;0;4];
% For 3-D geometry:
applyBoundaryCondition(model,'mixed','Face',[e1,e2,e3],...
 'u',[11,22],'EquationIndex',[1,2],...
 'q',Q,'g',G);
% For 2-D geometry:
applyBoundaryCondition(model,'mixed',...
 'Edge',[e1,e2,e3],'u',[11,22],...
 'EquationIndex',[1,2],'q',Q,'g',G);

Suppose that you have a PDE model named model, and edges or faces [e1,e2,e3] where the first
component of the solution u must satisfy the Dirichlet boundary condition 2u1 = 3, the second
component must satisfy the Neumann boundary condition with q = 4 and g = 5, and the third
component must satisfy the Neumann boundary condition with q = 6 and g = 7. Express this
boundary condition as follows.

h = [2 0 0; 0 0 0; 0 0 0];
r = [3;0;0];
Q = [0 0 0; 0 4 0; 0 0 6];
G = [0;5;7];
% For 3-D geometry:
applyBoundaryCondition(model,'mixed', ...
 'Face',[e1,e2,e3], ...
 'h',h,'r',r,'q',Q,'g',G);
% For 2-D geometry:
applyBoundaryCondition(model,'mixed', ...
 'Edge',[e1,e2,e3], ...
 'h',h,'r',r,'q',Q,'g',G);

Nonconstant Boundary Conditions
Use functions to express nonconstant boundary conditions.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1, ...

2 Setting Up Your PDE

2-116

 'r',@myrfun);
applyBoundaryCondition(model,'neumann', ...
 'Face',2, ...
 'g',@mygfun,'q',@myqfun);
applyBoundaryCondition(model,'mixed', ...
 'Edge',[3,4], ...
 'u',@myufun, ...
 'EquationIndex',[2,3]);

Each function must have the following syntax.

function bcMatrix = myfun(location,state)

solvepde or solvepdeeig compute and populate the data in the location and state structure
arrays and pass this data to your function. You can define your function so that its output depends on
this data. You can use any names instead of location and state, but the function must have exactly
two arguments. To use additional arguments in your function, wrap your function (that takes
additional arguments) with an anonymous function that takes only the location and state
arguments. For example:

uVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
applyBoundaryCondition(model,'mixed', ...
 'Edge',[3,4], ...
 'u',uVal, ...
 'EquationIndex',[2,3]);

• location — A structure containing the following fields. If you pass a name-value pair to
applyBoundaryCondition with Vectorized set to 'on', then location can contain several
evaluation points. If you do not set Vectorized or use Vectorized,'off', then solvers pass
just one evaluation point in each call.

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For 3-D geometry, the z-coordinate of the point or points

Furthermore, if there are Neumann conditions, then solvers pass the following data in the
location structure.

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For 3-D geometry, z-component of the normal vector at the evaluation point

or points
• state — For transient or nonlinear problems.

• state.u contains the solution vector at evaluation points. state.u is an N-by-M matrix,
where each column corresponds to one evaluation point, and M is the number of evaluation
points.

• state.time contains the time at evaluation points. state.time is a scalar.

Your function returns bcMatrix. This matrix has the following form, depending on the boundary
condition type.

 Specify Boundary Conditions

2-117

• 'u' — N1-by-M matrix, where each column corresponds to one evaluation point, and M is the
number of evaluation points. N1 is the length of the 'EquationIndex' argument. If there is no
'EquationIndex' argument, then N1 = N.

• 'r' or 'g' — N-by-M matrix, where each column corresponds to one evaluation point, and M is
the number of evaluation points.

• 'h' or 'q' — N2-by-M matrix, where each column corresponds to one evaluation point via linear
indexing of the underlying N-by-N matrix, and M is the number of evaluation points. Alternatively,
an N-by-N-by-M array, where each evaluation point is an N-by-N matrix. For details about linear
indexing, see “Array Indexing”.

If boundary conditions depend on state.u or state.time, ensure that your function returns a
matrix of NaN of the correct size when state.u or state.time are NaN. Solvers check whether a
problem is nonlinear or time-dependent by passing NaN state values, and looking for returned NaN
values.

See “Solve PDEs with Nonconstant Boundary Conditions” on page 2-123.

2 Setting Up Your PDE

2-118

Solve PDEs with Constant Boundary Conditions
This example shows how to apply various constant boundary condition specifications for both scalar
PDEs and systems of PDEs.

Geometry

All the specifications use the same 2-D geometry, which is a rectangle with a circular hole.

% Rectangle is code 3, 4 sides,
% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
% Circle is code 1, center (.5,0), radius .2
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];

% Names for the two geometric objects
ns = (char('R1','C1'))';

% Set formula
sf = 'R1 - C1';

% Create geometry
g = decsg(geom,sf,ns);

% Create geometry model
model = createpde;

% Include the geometry in the model
% and view the geometry
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
xlim([-1.1 1.1])
axis equal

 Solve PDEs with Constant Boundary Conditions

2-119

Scalar Problem

Suppose that edge 3 has Dirichlet conditions with value 32, edge 1 has Dirichlet conditions with value
72, and all other edges have Neumann boundary conditions with q = 0, g = -1.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',3,'u',32);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1,'u',72);
applyBoundaryCondition(model,'neumann', ...
 'Edge',[2,4:8],'g',-1);

This completes the boundary condition specification.

Solve an elliptic PDE with these boundary conditions with c = 1, a = 0, and f = 10. Because the
shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse choose a maximum
mesh size Hmax = 0.1.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',10);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u,'ZData',u)
view(-23,8)

2 Setting Up Your PDE

2-120

System of PDEs

Suppose that the system has N = 2.

• Edge 3 has Dirichlet conditions with values [32,72].
• Edge 1 has Dirichlet conditions with values [72,32].
• Edge 4 has a Dirichlet condition for the first component with value 52, and has a Neumann

condition for the second component with q = 0, g = -1.
• Edge 2 has Neumann boundary conditions with q = [1,2;3,4] and g = [5,-6].
• The circular edges (edges 5 through 8) have q = 0 and g = 0.

model = createpde(2);
geometryFromEdges(model,g);

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',3,'u',[32,72]);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1,'u',[72,32]);
applyBoundaryCondition(model,'mixed', ...
 'Edge',4,'u',52, ...
 'EquationIndex',1,'g',[0,-1]);
Q2 = [1,2;3,4];
G2 = [5,-6];
applyBoundaryCondition(model,'neumann', ...
 'Edge',2, ...
 'q',Q2,'g',G2);

 Solve PDEs with Constant Boundary Conditions

2-121

% The next step is optional,
% because it sets 'g' to its default value
applyBoundaryCondition(model,'neumann', ...
 'Edge',5:8,'g',[0,0]);

This completes the boundary condition specification.

Solve an elliptic PDE with these boundary conditions using c = 1, a = 0, and f = [10;-10].
Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse choose
a maximum mesh size Hmax = 0.1.

specifyCoefficients(model,'m',0,'d',0,'c',1, ...
 'a',0,'f', [10;-10]);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u(:,2),'ZData',u(:,2))

See Also

More About
• “Specify Boundary Conditions” on page 2-113
• “Solve PDEs with Nonconstant Boundary Conditions” on page 2-123

2 Setting Up Your PDE

2-122

Solve PDEs with Nonconstant Boundary Conditions
This example shows how to write functions for a nonconstant boundary condition specification.

Geometry

All the specifications use the same geometry, which is a rectangle with a circular hole.

% Rectangle is code 3, 4 sides,
% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
% Circle is code 1, center (.5,0), radius .2
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];

% Names for the two geometric objects
ns = (char('R1','C1'))';

% Set formula
sf = 'R1-C1';

% Create geometry
g = decsg(geom,sf,ns);

% Create geometry model
model = createpde;

% Include the geometry in the model
% and view the geometry
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
xlim([-1.1 1.1])
axis equal

 Solve PDEs with Nonconstant Boundary Conditions

2-123

Scalar Problem

• Edge 3 has Dirichlet conditions with value 32.
• Edge 1 has Dirichlet conditions with value 72.
• Edges 2 and 4 have Dirichlet conditions that linearly interpolate between edges 1 and 3.
• The circular edges (5 through 8) have Neumann conditions with q = 0, g = -1.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',3,'u',32);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1,'u',72);
applyBoundaryCondition(model,'neumann', ...
 'Edge',5:8, ...
 'g',-1); % q = 0 by default

Edges 2 and 4 need functions that perform the linear interpolation. Each edge can use the same
function that returns the value u x, y = 52 + 20x.

You can implement this simple interpolation in an anonymous function.

myufunction = @(location,state)52 + 20*location.x;

Include the function for edges 2 and 4. To help speed the solver, allow a vectorized evaluation.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[2,4],...

2 Setting Up Your PDE

2-124

 'u',myufunction,...
 'Vectorized','on');

Solve an elliptic PDE with these boundary conditions, using the parameters c = 1, a = 0, and | f =
10|. Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse
choose a maximum mesh size Hmax = 0.1.

specifyCoefficients(model,'m',0,'d',0,'c',1, ...
 'a',0,'f',10);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u)

System of PDEs

Suppose that the system has N = 2.

• Edge 3 has Dirichlet conditions with values [32,72].
• Edge 1 has Dirichlet conditions with values [72,32].
• Edges 2 and 4 have Dirichlet conditions that interpolate between the conditions on edges 1 and 3,

and include a sinusoidal variation.
• Circular edges (edges 5 through 8) have q = 0 and g = -10.

model = createpde(2);
geometryFromEdges(model,g);

 Solve PDEs with Nonconstant Boundary Conditions

2-125

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',3,'u',[32,72]);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1,'u',[72,32]);
applyBoundaryCondition(model,'neumann', ...
 'Edge',5:8,'g',[-10,-10]);

The first component of edges 2 and 4 satisfies the equation u1 x = 52 + 20x + 10sin πx3 .

The second component satisfies u2 x = 52 − 20x− 10sin πx3 .

Write a function file myufun.m that incorporates these equations in the syntax described in
“Nonconstant Boundary Conditions” on page 2-116.

function bcMatrix = myufun(location,state)
bcMatrix = [52 + 20*location.x + 10*sin(pi*(location.x.^3));
 52 - 20*location.x - 10*sin(pi*(location.x.^3))]; % OK to vectorize
end

Include this function in the edge 2 and edge 4 boundary condition.

applyBoundaryCondition(model,'dirichlet','Edge',[2,4],...
 'u',@myufun,...
 'Vectorized','on');

Solve an elliptic PDE with these boundary conditions, with the parameters c = 1, a = 0, and f =
(10,-10). Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too
coarse choose a maximum mesh size Hmax = 0.1.

specifyCoefficients(model,'m',0,'d',0,'c',1, ...
 'a',0,'f',[10;-10]);
generateMesh(model,'Hmax',0.1);
results = solvepde(model);
u = results.NodalSolution;

subplot(1,2,1)
pdeplot(model,'XYData',u(:,1), ...
 'ZData',u(:,1), ...
 'ColorBar','off')
view(-9,24)
subplot(1,2,2)
pdeplot(model,'XYData',u(:,2), ...
 'ZData',u(:,2), ...
 'ColorBar','off')
view(-9,24)

2 Setting Up Your PDE

2-126

 Solve PDEs with Nonconstant Boundary Conditions

2-127

View, Edit, and Delete Boundary Conditions
In this section...
“View Boundary Conditions” on page 2-128
“Delete Existing Boundary Conditions” on page 2-129
“Change a Boundary Conditions Assignment” on page 2-130

View Boundary Conditions
A PDE model stores boundary conditions in its BoundaryConditions property. To obtain the
boundary conditions stored in the PDE model called model, use this syntax:

BCs = model.BoundaryConditions;

To see the active boundary condition assignment for a region, call the findBoundaryConditions
function.

For example, create a model and view the geometry.

model = createpde(3);
importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

Set zero Dirichlet conditions for all equations and all regions in the model.

2 Setting Up Your PDE

2-128

applyBoundaryCondition(model,'dirichlet','Face',1:6,'u',[0,0,0]);

On face 3, set the Neumann boundary condition for equation 1 and Dirichlet boundary condition for
equations 2 and 3.

h = [0 0 0;0 1 0;0 0 1];
r = [0;3;3];
q = [1 0 0;0 0 0;0 0 0];
g = [10;0;0];
applyBoundaryCondition(model,'mixed','Face',3,'h',h,'r',r,'g',g,'q',q);

View the boundary condition assignment for face 3. The result shows that the active boundary
condition is the last assignment.

BCs = model.BoundaryConditions;
findBoundaryConditions(BCs,'Face',3)

ans =
 BoundaryCondition with properties:

 BCType: 'mixed'
 RegionType: 'Face'
 RegionID: 3
 r: [3x1 double]
 h: [3x3 double]
 g: [3x1 double]
 q: [3x3 double]
 u: []
 EquationIndex: []
 Vectorized: 'off'

View the boundary conditions assignment for face 1.

findBoundaryConditions(BCs,'Face',1)

ans =
 BoundaryCondition with properties:

 BCType: 'dirichlet'
 RegionType: 'Face'
 RegionID: [1 2 3 4 5 6]
 r: []
 h: []
 g: []
 q: []
 u: [0 0 0]
 EquationIndex: []
 Vectorized: 'off'

The active boundary conditions assignment for face 1 includes all six faces, though this assignment is
no longer active for face 3.

Delete Existing Boundary Conditions
To remove all the boundary conditions in the PDE model called pdem, use delete.

 View, Edit, and Delete Boundary Conditions

2-129

delete(pdem.BoundaryConditions)

To remove specific boundary conditions assignments from pdem, delete them from the
pdem.BoundaryConditions.BoundaryConditionAssignments vector. For example,

BCv = pdem.BoundaryConditions.BoundaryConditionAssignments;
delete(BCv(2))

Tip You do not need to delete boundary conditions; you can override them by calling
applyBoundaryCondition again. However, removing unused assignments can make your model
more concise.

Change a Boundary Conditions Assignment
To change a boundary conditions assignment, you need the boundary condition’s handle. To get the
boundary condition’s handle:

• Retain the handle when using applyBoundaryCondition. For example,

bc1 = applyBoundaryCondition(model,'dirichlet', ...
 'Face',1:6, ...
 'u',[0 0 0]);

• Obtain the handle using findBoundaryConditions. For example,

BCs = model.BoundaryConditions;
bc1 = findBoundaryConditions(BCs,'Face',2)

bc1 =

 BoundaryCondition with properties:

 BCType: 'dirichlet'
 RegionType: 'Face'
 RegionID: [1 2 3 4 5 6]
 r: []
 h: []
 g: []
 q: []
 u: [0 0 0]
 EquationIndex: []
 Vectorized: 'off'

You can change any property of the boundary conditions handle. For example,

bc1.BCType = 'neumann';
bc1.u = [];
bc1.g = [0 0 0];
bc1.q = [0 0 0];
bc1

bc1 =

 BoundaryCondition with properties:

 BCType: 'neumann'
 RegionType: 'Face'

2 Setting Up Your PDE

2-130

 RegionID: [1 2 3 4 5 6]
 r: []
 h: []
 g: [0 0 0]
 q: [0 0 0]
 u: []
 EquationIndex: []
 Vectorized: 'off'

Note Editing an existing assignment in this way does not change its priority. For example, if the
active boundary condition was assigned after bc1, then editing bc1 does not make bc1 the active
boundary condition.

See Also

Related Examples
• “Specify Boundary Conditions” on page 2-113

 View, Edit, and Delete Boundary Conditions

2-131

Generate Mesh
The generateMesh function creates a triangular mesh for a 2-D geometry and a tetrahedral mesh
for a 3-D geometry. By default, the mesh generator uses internal algorithms to choose suitable sizing
parameters for a particular geometry. You also can use additional arguments to specify the following
parameters explicitly:

• Target maximum mesh edge length, which is an approximate upper bound on the mesh edge
lengths. Note that occasionally, some elements can have edges longer than this parameter.

• Target minimum mesh edge length, which is an approximate lower bound on the mesh edge
lengths. Note that occasionally, some elements can have edges shorter than this parameter.

• Mesh growth rate, which is the rate at which the mesh size increases away from the small parts of
the geometry. The value must be between 1 and 2. This ratio corresponds to the edge length of
two successive elements. The default value is 1.5, that is, the mesh size increases by 50%.

• Quadratic or linear geometric order. A quadratic element has nodes at its corners and edge
centers, while a linear element has nodes only at its corners.

Create a PDE model.

model = createpde;

Include and plot the following geometry.

importGeometry(model,'PlateSquareHolePlanar.stl');
pdegplot(model)

2 Setting Up Your PDE

2-132

Generate a default mesh. For this geometry, the default target maximum and minimum mesh edge
lengths are 8.9443 and 4.4721, respectively.

mesh_default = generateMesh(model)

mesh_default =
 FEMesh with properties:

 Nodes: [2x1218 double]
 Elements: [6x574 double]
 MaxElementSize: 8.9443
 MinElementSize: 4.4721
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

View the mesh.

figure
pdemesh(mesh_default)

For comparison, create a mesh with the target maximum element edge length of 20.

mesh_Hmax = generateMesh(model,'Hmax',20)

mesh_Hmax =
 FEMesh with properties:

 Generate Mesh

2-133

 Nodes: [2x286 double]
 Elements: [6x126 double]
 MaxElementSize: 20
 MinElementSize: 10
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

figure
pdemesh(mesh_Hmax)

Now create a mesh with the target minimum element edge length of 0.5.

mesh_Hmin = generateMesh(model,'Hmin',0.5)

mesh_Hmin =
 FEMesh with properties:

 Nodes: [2x1378 double]
 Elements: [6x654 double]
 MaxElementSize: 8.9443
 MinElementSize: 0.5000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

figure
pdemesh(mesh_Hmin)

2 Setting Up Your PDE

2-134

Create a mesh, specifying both the maximum and minimum element edge lengths instead of using the
default values.

mesh_HminHmax = generateMesh(model,'Hmax',20, ...
 'Hmin',0.5)

mesh_HminHmax =
 FEMesh with properties:

 Nodes: [2x458 double]
 Elements: [6x212 double]
 MaxElementSize: 20
 MinElementSize: 0.5000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

View the mesh.

figure
pdemesh(mesh_HminHmax)

 Generate Mesh

2-135

Create a mesh with the same maximum and minimum element edge lengths, but with the growth rate
of 1.9 instead of the default value of 1.5.

mesh_Hgrad = generateMesh(model,'Hmax',20, ...
 'Hmin',0.5, ...
 'Hgrad',1.9)

mesh_Hgrad =
 FEMesh with properties:

 Nodes: [2x390 double]
 Elements: [6x178 double]
 MaxElementSize: 20
 MinElementSize: 0.5000
 MeshGradation: 1.9000
 GeometricOrder: 'quadratic'

figure
pdemesh(mesh_Hgrad)

2 Setting Up Your PDE

2-136

You also can choose the geometric order of the mesh. The toolbox can generate meshes made up of
quadratic or linear elements. By default, it uses quadratic meshes, which have nodes at both the edge
centers and corner nodes.

mesh_quadratic = generateMesh(model,'Hmax',50);
figure
pdemesh(mesh_quadratic,'NodeLabels','on')
hold on
plot(mesh_quadratic.Nodes(1,:), ...
 mesh_quadratic.Nodes(2,:), ...
 'ok','MarkerFaceColor','g')

 Generate Mesh

2-137

To save memory or solve a 2-D problem using a legacy solver, override the default quadratic
geometric order. Legacy PDE solvers require linear triangular meshes for 2-D geometries.

mesh_linear = generateMesh(model, ...
 'Hmax',50, ...
 'GeometricOrder','linear');
figure
pdemesh(mesh_linear,'NodeLabels','on')
hold on
plot(mesh_linear.Nodes(1,:), ...
 mesh_linear.Nodes(2,:), ...
 'ok','MarkerFaceColor','g')

2 Setting Up Your PDE

2-138

 Generate Mesh

2-139

Find Mesh Elements and Nodes by Location
Partial Differential Equation Toolbox™ allows you to find mesh elements and nodes by their geometric
location or proximity to a particular point or node. This example works with a group of elements and
nodes located within the specified bounding disk.

Create a steady-state thermal model.

thermalmodel = createpde('thermal','steadystate');

Import and plot the geometry.

importGeometry(thermalmodel,'PlateHolePlanar.stl');
pdegplot(thermalmodel,'FaceLabels','on', ...
 'EdgeLabels','on')

Assign the thermal conductivity of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1);

Apply a constant temperature of 20∘C to the left edge and a constant temperature of −10∘Cto the
right edge. All other edges are insulated by default.

thermalBC(thermalmodel,'Edge',4,'Temperature',20);
thermalBC(thermalmodel,'Edge',1,'Temperature',-10);

2 Setting Up Your PDE

2-140

Generate a mesh and solve the problem. For this example, use a linear mesh to better see the nodes
on the mesh plots. Additional nodes on a quadratic mesh make it difficult to see the plots in this
example clearly.

mesh = generateMesh(thermalmodel, ...
 'GeometricOrder','linear');
thermalresults = solve(thermalmodel);

The solver finds the temperatures and temperature gradients at all nodal locations. Plot the
temperatures.

pdeplot(thermalmodel,'XYData',thermalresults.Temperature)
axis equal

Suppose you need to analyze the results around the center hole more closely. First, find the nodes
and elements located next to the hole by using the findNodes and findElements functions. For
example, find nodes and elements located within the radius of 2.5 from the center [5 10].

Nr = findNodes(mesh,'radius',[5 10],2.5);
Er = findElements(mesh,'radius',[5 10],2.5);

Highlight the nodes within this radius on the mesh plot using a green marker.

figure
pdemesh(thermalmodel)
hold on
plot(mesh.Nodes(1,Nr),mesh.Nodes(2,Nr), ...
 'or','MarkerFaceColor','g')

 Find Mesh Elements and Nodes by Location

2-141

Find the minimal and maximal temperatures within the specified radius.

[Temps_disk] = thermalresults.Temperature(Nr);
[T_min,index_min] = min(Temps_disk);
[T_max,index_max] = max(Temps_disk);
T_min

T_min = -2.1698

T_max

T_max = 12.2420

Find the IDs of the nodes corresponding to the minimal and maximal temperatures. Plot these nodes
on the mesh plot.

nodeIDmin = Nr(index_min);
nodeIDmax = Nr(index_max);

figure
pdemesh(thermalmodel)
hold on
plot(mesh.Nodes(1,nodeIDmin), ...
 mesh.Nodes(2,nodeIDmin), ...
 'or','MarkerFaceColor','b')
plot(mesh.Nodes(1,nodeIDmax), ...
 mesh.Nodes(2,nodeIDmax), ...
 'or','MarkerFaceColor','r')

2 Setting Up Your PDE

2-142

Now highlight the elements within the specified radius on the mesh plot using a green marker.

figure
pdemesh(thermalmodel)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Er), ...
 'EdgeColor','green')

 Find Mesh Elements and Nodes by Location

2-143

Show the solution for only these elements.

figure
pdeplot(mesh.Nodes,mesh.Elements(:,Er), ...
 'XYData',thermalresults.Temperature)

2 Setting Up Your PDE

2-144

 Find Mesh Elements and Nodes by Location

2-145

Assess Quality of Mesh Elements
Partial Differential Equation Toolbox™ uses the finite element method to solve PDE problems. This
method discretizes a geometric domain into a collection of simple shapes that make up a mesh. The
quality of the mesh is crucial for obtaining an accurate approximation of a solution.

Typically, PDE solvers work best with meshes made up of elements that have an equilateral shape.
Such meshes are ideal. In reality, creating an ideal mesh for most 2-D and 3-D geometries is
impossible because geometries have tiny or narrow regions and sharp angles. For such regions, a
mesh generator creates meshes with some elements that are much smaller than the rest of mesh
elements or have drastically different side lengths.

As mesh elements become distorted, numeric approximations of a solution typically become less
accurate. Refining a mesh using smaller elements produces better shaped elements and, therefore,
more accurate results. However, it also can be computationally expensive.

Checking if the mesh is of good quality before running an analysis is a good practice, especially for
simulations that take a long time. The toolbox provides the meshQuality function for this task.

meshQuality evaluates the shape quality of mesh elements and returns numbers from 0 to 1 for
each mesh element. The value 1 corresponds to the optimal shape of the element. By default, the
meshQuality function combines several criteria when evaluating the shape quality. In addition to
the default metric, you can use the aspect-ratio metric, which is based solely on the ratio of the
minimum dimension of an element to its maximum dimension.

Create a PDE model.

model = createpde;

Include and plot the torus geometry.

importGeometry(model,'Torus.stl');
pdegplot(model)
camlight right

2 Setting Up Your PDE

2-146

Generate a coarse mesh.

mesh = generateMesh(model,'Hmax',10);

Evaluate the shape quality of all mesh elements.

Q = meshQuality(mesh);

Find the elements with quality values less than 0.3.

elemIDs = find(Q < 0.3);

Highlight these elements in blue on the mesh plot.

figure
pdemesh(mesh,'FaceAlpha',0.5)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs), ...
 'FaceColor','blue','EdgeColor','blue')

 Assess Quality of Mesh Elements

2-147

Determine how much of the total mesh volume belongs to elements with quality values less than 0.3.
Return the result as a percentage.

mv03_percent = volume(mesh,elemIDs)/volume(mesh)*100

mv03_percent = 0.0198

Evaluate the shape quality of the mesh elements by using the ratio of minimal to maximal dimension
for each element.

Q = meshQuality(mesh,'aspect-ratio');

Find the elements with quality values less than 0.3.

elemIDs = find(Q < 0.3);

Highlight these elements in blue on the mesh plot.

figure
pdemesh(mesh,'FaceAlpha',0.5)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs), ...
 'FaceColor','blue','EdgeColor','blue')

2 Setting Up Your PDE

2-148

 Assess Quality of Mesh Elements

2-149

Mesh Data as [p,e,t] Triples
Partial Differential Equation Toolbox uses meshes with triangular elements for 2-D geometries and
meshes with tetrahedral elements for 3-D geometries. Earlier versions of Partial Differential Equation
Toolbox use meshes in the form of a [p,e,t] triple. The matrices p, e, and t represent the points
(nodes), elements, and triangles or tetrahedra of a mesh, respectively. Later versions of the toolbox
support the [p,e,t] meshes for compatibility reasons.

Note New features might not be compatible with the legacy workflow. For description of the mesh
data in the recommended workflow, see “Mesh Data” on page 2-153.

The mesh data for a 2-D mesh has these components:

• p (points, the mesh nodes) is a 2-by-Np matrix of nodes, where Np is the number of nodes in the
mesh. Each column p(:,k) consists of the x-coordinate of point k in p(1,k) and the y-coordinate
of point k in p(2,k).

• e (edges) is a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. The mesh
edges in e and the edges of the geometry have a one-to-one correspondence. The e matrix
represents the discrete edges of the geometry in the same manner as the t matrix represents the
discrete faces. Each column in the e matrix represents one edge.

• e(1,k) is the index of the first point in mesh edge k.
• e(2,k) is the index of the second point in mesh edge k.
• e(3,k) is the parameter value at the first point of edge k. The parameter value is related to

the arc length along the geometric edge.
• e(4,k) is the parameter value at the second point of edge k.
• e(5,k) is the ID of the geometric edge containing the mesh edge. You can see edge IDs by

using the command pdegplot(geom,'EdgeLabels','on').
• e(6,k) is the subdomain number on the left side of the edge. The direction along the edge is

given by increasing parameter values. The subdomain 0 is the exterior of the geometry.
• e(7,k) is the subdomain number on the right side of the edge.

• t (triangles) is a 4-by-Nt matrix of triangles or a 7-by-Nt matrix of triangles, depending on
whether you call generateMesh with the GeometricOrder name-value pair set to 'quadratic'
or 'linear', respectively. initmesh creates only 'linear' elements, which have size 4-by-Nt.
Nt is the number of triangles in the mesh. Each column of t contains the indices of the points in p
that form the triangle. The exception is the last entry in the column, which is the subdomain
number. Triangle points are ordered as shown.

2 Setting Up Your PDE

2-150

•

The mesh data for a 3-D mesh has these components:

• p (points, the mesh nodes) is a 3-by-Np matrix of nodes, where Np is the number of nodes in the
mesh. Each column p(:,k) consists of the x-coordinate of point k in p(1,k), the y-coordinate of
point k in p(2,k), and the z-coordinate of point k in p(3,k).

• e is an object that associates the mesh faces with the geometry boundaries. Partial Differential
Equation Toolbox functions use this association when converting the boundary conditions, which
you set on geometry boundaries, to the mesh boundary faces.

• t (tetrahedra) is either an 11-by-Nt matrix of tetrahedra or a 5-by-Nt matrix of tetrahedra,
depending on whether you call generateMesh with the GeometricOrder name-value pair set to
'quadratic' or 'linear', respectively. Nt is the number of tetrahedra in the mesh. Each
column of t contains the indices of the points in p that form the tetrahedron. The exception is the
last element in the column, which is the subdomain number. Tetrahedron points are ordered as
shown.

 Mesh Data as [p,e,t] Triples

2-151

You can create a [p,e,t] mesh by using one of these approaches:

• Use the initmesh function to create a 2-D [p,e,t] mesh.
• Use the generateMesh function to create a 2-D or 3-D mesh as a FEMesh object. Then use the

meshToPet function to convert the mesh to a [p,e,t] mesh.

2 Setting Up Your PDE

2-152

Mesh Data
Partial Differential Equation Toolbox uses meshes with triangular elements for 2-D geometries and
meshes with tetrahedral elements for 3-D geometries. In both cases, it uses the quadratic geometric
order by default, and provides the option to switch to the linear geometric order. A mesh always
consists of elements of the same order. The toolbox does not support mixed meshes.

The triangles in 2-D meshes are specified by three nodes for linear elements or six nodes for
quadratic elements. A triangle representing a linear element has nodes at the corners. A triangle
representing a quadratic element has nodes at its corners and edge centers.

The tetrahedra in 3-D meshes are specified by four nodes for linear elements or 10 nodes for
quadratic elements. A tetrahedron representing a linear element has nodes at the corners. A
tetrahedron representing a quadratic element has nodes at its corners and edge centers.

 Mesh Data

2-153

The center nodes in quadratic meshes are always added at half-distance between corners. For
geometries with curved surfaces and edges, center nodes might not appear on the edge or surface
itself.

The model container object stores the parameters of the PDE model. The toolbox offers several types
of model container objects, each for a particular application area. For example, for linear elasticity
problems, the model container is a StructuralModel object, and for heat transfer problems, the
model container is a ThermalModel object. For general PDE problems, the toolbox uses the
PDEModel object.

The Mesh property of the model container object stores mesh data. The Mesh property contains a
FEMesh object. FEMesh include information on the nodes and elements of the mesh, mesh growth
rate, and target minimum and maximum element size. The properties also indicate whether the mesh
is linear or quadratic. You can specify these mesh parameters when creating a mesh.

To generate a mesh for your PDE model, use the generateMesh function.

By default, generateMesh uses the quadratic geometric order, which typically produces more
accurate results than the linear geometric order. To switch to the linear geometric order, call the
mesh generator and set the GeometricOrder name-value pair to 'linear'.

2 Setting Up Your PDE

2-154

Solving PDEs

• “von Mises Effective Stress and Displacements: PDE Modeler App” on page 3-3
• “Clamped Square Isotropic Plate with Uniform Pressure Load” on page 3-7
• “Deflection of Piezoelectric Actuator” on page 3-11
• “Dynamics of Damped Cantilever Beam” on page 3-21
• “Dynamic Analysis of Clamped Beam” on page 3-28
• “Reduced-Order Modeling Technique for Beam with Point Load” on page 3-33
• “Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm”

on page 3-40
• “Thermal Stress Analysis of Jet Engine Turbine Blade” on page 3-50
• “Finite Element Analysis of Electrostatically Actuated MEMS Device” on page 3-58
• “Deflection Analysis of Bracket” on page 3-71
• “Vibration of Square Plate” on page 3-78
• “Structural Dynamics of Tuning Fork” on page 3-82
• “Modal Superposition Method for Structural Dynamics Problem” on page 3-91
• “Stress Concentration in Plate with Circular Hole” on page 3-95
• “Thermal Deflection of Bimetallic Beam” on page 3-103
• “Axisymmetric Thermal and Structural Analysis of Disc Brake” on page 3-110
• “Electrostatic Potential in Air-Filled Frame” on page 3-121
• “Electrostatic Potential in Air-Filled Frame: PDE Modeler App” on page 3-123
• “Electrostatic Analysis of Transformer Bushing Insulator” on page 3-125
• “Magnetic Flux Density in H-Shaped Magnet” on page 3-131
• “Magnetic Flux Density in Electromagnet” on page 3-136
• “Linear Elasticity Equations” on page 3-146
• “Magnetic Field in Two-Pole Electric Motor” on page 3-151
• “Magnetic Field in Two-Pole Electric Motor: PDE Modeler App” on page 3-156
• “Scattering Problem” on page 3-160
• “Electrostatics and Magnetostatics” on page 3-165
• “Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App” on page 3-166
• “Current Density Between Two Metallic Conductors: PDE Modeler App” on page 3-174
• “Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App”

on page 3-177
• “Temperature Distribution in Heat Sink” on page 3-181
• “Nonlinear Heat Transfer in Thin Plate” on page 3-190
• “Poisson's Equation on Unit Disk: PDE Modeler App” on page 3-198
• “Poisson's Equation on Unit Disk” on page 3-204

3

• “Scattering Problem: PDE Modeler App” on page 3-212
• “Minimal Surface Problem” on page 3-216
• “Minimal Surface Problem: PDE Modeler App” on page 3-220
• “Poisson's Equation with Point Source and Adaptive Mesh Refinement” on page 3-222
• “Heat Transfer in Block with Cavity: PDE Modeler App” on page 3-227
• “Heat Transfer in Block with Cavity” on page 3-231
• “Heat Transfer Problem with Temperature-Dependent Properties” on page 3-235
• “Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux” on page 3-243
• “Inhomogeneous Heat Equation on Square Domain” on page 3-250
• “Heat Distribution in Circular Cylindrical Rod” on page 3-254
• “Thermal Analysis of Disc Brake” on page 3-260
• “Heat Distribution in Circular Cylindrical Rod: PDE Modeler App” on page 3-268
• “Wave Equation on Square Domain” on page 3-271
• “Wave Equation on Square Domain: PDE Modeler App” on page 3-275
• “Eigenvalues and Eigenmodes of L-Shaped Membrane” on page 3-278
• “Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App” on page 3-284
• “L-Shaped Membrane with Rounded Corner: PDE Modeler App” on page 3-287
• “Eigenvalues and Eigenmodes of Square” on page 3-290
• “Eigenvalues and Eigenmodes of Square: PDE Modeler App” on page 3-295
• “Vibration of Circular Membrane” on page 3-298
• “Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-302
• “2-D Solution and Gradient Plots with MATLAB® Functions” on page 3-311
• “3-D Solution and Gradient Plots with MATLAB® Functions” on page 3-317
• “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329

3 Solving PDEs

3-2

von Mises Effective Stress and Displacements: PDE Modeler
App

This example shows how to compute the displacements u and v and the von Mises effective stress for
a steel plate that is clamped along a right-angle inset at the lower-left corner, and pulled along a
rounded cut at the upper-right corner. The example uses the PDE Modeler app. The app also lets you
compute and visualize other properties, such as the x- and y-direction strains and stresses and the
shear stress.

Consider a steel plate that is clamped along a right-angle inset at the lower-left corner, and pulled
along a rounded cut at the upper-right corner. All other sides are free. The steel plate has the
following properties:

• Dimensions 1 m-by-1 m-by 0.001 m;
• Inset is 1/3-by-1/3 m
• The rounded cut runs from (2/3, 1) to (1, 2/3)
• Young's modulus: 196 · 103 (MN/m2)
• Poisson's ratio: 0.31.

The curved boundary is subjected to an outward normal load of 500 N/m. To specify a surface
traction, divide the load by the thickness (0.001 m). Thus, the surface traction is 0.5 MN/m2. The
force unit in this example is MN.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw a polygon with corners (0 1), (2/3,1), (1,2/3), (1,0), (1/3,0), (1/3,1/3), (0,1/3) and a circle
with the center (2/3, 2/3) and radius 1/3.

pdepoly([0 2/3 1 1 1/3 1/3 0],[1 1 2/3 0 0 1/3 1/3])
pdecirc(2/3,2/3,1/3)

2 Set the x-axis limit to [-0.5 1.5] and y-axis limit to [0 1.2]. To do this, select Options >
Axes Limits and set the corresponding ranges.

3 Model the geometry by entering P1+C1 in the Set formula field.
4 Set the application mode to Structural Mechanics, Plane Stress.
5 Remove all subdomain borders. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Then select Boundary > Remove All Subdomain Borders.
6 Display the edge labels by selecting Boundary > Show Edge Labels.

 von Mises Effective Stress and Displacements: PDE Modeler App

3-3

7 Specify the boundary conditions. To do this, select Boundary > Specify Boundary Conditions.

• For convenience, first specify the Neumann boundary condition g1 = g2 = 0, q11 = q12 =
q21 = q22 = 0 (no normal stress) for all boundaries. Use Edit > Select All to select all
boundaries.

• For the two clamped boundaries at the inset in the lower left (edges 4 and 5), specify the
Dirichlet boundary condition with zero displacements: h11 = 1, h12 = 0, h21 = 0, h22 =
1, r1 = 0, r2 = 0. Use Shift+click to select several boundaries.

• For the rounded cut (edge 7), specify the Neumann boundary condition: g1 = 0.5*nx, g2 =
0.5*ny, q11 = q12 = q21 = q22 = 0.

8 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify E = 196E3 and nu = 0.31. The material is homogeneous, so the same
values E and nu apply to the entire 2-D domain. Because there are no volume forces, specify Kx
= Ky = 0. The elliptic type of PDE for plane stress does not use density, so you can specify any
value. For example, specify pho = 0.

9 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >
Refine Mesh.

3 Solving PDEs

3-4

10 Refining the mesh in areas where the gradient of the solution (the stress) is large. To do this,
select Solve > Parameters. In the resulting dialog box, select Adaptive mode. Use the default
adaptation options: the Worst triangles triangle selection method with the Worst triangle
fraction set to 0.5.

11 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
12 Plot the von Mises effective stress using color. Plot the displacement vector field (u,v) using a

deformed mesh. To do this:

a Select Plot > Parameters.
b In the resulting dialog box, select the Color and Deformed mesh options. Select von

Mises from the Color drop-down menu. Select Show Mesh to observe the refined mesh in
large stress areas.

By selecting other options from the Color drop-down menu, you can visualize different strain and
stress properties, such as the x- and y-direction strains and stresses, the shear stress, and the

 von Mises Effective Stress and Displacements: PDE Modeler App

3-5

principal stresses and strains. You also can plot combinations of scalar and vector properties by using
color, height, vector field arrows, and displacements in a 3-D plot to represent different properties.

3 Solving PDEs

3-6

Clamped Square Isotropic Plate with Uniform Pressure Load
This example shows how to calculate the deflection of a structural plate under a pressure loading.

The partial differential equation for a thin isotropic plate with a pressure loading is

∇2(D∇2w) = − p,

where D is the bending stiffness of the plate given by

D = Eh3

12(1 − ν2)
,

and E is the modulus of elasticity, ν is Poisson's ratio, h is the plate thickness, w is the transverse
deflection of the plate, and p is the pressure load.

The boundary conditions for the clamped boundaries are w = 0 and w′ = 0, where w′ is the derivative
of w in a direction normal to the boundary.

Partial Differential Equation Toolbox™ cannot directly solve this fourth-order plate equation. Convert
the fourth-order equation to these two second-order partial differential equations, where v is the new
dependent variable.

∇2w = v

D∇2v = − p

You cannot directly specify boundary conditions for both w and w′ in this second-order system.
Instead, specify that w′ is 0, and define v′ so that w also equals 0 on the boundary. To specify these
conditions, use stiff "springs" distributed along the boundary. The springs apply a transverse shear
force to the plate edge. Define the shear force along the boundary due to these springs as
n ⋅ D∇v = − kw, where n is the normal to the boundary, and k is the stiffness of the springs. This
expression is a generalized Neumann boundary condition supported by the toolbox. The value of k
must be large enough so that w is approximately 0 at all points on the boundary. It also must be small
enough to avoid numerical errors due to an ill-conditioned stiffness matrix.

The toolbox uses the dependent variables u1 and u2 instead of w and v. Rewrite the two second-order
partial differential equations using variables u1 and u2:

−∇2u1 + u2 = 0

−D∇2u2 = p

Create a PDE model for a system of two equations.

model = createpde(2);

Create a square geometry and include it in the model.

len = 10;
gdm = [3 4 0 len len 0 0 0 len len]';
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(model,g);

 Clamped Square Isotropic Plate with Uniform Pressure Load

3-7

Plot the geometry with the edge labels.

figure
pdegplot(model,'EdgeLabels','on')
ylim([-1,11])
axis equal
title 'Geometry With Edge Labels Displayed'

PDE coefficients must be specified using the format required by the toolbox. For details, see

• “c Coefficient for specifyCoefficients” on page 2-76
• “m, d, or a Coefficient for specifyCoefficients” on page 2-91
• “f Coefficient for specifyCoefficients” on page 2-74

The c coefficient in this example is a tensor, which can be represented as a 2-by-2 matrix of 2-by-2
blocks:

c(1) c(2) ⋅ ⋅
⋅ c(3) ⋅ ⋅
⋅ ⋅ c(4) c(5)
⋅ ⋅ ⋅ c(6)

This matrix is further flattened into a column vector of six elements. The entries in the full 2-by-2
matrix (defining the coefficient a) and the 2-by-1 vector (defining the coefficient f) follow directly from
the definition of the two-equation system.

3 Solving PDEs

3-8

E = 1.0e6; % Modulus of elasticity
nu = 0.3; % Poisson's ratio
thick = 0.1; % Plate thickness
pres = 2; % External pressure

D = E*thick^3/(12*(1 - nu^2));

c = [1 0 1 D 0 D]';
a = [0 0 1 0]';
f = [0 pres]';
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

To define boundary conditions, first specify spring stiffness.

k = 1e7;

Define distributed springs on all four edges.

bOuter = applyBoundaryCondition(model,'neumann','Edge',(1:4),...
 'g',[0 0],'q',[0 0; k 0]);

Generate a mesh.

generateMesh(model);

Solve the model.

res = solvepde(model);

Access the solution at the nodal locations.

u = res.NodalSolution;

Plot the transverse deflection.

numNodes = size(model.Mesh.Nodes,2);
figure
pdeplot(model,'XYData',u(:,1),'Contour','on')
title 'Transverse Deflection'

 Clamped Square Isotropic Plate with Uniform Pressure Load

3-9

Find the transverse deflection at the plate center.

numNodes = size(model.Mesh.Nodes,2);
wMax = min(u(1:numNodes,1))

wMax = -0.2763

Compare the result with the deflection at the plate center computed analytically.

wMax = -.0138*pres*len^4/(E*thick^3)

wMax = -0.2760

3 Solving PDEs

3-10

Deflection of Piezoelectric Actuator
This example shows how to solve a coupled elasticity-electrostatics problem.

Piezoelectric materials deform under an applied voltage. Conversely, deforming a piezoelectric
material produces a voltage. Therefore, analysis of a piezoelectric part requires the solution of a set
of coupled partial differential equations with deflections and electrical potential as dependent
variables.

In this example, the model is a two-layer cantilever beam, with both layers made of the same
polyvinylidene fluoride (PVDF) material. The polarization direction points down (negative y-direction)
in the top layer and points up in the bottom layer. The typical length to thickness ratio is 100. When
you apply a voltage between the lower and upper surfaces of the beam, the beam deflects in the y-
direction because one layer shortens and the other layer lengthens.

The equilibrium equations describe the elastic behavior of the solid:

−∇ ⋅ σ = f

Here, σ is the stress tensor, and f is the body force vector. Gauss's Law describes the electrostatic
behavior of the solid:

∇ ⋅ D = ρ

D is the electric displacement, and ρ is the distributed free charge. Combine these two PDE systems
into this single system:

−∇ ⋅
σ
D

=
f
−ρ

For a 2-D analysis, σ has the components σ11, σ22, and σ12 = σ21, and D has the components D1 and
D2.

 Deflection of Piezoelectric Actuator

3-11

The constitutive equations for the material define the stress tensor and electric displacement vector
in terms of the strain tensor and electric field. For a 2-D analysis of an orthotropic piezoelectric
material under plane stress conditions, you can write these equations as

σ11
σ22
σ12
D1
D2

=

C11 C12 e11 e31
C12 C22 e13 e33

G12 e14 e34

e11 e13 e14 −ℰ1

e31 e33 e34 −ℰ2

ϵ11
ϵ22
γ12
−E1
−E2

Ci j are the elastic coefficients, ℰi are the electrical permittivities, and ei j are the piezoelectric stress
coefficients. The piezoelectric stress coefficients in these equations conform to conventional notation
in piezoelectric materials where the z-direction (the third direction) aligns with the "poled" direction
of the material. For the 2-D analysis, align the "poled" direction with the y-axis. Write the strain
vector in terms of the x-displacement u and y-displacement v:

ϵ11
ϵ22
γ12

=

∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

Write the electric field in terms of the electrical potential ϕ:

E1
E2

= −

∂ϕ
∂x
∂ϕ
∂y

You can substitute the strain-displacement equations and electric field equations into the constitutive
equations and get a system of equations for the stresses and electrical displacements in terms of
displacement and electrical potential derivatives. Substituting the resulting equations into the PDE
system equations yields a system of equations that involve the divergence of the displacement and
electrical potential derivatives. As the next step, arrange these equations to match the form required
by the toolbox.

Partial Differential Equation Toolbox™ requires a system of elliptic equations to be expressed in a
vector form:

−∇ ⋅ c⊗ ∇u + au = f

or in a tensor form:

− ∂
∂xk

ci jkl
∂u j
∂xl

+ ai ju j = f i

where repeated indices imply summation. For the 2-D piezoelectric system in this example, the
system vector u is

3 Solving PDEs

3-12

u =
u
v
ϕ

This is an N = 3 system. The gradient of u is

∇u =

∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y
∂ϕ
∂x
∂ϕ
∂y

For details on specifying the coefficients in the format required by the toolbox, see:

• “c Coefficient for specifyCoefficients” on page 2-76
• “m, d, or a Coefficient for specifyCoefficients” on page 2-91
• “f Coefficient for specifyCoefficients” on page 2-74

The c coefficient in this example is a tensor. You can represent it as a 3-by-3 matrix of 2-by-2 blocks:

c(1) c(2) c(4) c(6) c(11) c(13)
⋅ c(3) c(5) c(7) c(12) c(14)
⋅ ⋅ c(8) c(9) c(15) c(17)
⋅ ⋅ ⋅ c(10) c(16) c(18)
⋅ ⋅ ⋅ ⋅ c(19) c(20)
⋅ ⋅ ⋅ ⋅ ⋅ c(21)

To map terms of constitutive equations to the form required by the toolbox, write the c tensor and the
solution gradient in this form:

c1111 c1112 c1211 c1212 c1311 c1312
⋅ c1122 c1221 c1222 c1321 c1322

⋅ ⋅ c2211 c2212 c2311 c2312
⋅ ⋅ ⋅ c2222 c2321 c2322

⋅ ⋅ ⋅ ⋅ c3311 c3312
⋅ ⋅ ⋅ ⋅ ⋅ c3322

∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y
∂ϕ
∂x
∂ϕ
∂y

 Deflection of Piezoelectric Actuator

3-13

From this equation, you can map the traditional constitutive coefficients to the form required for the
c matrix. The minus sign in the equations for the electric field is incorporated into the c matrix to
match the toolbox's convention.

C11 ⋅ ⋅ C12 e11 e31
⋅ G12 G12 ⋅ e14 e34

⋅ ⋅ G12 ⋅ e14 e34
⋅ ⋅ ⋅ C22 e13 e33

⋅ ⋅ ⋅ ⋅ −ℰ1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −ℰ2

∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y
∂ϕ
∂x
∂ϕ
∂y

Beam Geometry

Create a PDE model. The equations of linear elasticity have three components, so the model must
have three equations.

model = createpde(3);

Create the geometry and include it in the model.

L = 100e-3; % Beam length in meters
H = 1e-3; % Overall height of the beam
H2 = H/2; % Height of each layer in meters

topLayer = [3 4 0 L L 0 0 0 H2 H2];
bottomLayer = [3 4 0 L L 0 -H2 -H2 0 0];
gdm = [topLayer;bottomLayer]';
g = decsg(gdm,'R1+R2',['R1';'R2']');

geometryFromEdges(model,g);

Plot the geometry with the face and edge labels.

figure
pdegplot(model,'EdgeLabels','on', ...
 'FaceLabels','on')
xlabel('X-coordinate, meters')
ylabel('Y-coordinate, meters')
axis([-.1*L,1.1*L,-4*H2,4*H2])
axis square

3 Solving PDEs

3-14

Material Properties

Specify the material properties of the beam layers. The material in both layers is polyvinylidene
fluoride (PVDF), a thermoplastic polymer with piezoelectric behavior.

E = 2.0e9; % Elastic modulus, N/m^2
NU = 0.29; % Poisson's ratio
G = 0.775e9; % Shear modulus, N/m^2
d31 = 2.2e-11; % Piezoelectric strain coefficients, C/N
d33 = -3.0e-11;

Specify relative electrical permittivity of the material at constant stress.

relPermittivity = 12;

Specify the electrical permittivity of vacuum.

permittivityFreeSpace = 8.854187817620e-12; % F/m
C11 = E/(1 - NU^2);
C12 = NU*C11;
c2d = [C11 C12 0; C12 C11 0; 0 0 G];
pzeD = [0 d31; 0 d33; 0 0];

Specify the piezoelectric stress coefficients.

pzeE = c2d*pzeD;
D_const_stress = [relPermittivity 0;
 0 relPermittivity]*permittivityFreeSpace;

 Deflection of Piezoelectric Actuator

3-15

Convert the dielectric matrix from constant stress to constant strain.

D_const_strain = D_const_stress - pzeD'*pzeE;

You can view the 21 coefficients as a 3-by-3 matrix of 2-by-2 blocks. The cij matrices are the 2-by-2
blocks in the upper triangle of this matrix.

c11 = [c2d(1,1) c2d(1,3) c2d(3,3)];
c12 = [c2d(1,3) c2d(1,2); c2d(3,3) c2d(2,3)];
c22 = [c2d(3,3) c2d(2,3) c2d(2,2)];
c13 = [pzeE(1,1) pzeE(1,2); pzeE(3,1) pzeE(3,2)];
c23 = [pzeE(3,1) pzeE(3,2); pzeE(2,1) pzeE(2,2)];
c33 = [D_const_strain(1,1)
 D_const_strain(2,1)
 D_const_strain(2,2)];
ctop = [c11(:); c12(:); c22(:); -c13(:); -c23(:); -c33(:)];
cbot = [c11(:); c12(:); c22(:); c13(:); c23(:); -c33(:)];

f = [0 0 0]';
specifyCoefficients(model,'m',0,'d',0,'c',ctop,'a',0,'f',f,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',cbot,'a',0,'f',f,'Face',1);

Boundary Conditions

Set the voltage (solution component 3) on the top of the beam (edge 1) to 100 volts.

voltTop = applyBoundaryCondition(model,'mixed', ...
 'Edge',1,...
 'u',100,...
 'EquationIndex',3);

Specify that the bottom of the beam (edge 2) is grounded by setting the voltage to 0.

voltBot = applyBoundaryCondition(model,'mixed', ...
 'Edge',2,...
 'u',0,...
 'EquationIndex',3);

Specify that the left side (edges 6 and 7) is clamped by setting the x- and y-displacements (solution
components 1 and 2) to 0.

clampLeft = applyBoundaryCondition(model,'mixed', ...
 'Edge',6:7,...
 'u',[0 0],...
 'EquationIndex',1:2);

The stress and charge on the right side of the beam are zero. Accordingly, use the default boundary
condition for edges 3 and 4.

Finite Element and Analytical Solutions

Generate a mesh and solve the model.

msh = generateMesh(model,'Hmax',5e-4);
result = solvepde(model)

result =
 StationaryResults with properties:

3 Solving PDEs

3-16

 NodalSolution: [3605x3 double]
 XGradients: [3605x3 double]
 YGradients: [3605x3 double]
 ZGradients: [0x3 double]
 Mesh: [1x1 FEMesh]

Access the solution at the nodal locations. The first column contains the x-deflection. The second
column contains the y-deflection. The third column contains the electrical potential.

rs = result.NodalSolution;

Find the minimum y-deflection.

feTipDeflection = min(rs(:,2));
fprintf('Finite element tip deflection is: %12.4e\n',feTipDeflection);

Finite element tip deflection is: -3.2900e-05

Compare this result with the known analytical solution.

tipDeflection = -3*d31*100*L^2/(8*H2^2);
fprintf('Analytical tip deflection is: %12.4e\n',tipDeflection);

Analytical tip deflection is: -3.3000e-05

Plot the deflection components and the electrical potential.

varsToPlot = char('X-Deflection, meters', ...
 'Y-Deflection, meters', ...
 'Electrical Potential, Volts');
for i = 1:size(varsToPlot,1)
 figure;
 pdeplot(model,'XYData',rs(:,i),'Contour','on')
 title(varsToPlot(i,:))
 % scale the axes to make it easier to view the contours
 axis([0, L, -4*H2, 4*H2])
 xlabel('X-Coordinate, meters')
 ylabel('Y-Coordinate, meters')
 axis square
end

 Deflection of Piezoelectric Actuator

3-17

3 Solving PDEs

3-18

 Deflection of Piezoelectric Actuator

3-19

References

1 Hwang, Woo-Seok, and Hyun Chul Park. "Finite Element Modeling of Piezoelectric Sensors and
Actuators." AIAA Journal 31, no.5 (May 1993): 930-937.

2 Pieford, V. "Finite Element Modeling of Piezoelectric Active Structures." PhD diss., Universite
Libre De Bruxelles, 2001.

3 Solving PDEs

3-20

Dynamics of Damped Cantilever Beam
This example shows how to include damping in the transient analysis of a simple cantilever beam.

The damping model is basic viscous damping distributed uniformly through the volume of the beam.
The beam is deformed by applying an external load at the tip of the beam and then released at time
t = 0. This example does not use any additional loading, so the displacement of the beam decreases
as a function of time due to the damping. The example uses plane-stress modal, static, and transient
analysis models in its three-step workflow:

1 Perform modal analysis to compute the fundamental frequency of the beam and to speed up
computations for the transient analysis.

2 Find the static solution of the beam with a vertical load at the tip to use as an initial condition for
a transient model.

3 Perform the transient analysis with and without damping.

Damping is typically expressed as a percentage of critical damping, ξ, for a selected vibration
frequency. This example uses ξ = 0 . 03, which is three percent of critical damping.

The example specifies values of parameters using the imperial system of units. You can replace them
with values specified in the metric system. If you do so, ensure that you specify all values throughout
the example using the same system.

Modal Analysis

Create a modal analysis model for a plane-stress problem.

modelM = createpde('structural','modal-planestress');

Create the geometry and include it in the model. Suppose, the beam is 5 inches long and 0.1 inches
thick.

width = 5;
height = 0.1;

gdm = [3;4;0;width;width;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(modelM,g);

Plot the geometry with the edge labels.

figure;
pdegplot(modelM,'EdgeLabels','on');
axis equal
title 'Geometry With Edge Labels Displayed'

 Dynamics of Damped Cantilever Beam

3-21

Define a maximum element size so that there are five elements through the beam thickness. Generate
a mesh.

hmax = height/5;
msh = generateMesh(modelM,'Hmax',hmax);

Specify the Young's modulus, Poisson's ratio, and mass density of steel.

E = 3.0e7;
nu = 0.3;
rho = 0.3/386;
structuralProperties(modelM,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

Specify that the left edge of the beam is a fixed boundary.

structuralBC(modelM,'Edge',4,'Constraint','fixed');

Solve the problem for the frequency range from 0 to 1e5. The recommended approach is to use a
value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0.

res = solve(modelM,'FrequencyRange',[-0.1,1e5]')

res =
 ModalStructuralResults with properties:

 NaturalFrequencies: [8x1 double]

3 Solving PDEs

3-22

 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

By default, the solver returns circular frequencies.

modeID = 1:numel(res.NaturalFrequencies);

Express the resulting frequencies in Hz by dividing them by 2π. Display the frequencies in a table.

tmodalResults = table(modeID.',res.NaturalFrequencies/(2*pi));
tmodalResults.Properties.VariableNames = {'Mode','Frequency'};
disp(tmodalResults)

 Mode Frequency
 ____ _________

 1 126.94
 2 794.05
 3 2216.8
 4 4325.3
 5 7110.7
 6 9825.9
 7 10551
 8 14623

Compute the analytical fundamental frequency (Hz) using the beam theory.

I = height^3/12;
freqAnalytical = 3.516*sqrt(E*I/(width^4*rho*height))/(2*pi)

freqAnalytical = 126.9498

Compare the analytical result with the numerical result.

freqNumerical = res.NaturalFrequencies(1)/(2*pi)

freqNumerical = 126.9416

Compute the period corresponding to the lowest vibration mode.

longestPeriod = 1/freqNumerical

longestPeriod = 0.0079

Plot the y-component of the solution for the lowest beam frequency.

figure;
pdeplot(modelM,'XYData',res.ModeShapes.uy(:,1))
title('Lowest Frequency Vibration Mode')
axis equal

 Dynamics of Damped Cantilever Beam

3-23

Initial Displacement from Static Solution

The beam is deformed by applying an external load at its tip and then released at time t = 0. Find the
initial condition for the transient analysis by using the static solution of the beam with a vertical load
at the tip.

Create a static plane-stress model.

modelS = createpde('structural','static-planestress');

Use the same geometry and mesh that you used for the modal analysis.

geometryFromEdges(modelS,g);
modelS.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelS,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

Specify the same constraint on the left end of the beam.

structuralBC(modelS,'Edge',4,'Constraint','fixed');

Apply the static vertical load on the right side of the beam.

3 Solving PDEs

3-24

structuralBoundaryLoad(modelS,'Edge',2,'SurfaceTraction',[0;1]);

Solve the static model. The resulting static solution serves as an initial condition for transient
analysis.

Rstatic = solve(modelS);

Transient Analysis

Perform the transient analysis of the cantilever beam with and without damping. Use the modal
superposition method to speed up computations.

Create a transient plane-stress model.

modelT = createpde('structural','transient-planestress');

Use the same geometry and mesh that you used for the modal analysis.

geometryFromEdges(modelT,g);
modelT.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelT,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

Specify the same constraint on the left end of the beam.

structuralBC(modelT,'Edge',4,'Constraint','fixed');

Specify the initial condition by using the static solution.

structuralIC(modelT,Rstatic)

ans =
 NodalStructuralICs with properties:

 InitialDisplacement: [6511x2 double]
 InitialVelocity: [6511x2 double]

Solve the undamped transient model for three full periods corresponding to the lowest vibration
mode.

tlist = 0:longestPeriod/100:3*longestPeriod;
resT = solve(modelT,tlist,'ModalResults',res);

Interpolate the displacement at the tip of the beam.

intrpUt = interpolateDisplacement(resT,[5;0.05]);

The displacement at the tip is a sinusoidal function of time with amplitude equal to the initial y-
displacement. This result agrees with the solution to the simple spring-mass system.

plot(resT.SolutionTimes,intrpUt.uy)
grid on
title('Undamped Solution')

 Dynamics of Damped Cantilever Beam

3-25

xlabel('Time')
ylabel('Tip of beam displacement')

Now solve the model with damping equal to 3% of critical damping.

zeta = 0.03;
omega = 2*pi*freqNumerical;
structuralDamping(modelT,'Zeta',zeta);
resT = solve(modelT,tlist,'ModalResults',res);

Interpolate the displacement at the tip of the beam.

intrpUt = interpolateDisplacement(resT,[5;0.05]);

The y-displacement at the tip is a sinusoidal function of time with amplitude exponentially decreasing
with time.

figure
hold on
plot(resT.SolutionTimes,intrpUt.uy)
plot(tlist,intrpUt.uy(1)*exp(-zeta*omega*tlist),'Color','r')
grid on
title('Damped Solution')
xlabel('Time')
ylabel('Tip of beam displacement')

3 Solving PDEs

3-26

 Dynamics of Damped Cantilever Beam

3-27

Dynamic Analysis of Clamped Beam
This example shows how to analyze the dynamic behavior of a beam under a uniform pressure load
and clamped at both ends.

This example uses the Imperial system of units. If you replace them with values specified in the
metric system, ensure that you specify all values using the same system.

In this example, the pressure load is suddenly applied at time equal to zero. The pressure magnitude
is high enough to produce deflections on the same order as the beam thickness. Accurate prediction
of this type of behavior requires geometrically nonlinear elasticity equations. This example solves the
clamped beam elasticity problem using both linear and nonlinear formulations of elasticity equations.

One approach to handling the large deflections is to consider the elasticity equations in the deformed
position. However, the toolbox uses the equations based on the original geometry. Therefore, you
must use a Lagrangian formulation of nonlinear elasticity where stresses, strains, and coordinates
refer to the original geometry. The Lagrangian formulation of the equilibrium equations is

ρü− ∇ ⋅ (F ⋅ S) = f

where ρ is the material density, u is the displacement vector, F is the deformation gradient, S is the
second Piola-Kirchoff stress tensor, and f is the body force vector. You also can write this equation in
the tensor form:

ρüi−
∂
∂x j

∂ui
∂xk

+ δik Sk j = f i

Although this formulation accounts for large deflections, it assumes that the strains remain small, so
that linear elastic constitutive relations apply. For the 2-D plane stress case, you can write the
constitutive relations in matrix form:

S11
S22
S12

=
C11 C12
C12 C22

2G12

E11
E22
E12

Ei j is the Green-Lagrange strain tensor:

Ei j = 1
2
∂ui
∂x j

+
∂u j
∂xi

+
∂uk
∂xi

∂uk
∂x j

For an isotropic material:

C11 = C22 = E
1 − ν2

C12 = Eν
1 − ν2

G12 = E
2(1 + ν)

where E is the Young's modulus, and ν is the Poisson's ratio. For more details about the Lagrangian
formulation for nonlinear elasticity, see [1] on page 3-0 .

3 Solving PDEs

3-28

These equations completely define the geometrically nonlinear plane stress problem. This example
uses Symbolic Math Toolbox™ to define the c coefficient in the form required by Partial Differential
Equation Toolbox™. The c coefficient is a function cCoefficientLagrangePlaneStress. You can
use it with any geometric nonlinear plane stress analysis of a model made from an isotropic material.
You can find it under matlab/R20XXx/examples/pde/main.

Linear Solution

Create a PDE model for a system of two equations.

model = createpde(2);

Create the following beam geometry.

Specify the length and thickness of the beam.

blength = 5; % Beam length, in
height = 0.1; % Thickness of the beam, in

Because the beam geometry and loading are symmetric about the beam center, you can simplify the
model by considering only the right half of the beam.

l2 = blength/2;
h2 = height/2;

Create the edges of the rectangle representing the beam.

rect = [3 4 0 l2 l2 0 -h2 -h2 h2 h2]';
g = decsg(rect,'R1',('R1')');

Create the geometry from the edges and include it in the model.

pg = geometryFromEdges(model,g);

Plot the geometry with the edge labels.

figure
pdegplot(g,'EdgeLabels','on')
axis([-.1 1.1*l2 -5*h2 5*h2])

 Dynamic Analysis of Clamped Beam

3-29

Derive the equation coefficients using the material properties. For the linear case, the c coefficient
matrix is constant.

E = 3.0e7; % Young's modulus of the material, lbs/in^2
gnu = 0.3; % Poisson's ratio of the material
rho = 0.3/386; % Density of the material
G = E/(2.*(1 + gnu));
mu = 2*G*gnu/(1 - gnu);
c = [2*G + mu; 0; G; 0; G; mu; 0; G; 0; 2*G + mu];
f = [0 0]'; % No body forces
specifyCoefficients(model,'m',rho,'d',0,'c',c,'a',0,'f',f);

Apply the boundary conditions. From the symmetry condition, the x-displacement equals zero at the
left edge.

symBC = applyBoundaryCondition(model,'mixed', ...
 'Edge',4, ...
 'u',0, ...
 'EquationIndex',1);

Because the beam is clamped, the x- and y-displacements equal zero along the right edge.

clampedBC = applyBoundaryCondition(model,'dirichlet', ...
 'Edge',2, ...
 'u',[0 0]);

Apply a constant vertical stress along the top edge.

3 Solving PDEs

3-30

sigma = 2e2;
presBC = applyBoundaryCondition(model,'neumann','Edge',3,'g',[0 sigma]);

Set the zero initial displacements and velocities.

setInitialConditions(model,0,0);

Generate a mesh.

generateMesh(model);

Solve the model.

tlist = linspace(0,3e-3,100);
result = solvepde(model,tlist);

Interpolate the solution at the geometry center for the y-component (component 2) at all solution
times.

xc = 1.25;
yc = 0;
u4Linear = interpolateSolution(result,xc,yc,2,1:length(tlist));

Nonlinear Solution

Specify the coefficients for the nonlinear case. The cCoefficientLagrangePlaneStress function
takes the isotropic material properties and location and state structures, and returns a c-matrix for a
nonlinear plane stress analysis. It assumes that strains are small, that is, E and ν are independent of
the solution.

c = @(location,state)cCoefficientLagrangePlaneStress(E,gnu, ...
 location,state);
specifyCoefficients(model,'m',rho,'d',0,'c', c,'a',0,'f',f);

Solve the model.

result = solvepde(model,tlist);

Interpolate the solution at the geometry center for the y-component (component 2) at all solution
times.

u4NonLinear = interpolateSolution(result,xc,yc,2,1:length(tlist));

Solution Plots

Plot the y-deflection at the center of the beam as a function of time. The nonlinear analysis yields
substantially smaller displacements than the linear analysis. This "stress stiffening" effect also results
in the higher oscillation frequency from the nonlinear analysis.

figure
plot(tlist,u4Linear(:),tlist,u4NonLinear(:))
legend('Linear','Nonlinear')
title 'Deflection at Beam Center'
xlabel 'Time, seconds'
ylabel 'Deflection, inches'
grid on

 Dynamic Analysis of Clamped Beam

3-31

References

1 Malvern, Lawrence E. Introduction to the Mechanics of a Continuous Medium. Prentice Hall
Series in Engineering of the Physical Sciences. Englewood Cliffs, NJ: Prentice-Hall, 1969.

3 Solving PDEs

3-32

Reduced-Order Modeling Technique for Beam with Point Load
This example shows how to eliminate degrees of freedom (DoFs) that are not on the boundaries of
interest by using the Craig-Bampton reduced-order modeling technique. The example also uses the
smaller dimension superelement to analyze the dynamics of the system. For comparison, the example
also performs a direct transient analysis on the original structure.

Create a structural model for transient analysis.

modelT = createpde('structural','transient-solid');

Create a square cross-section beam geometry and include it in the model.

gm = multicuboid(0.05,0.003,0.003);
modelT.Geometry = gm;

Plot the geometry, displaying face and edge labels.

figure
pdegplot(modelT,'FaceLabels','on','FaceAlpha',0.5)
view([71 4])

figure
pdegplot(modelT,'EdgeLabels','on','FaceAlpha',0.5)
view([71 4])

 Reduced-Order Modeling Technique for Beam with Point Load

3-33

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelT,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(modelT,'Edge',[2 8 11 12],'Constraint','fixed');

Add a vertex at the center of face 3.

loadedVertex = addVertex(gm,'Coordinates',[0.025 0.0 0.0015]);

figure
pdegplot(modelT,'VertexLabels','on','FaceAlpha',0.5)
view([78 2.5])

3 Solving PDEs

3-34

Generate a mesh.

generateMesh(modelT);

Apply a sinusoidal concentrated force in the z-direction on the new vertex.

structuralBoundaryLoad(modelT,'Vertex',loadedVertex, ...
 'Force',[0;0;10],'Frequency',6000);

Specify zero initial conditions.

structuralIC(modelT,'Velocity',[0 0 0],'Displacement',[0 0 0]);

Solve the model.

tlist = 0:0.00005:3E-3;
RT = solve(modelT,tlist);

Define superelement interfaces using the fixed and loaded boundaries. In this case, the reduced order
model retains the degrees of freedom (DoFs) on the fixed face and the loaded vertex while
condensing all other DoFs in favor of modal DoFs. For better performance, use the set of edges
bounding face 5 instead of using the entire face.

structuralSEInterface(modelT,'Edge',[2 8 11 12]);
structuralSEInterface(modelT,'Vertex',loadedVertex);

Reduce the structure, retaining all fixed interface modes up to 5e5.

 Reduced-Order Modeling Technique for Beam with Point Load

3-35

rom = reduce(modelT,'FrequencyRange',[-0.1,5e5]);

Next, use the reduced order model to simulate the transient dynamics. Use the ode15s function
directly to integrate the reduced system ODE. Working with the reduced model requires indexing into
the reduced system matrices rom.K and rom.M. First, construct mappings of indices of K and M to
loaded and fixed DoFs by using the data available in rom.

DoFs correspond to translational displacements. If the number of mesh points in a model is Nn, then
the toolbox assigns the IDs to the DoFs as follows: the first 1 to Nn are x-displacements, Nn+1 to 2*Nn
are y-displacements, and 2Nn+1 to 3*Nn are z-displacements. The reduced model object rom contains
these IDs for the retained DoFs in rom.RetainedDoF.

Create a function that returns DoF IDs given node IDs and the number of nodes.

getDoF = @(x,numNodes) [x(:); x(:) + numNodes; x(:) + 2*numNodes];

Knowing the DoF IDs for the given node IDs, use the intersect function to find the required
indices.

numNodes = size(rom.Mesh.Nodes,2);

loadedNode = findNodes(rom.Mesh,'region','Vertex',loadedVertex);
loadDoFs = getDoF(loadedNode,numNodes);
[~,loadNodeROMIds,~] = intersect(rom.RetainedDoF,loadDoFs);

In the reduced matrices rom.K and rom.M, generalized modal DoFs appear after the retained DoFs.

fixedIntModeIds = (numel(rom.RetainedDoF) + 1:size(rom.K,1))';

Because fixed-end DoFs are not a part of the ODE system, the indices for the ODE DoFs in reduced
matrices are as follows.

odeDoFs = [loadNodeROMIds;fixedIntModeIds];

The relevant components of rom.K and rom.M for time integration are:

Kconstrained = rom.K(odeDoFs,odeDoFs);
Mconstrained = rom.M(odeDoFs,odeDoFs);
numODE = numel(odeDoFs);

Now you have a second-order system of ODEs. To use ode15s, convert this into a system of first-
order ODEs by applying linearization. Such a first-order system is twice the size of the second-order
system.

Mode = [eye(numODE,numODE), zeros(numODE,numODE); ...
 zeros(numODE,numODE), Mconstrained];
Kode = [zeros(numODE,numODE), -eye(numODE,numODE); ...
 Kconstrained, zeros(numODE,numODE)];
Fode = zeros(2*numODE,1);

The specified concentrated force load in the full system is along the z-direction, which is the third
DoF in the ODE system. Accounting for the linearization to obtain the first-order system gives the
loaded ODE DoF.

loadODEDoF = numODE + 3;

Specify the mass matrix and the Jacobian for the ODE solver.

3 Solving PDEs

3-36

odeoptions = odeset;
odeoptions = odeset(odeoptions,'Jacobian',-Kode);
odeoptions = odeset(odeoptions,'Mass',Mode);

Specify zero initial conditions.

u0 = zeros(2*numODE,1);

Solve the reduced system by using ode15s and the helper function CMSODEf, which is defined at the
end of this example.

sol = ode15s(@(t,y) CMSODEf(t,y,Kode,Fode,loadODEDoF), ...
 tlist,u0,odeoptions);

Compute the values of the ODE variable and the time derivatives.

[displ,vel] = deval(sol,tlist);

Plot the z-displacement at the loaded vertex and compare it to the third DoF in the solution of the
reduced ODE system.

figure
plot(tlist,RT.Displacement.uz(loadedVertex,:))
hold on
plot(tlist,displ(3,:),'r*')
title('Z-Displacement at Loaded Vertex')
legend('full model','rom')

 Reduced-Order Modeling Technique for Beam with Point Load

3-37

Knowing the solution in terms of the interface DoFs and modal DoFs, you can reconstruct the solution
for the full model. The reconstructSolution function requires the displacement, velocity, and
acceleration at all DoFs in rom. Construct the complete solution vector, including the zero values at
the fixed DoFs.

u = zeros(size(rom.K,1),numel(tlist));
ut = zeros(size(rom.K,1),numel(tlist));
utt = zeros(size(rom.K,1),numel(tlist));
u(odeDoFs,:) = displ(1:numODE,:);
ut(odeDoFs,:) = vel(1:numODE,:);
utt(odeDoFs,:) = vel(numODE+1:2*numODE,:);

Construct a transient results object using this solution.

RTrom = reconstructSolution(rom,u,ut,utt,tlist);

For comparison, compute the displacement in the interior at the center of the beam using the full and
reconstructed solutions.

coordCenter = [0;0;0];
iDispRT = interpolateDisplacement(RT, coordCenter);
iDispRTrom = interpolateDisplacement(RTrom, coordCenter);
figure
plot(tlist,iDispRT.uz,'k')
hold on
plot(tlist,iDispRTrom.uz,'g*')
title('Z-Displacement at Geometric Center')
legend('full model','rom')

3 Solving PDEs

3-38

ODE Helper Function

function f = CMSODEf(t,u,Kode,Fode,loadedVertex)
Fode(loadedVertex) = 10*sin(6000*t);
f = -Kode*u +Fode;
end

 Reduced-Order Modeling Technique for Beam with Point Load

3-39

Modal and Frequency Response Analysis for Single Part of
Kinova® Gen3 Robotic Arm

This example shows how to analyze the shoulder link of a Kinova® Gen3 Ultra lightweight robotic
arm for possible deformation under pressure.

Robotic arms perform precise manipulations in a wide variety of applications from factory automation
to medical surgery. Typically, robotic arms consist of several links connected in a serial chain, with a
base attached to a tabletop or the ground and an end-effector attached at the tip. These links must be
structurally strong to avoid any vibrations when the rotors are moving with a load on them.

Loads at the tips of robotic arm cause pressure on the joints of each link. The direction of pressure
depends on the direction of the load.

This example computes deformations of the shoulder link under the applied pressure by performing a
modal analysis and frequency response analysis simulation. You can find the helper function
animateSixLinkModes.m and the geometry file Gen3Shoulder.stl under matlab/R20XXx/
examples/pde/main.

Modal Analysis

Assuming that one end of the robotic arm is fixed, find the natural frequencies and mode shapes.

Create a structural model for modal analysis.

model = createpde('structural','modal-solid');

To perform unconstrained modal analysis of a structure, you must specify the geometry, mesh, and
material properties. First, import the geometry of the shoulder part of the robotic arm.

importGeometry(model,'Gen3Shoulder.stl');

Generate a mesh.

generateMesh(model);
pdemesh(model)

3 Solving PDEs

3-40

Specify the Young's modulus, Poisson's ratio, and mass density of the material in consistent units.
Typically, the material used for the link is carbon fiber reinforced plastic. Assume that the material is
homogeneous.

E = 1.5E11;
nu = 0.3;
rho = 2000;
structuralProperties(model,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure
pdegplot(model,'FaceLabels','on')
view([-1 2])
title('Shoulder Link Geometry with Face Labels')

 Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

3-41

The shoulder link is fixed on one end (face 3) and connected to a moving link on the other end (face
4). Apply the fixed boundary condition on face 3.

structuralBC(model,'Face',3,'Constraint','fixed');

Solve the model for a chosen frequency range. Specify the lower frequency limit below zero so that
all modes with frequencies near zero, if any, appear in the solution.

RF = solve(model,'FrequencyRange',[-1,10000]*2*pi);

By default, the solver returns circular frequencies.

modeID = 1:numel(RF.NaturalFrequencies);

Express the resulting frequencies in Hz by dividing them by 2π. Display the frequencies in a table.

tmodalResults = table(modeID.',RF.NaturalFrequencies/2/pi);
tmodalResults.Properties.VariableNames = {'Mode','Frequency'};
disp(tmodalResults);

 Mode Frequency
 ____ _________

 1 1947.2
 2 2662
 3 4982.3
 4 5112.6
 5 7819.5

3 Solving PDEs

3-42

 6 8037.1
 7 9361

The best way to visualize the mode shapes is to animate the harmonic motion at their respective
frequencies. The animateSixLinkModes function animates the first six modes. The resulting plot
shows the areas of dominant deformation under load.

figure
frames = animateSixLinkModes(RF);

To play the animation, use the following command:

movie(figure('units','normalized','outerposition',[0 0 1 1]),frames,5,30)

Frequency Response Analysis

Simulate the dynamics of the shoulder under pressure loading on a face, assuming that the attached
link applies an equal and opposite amount of pressure on the halves of the face. Analyze the
frequency response and deformation of a point in the face.

 Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

3-43

First, create a structural model for the frequency response analysis.

fmodel = createpde('structural','frequency-solid');

Import the same geometry for the shoulder part that you used for the modal analysis.

importGeometry(fmodel,'Gen3Shoulder.stl');

Generate a mesh.

mesh = generateMesh(fmodel);

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(fmodel,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

The shoulder link is fixed on one end (face 3) and connected to a moving link on the other end (face
4). Apply the fixed boundary condition on face 3.

structuralBC(fmodel,'Face',3,'Constraint','fixed');

Estimate the pressure that the moving link applies on face 4 when the arm carries a load. This figure
shows two halves of face 4 divided at the center along the y-coordinate.

3 Solving PDEs

3-44

Use the pressFcnFR function to apply the boundary load on face 4. This function applies a push and
a twist pressure signals. The push pressure component is uniform. The twist component applies
positive pressure on the left side and negative pressure on the right side of the face. For the
definition of the pressFcnFR function, see the Pressure Function section at the bottom of this page.
This function does not have an explicit dependency on frequency. Therefore, in the frequency domain,
this pressure load acts across all frequencies of the solution.

structuralBoundaryLoad(fmodel, ...
 'Face',4, ...
 'Pressure', ...
 @(region,state)pressFcnFR(region,state), ...
 'Vectorized','on');

Define the frequency list for the solution as 0 to 3500 Hz with 200 steps.

flist = linspace(0,3500,200)*2*pi;

Solve the model using the modal frequency response solver by specifying the model results object RF
as one of the inputs.

R = solve(fmodel,flist,'ModalResults',RF);

 Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

3-45

Plot the frequency response at a point on the loaded face. A point on face 4 located at maximum
negative pressure loading is (0.003; 0.0436; 0.1307). Interpolate the displacement to this point
and plot the result.

queryPoint = [0.003; 0.0436; 0.1307];
queryPointDisp = interpolateDisplacement(R,queryPoint);

figure
plot(R.SolutionFrequencies/2/pi,abs(queryPointDisp.uy))
title('Transverse Displacement at Point on Loaded Face')
xlabel('Frequency (Hz)')
ylabel('Y-Displacement')
xlim([0.0000 3500])

The peak of the response occurs near 2662 Hz, which is close to the second mode of vibration. A
smaller response also occurs at first mode close to 1947 Hz.

Find the peak response frequency index by using the max function with two output arguments. The
second output argument provides the index of the peak frequency.

[M, I] = max(abs(queryPointDisp.uy))

M = 1.1256e-04

I = 152

Plot the deformation at the peak response frequency. The applied loading is such that it
predominantly excites the opening mode and the bending mode of the shoulder.

3 Solving PDEs

3-46

RD = struct();
RD.ux = R.Displacement.ux(:,I);
RD.uy = R.Displacement.uy(:,I);
RD.uz = R.Displacement.uz(:,I);

figure('units','normalized','outerposition',[0 0 1 1]);

subplot(2,2,1)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.ux(:,I), ...
 'Deformation',RD,'DeformationScaleFactor',1);
title('X-Displacement')

subplot(2,2,2)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.uy(:,I), ...
 'Deformation',RD,'DeformationScaleFactor',1);
title('Y-Displacement')

subplot(2,2,3)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.uz(:,I), ...
 'Deformation',RD,'DeformationScaleFactor',1);
title('Z-Displacement')

subplot(2,2,4)
pdeplot3D(fmodel,'ColorMapData',R.Displacement.Magnitude(:,I), ...
 'Deformation',RD,'DeformationScaleFactor',1);
title('Magnitude')

 Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

3-47

Pressure Function

Define a pressure function, pressFcnFR, to calculate a push and a twist pressure signals. The push
pressure component is uniform. The twist pressure component applies positive pressure on the left
side and negative pressure on the right side of the face. The value of the twist pressure loading
increases in a parabolic distribution from the minimum at point C to the positive peak at L and to the
negative peak at R. The twist pressure factor for the parabolic distribution obtained in pressFcnFR
is multiplied with a sinusoidal function with a magnitude of 0.1 MPa. The uniform push pressure
value is 10 kPa.

function p = pressFcnFR(region,~)

meanY = mean(region.y);
absMaxY = max(abs(region.y));
scaleFactor = zeros(size(region.y));

% Find IDs of the points on the left
% and right halves of the face

3 Solving PDEs

3-48

% using y-coordinate values.
leftHalfIdx = region.y <= meanY;
rightHalfIdx = region.y >= meanY;

% Define a parabolic scale factor
% for each half of the face.
scaleFactor(leftHalfIdx) = ...
 ((region.y(leftHalfIdx) - meanY)/absMaxY).^2;
scaleFactor(rightHalfIdx) = ...
 -((region.y(rightHalfIdx) - meanY)/absMaxY).^2;

p = 10E3 + 0.1E6*scaleFactor;

end

 Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

3-49

Thermal Stress Analysis of Jet Engine Turbine Blade
This example shows how to compute the thermal stress and deformation of a turbine blade in its
steady-state operating condition. The blade has interior cooling ducts. The cool air flowing through
the ducts maintains the temperature of the blade within the limit for its material. This feature is
common in modern blades.

A turbine is a component of the jet engine. It is responsible for extracting energy from the high-
temperature and high-pressure gas produced in the combustion chamber and transforming it into
rotational motion to produce thrust. The turbine is a radial array of blades typically made of nickel
alloys. These alloys resist the extremely high temperatures of the gases. At such temperatures, the
material expands significantly, producing mechanical stress in the joints and significant deformations
of several millimeters. To avoid mechanical failure and friction between the tip of the blade and the
turbine casing, the blade design must account for the stress and deformations.

The example shows a three-step workflow:

1 Perform structural analysis accounting only for pressure of the surrounding gases while ignoring
thermal effects.

2 Compute the thermal stress while ignoring the pressure.
3 Combine the pressure and thermal stress.

Pressure Loading

The blade experiences high pressure from the surrounding gases. Compute the stress caused only by
this pressure.

First, create a static structural model.

smodel = createpde('structural','static-solid');

Import and plot the geometry, displaying face labels.

importGeometry(smodel,'Blade.stl');
figure
pdegplot(smodel,'FaceLabels','on','FaceAlpha',0.5)

3 Solving PDEs

3-50

Generate a mesh with the maximum element size 0.01.

msh = generateMesh(smodel,'Hmax',0.01);

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for nickel-based
alloy (NIMONIC 90).

E = 227E9; % in Pa
CTE = 12.7E-6; % in 1/K
nu = 0.27;

structuralProperties(smodel,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'CTE',CTE);

Specify that the face of the root that is in contact with other metal is fixed.

structuralBC(smodel,'Face',3,'Constraint','fixed');

Specify the pressure load on the pressure and suction sides of the blade. This pressure is due to the
high-pressure gas surrounding these sides of the blade.

p1 = 5e5; %in Pa
p2 = 4.5e5; %in Pa

structuralBoundaryLoad(smodel,'Face',11,'Pressure',p1); % Pressure side
structuralBoundaryLoad(smodel,'Face',10,'Pressure',p2); % Suction side

 Thermal Stress Analysis of Jet Engine Turbine Blade

3-51

Solve the structural problem.

Rs = solve(smodel);

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better
visualize the deformation.

figure
pdeplot3D(smodel,'ColorMapData',Rs.VonMisesStress, ...
 'Deformation',Rs.Displacement, ...
 'DeformationScaleFactor',100)
view([116,25]);

The maximum stress is around 100 Mpa, which is significantly below the elastic limit.

Thermal Stress

Determine the temperature distribution and compute the stress and deformation due to thermal
expansion only. This part of the example ignores the pressure.

First, create a thermal model for steady-state thermal analysis.

tmodel = createpde('thermal','steadystate');

Import the same geometry and use the same mesh as for the structural analysis.

importGeometry(tmodel,'Blade.stl');
tmodel.Mesh = msh;

3 Solving PDEs

3-52

Assuming that the blade is made of nickel-based alloy (NIMONIC 90), specify the thermal
conductivity.

kapp = 11.5; % in W/m/K
thermalProperties(tmodel,'ThermalConductivity',kapp);

Convective heat transfer between the surrounding fluid and the faces of the blade defines the
boundary conditions for this problem. The convection coefficient is greater where the gas velocity is
higher. Also, the gas temperature is different around different faces. The temperature of the interior
cooling air is 150∘C, while the temperature on the pressure and suction sides is 1000∘C.

% Interior cooling
thermalBC(tmodel,'Face',[15 12 14], ...
 'ConvectionCoefficient',30, ...
 'AmbientTemperature',150);
% Pressure side
thermalBC(tmodel,'Face',11, ...
 'ConvectionCoefficient',50, ...
 'AmbientTemperature',1000);
% Suction side
thermalBC(tmodel,'Face',10, ...
 'ConvectionCoefficient',40, ...
 'AmbientTemperature',1000);
% Tip
thermalBC(tmodel,'Face',13, ...
 'ConvectionCoefficient',20, ...
 'AmbientTemperature',1000);
% Base (exposed to hot gases)
thermalBC(tmodel,'Face',1, ...
 'ConvectionCoefficient',40, ...
 'AmbientTemperature',800);
% Root in contact with hot gases
thermalBC(tmodel,'Face',[6 9 8 2 7], ...
 'ConvectionCoefficient',15, ...
 'AmbientTemperature',400);

The boundary condition for the faces of the root in contact with other metal is a thermal contact that
can be modeled as convection with a very large coefficient (around 1000 W / m2K for metal-metal
contact).

% Root in contact with metal
thermalBC(tmodel,'Face',[3 4 5], ...
 'ConvectionCoefficient',1000, ...
 'AmbientTemperature',300);

Solve the thermal model.

Rt = solve(tmodel);

Plot the temperature distribution. The temperature between the tip and the root ranges from around
820∘C to 330∘C. The exterior gas temperature is 1000∘C. The interior cooling is efficient: it
significantly lowers the temperature.

figure
pdeplot3D(tmodel,'ColorMapData',Rt.Temperature)
view([130,-20]);

 Thermal Stress Analysis of Jet Engine Turbine Blade

3-53

Now, create a static structural model to compute the stress and deformation due to thermal
expansion.

tsmodel = createpde('structural','static-solid');

Import the same geometry, and use the same mesh and structural properties of the material as for the
structural analysis.

importGeometry(tsmodel,'Blade.stl');
tsmodel.Mesh = msh;
structuralProperties(tsmodel,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'CTE',CTE);

Specify the reference temperature.

tsmodel.ReferenceTemperature = 300; %in degrees C
structuralBodyLoad(tsmodel,'Temperature',Rt);

Specify the boundary condition.

structuralBC(tsmodel,'Face',3,'Constraint','fixed');

Solve the thermal stress problem.

Rts = solve(tsmodel);

3 Solving PDEs

3-54

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better
visualize the deformation. The stress concentrates in the constrained root because it cannot freely
expand, and also in the junction between the blade and the root.

figure('units','normalized','outerposition',[0 0 1 1]);
pdeplot3D(tsmodel,'ColorMapData',Rts.VonMisesStress, ...
 'Deformation',Rts.Displacement, ...
 'DeformationScaleFactor',100)
caxis([0, 200e6])
view([116,25]);

Evaluate the displacement at the tip. In the design of the cover, this displacement must be taken into
account to avoid friction between the cover and the blade.

max(Rts.Displacement.Magnitude)

ans = 0.0015

 Thermal Stress Analysis of Jet Engine Turbine Blade

3-55

Combined Pressure Loading and Thermal Stress

Compute the stress and deformations caused by the combination of thermal and pressure effects.

Use the same model as for the thermal stress analysis. Add the pressure load on the pressure and
suction sides of the blade. This pressure is due to the high-pressure gas surrounding these sides of
the blade.

% Pressure side
structuralBoundaryLoad(tsmodel,'Face',11, ...
 'Pressure',p1);
% Suction side
structuralBoundaryLoad(tsmodel,'Face',10, ...
 'Pressure',p2);

Solve the model.

Rc = solve(tsmodel);

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better
visualize the deformation.

figure('units','normalized','outerposition',[0 0 1 1]);
pdeplot3D(tsmodel,'ColorMapData',Rc.VonMisesStress, ...
 'Deformation',Rc.Displacement, ...
 'DeformationScaleFactor',100)
caxis([0, 200e6])
view([116,25]);

3 Solving PDEs

3-56

Evaluate the maximum stress and maximum displacement. The displacement is almost the same as
for the thermal stress analysis, while the maximum stress, 854 MPa, is significantly higher.

max(Rc.VonMisesStress)

ans = 9.8378e+08

max(Rc.Displacement.Magnitude)

ans = 0.0015

 Thermal Stress Analysis of Jet Engine Turbine Blade

3-57

Finite Element Analysis of Electrostatically Actuated MEMS
Device

This example shows a simple approach to the coupled electromechanical finite element analysis of an
electrostatically actuated micro-electromechanical (MEMS) device. For simplicity, this example uses
the relaxation-based algorithm rather than the Newton method to couple the electrostatic and the
mechanical domains.

MEMS Devices

MEMS devices typically consist of movable thin beams or electrodes with a high aspect ratio that are
suspended over a fixed electrode.

Actuation, switching, and other signal and information processing functions can use the electrode
deformation caused by the application of voltage between the movable and fixed electrodes. FEM
provides a convenient tool for characterizing the inner workings of MEMS devices, and can predict
temperatures, stresses, dynamic response characteristics, and possible failure mechanisms. One of
the most common MEMS switches is the series of cantilever beams suspended over a ground
electrode.

3 Solving PDEs

3-58

This example uses the following geometry to model a MEMS switch. The top electrode is 150 μm in
length and 2 μm in thickness. The Young’s modulus E is 170 GPa, and the Poisson ratio υ is 0.34. The
bottom electrode is 50 μm in length and 2 μm in thickness, and is located 100 μm from the leftmost
end of the top electrode. The gap between the top and bottom electrodes is 2 μm.

 Finite Element Analysis of Electrostatically Actuated MEMS Device

3-59

A voltage applied between the top electrode and the ground plane induces electrostatic charges on
the surface of the conductors which, in turn, leads to electrostatic forces acting normal to the surface
of the conductors. Because the ground plane is fixed, the electrostatic forces deform only the top
electrode. When the beam deforms, the charge redistributes on the surface of the conductors. The
resultant electrostatic forces and the deformation of the beam also change. This process continues
until the system reaches a state of equilibrium.

Approach for Coupled Electromechanical Analysis

For simplicity, this example uses the relaxation-based algorithm rather than the Newton method to
couple the electrostatic and the mechanical domains. The example follows these steps:

1. Solve the electrostatic FEA problem in the nondeformed geometry with the constant potential V0
on the movable electrode.

2. Compute the load and boundary conditions for the mechanical solution by using the calculated
values of the charge density along the movable electrode. The electrostatic pressure on the movable
electrode is given by

P = 1
2ϵ |D|2,

where |D| is the magnitude of the electric flux density and ϵ is the electric permittivity next to the
movable electrode.

3. Compute the deformation of the movable electrode by solving the mechanical FEA problem.

4. Update the charge density along the movable electrode by using the calculated displacement of the
movable electrode,

|Ddef x | ≈ |D0 x | G
G− v(x) ,

where |Ddef x | is the magnitude of the electric flux density in the deformed electrode, |D0 x | is the
magnitude of the electric flux density in the undeformed electrode, G is the distance between the
movable and fixed electrodes in the absence of actuation, and v x is the displacement of the movable
electrode at position x along its axis.

5. Repeat steps 2–4 until the electrode deformation values in the last two iterations converge.

Electrostatic Analysis

In the electrostatic analysis part of this example, you compute the electric potential around the
electrodes.

First, create the cantilever switch geometry by using the constructive solid geometry (CSG) modeling
approach. The geometry for electrostatic analysis consists of three rectangles represented by a
matrix. Each column of the matrix describes a basic shape.

rect_domain = [3 4 1.75e-4 1.75e-4 -1.75e-4 -1.75e-4 ...
 -1.7e-5 1.3e-5 1.3e-5 -1.7e-5]';
rect_movable = [3 4 7.5e-5 7.5e-5 -7.5e-5 -7.5e-5 ...
 2.0e-6 4.0e-6 4.0e-6 2.0e-6]';
rect_fixed = [3 4 7.5e-5 7.5e-5 2.5e-5 2.5e-5 -2.0e-6 0 0 -2.0e-6]';
gd = [rect_domain,rect_movable,rect_fixed];

3 Solving PDEs

3-60

Create a name for each basic shape. Specify the names as a matrix whose columns contain the names
of the corresponding columns in the basic shape matrix.

ns = char('rect_domain','rect_movable','rect_fixed');
ns = ns';

Create a formula describing the unions and intersections of basic shapes.

sf = 'rect_domain-(rect_movable+rect_fixed)';

Create the geometry by using the decsg function.

dl = decsg(gd,sf,ns);

Create a PDE model and include the geometry in the model.

model = createpde;
geometryFromEdges(model,dl);

Plot the geometry.

pdegplot(model,'EdgeLabels','on','FaceLabels','on')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square

The edge numbers in this geometry are as follows:

 Finite Element Analysis of Electrostatically Actuated MEMS Device

3-61

• Movable electrode: E3, E7, E11, E12
• Fixed electrode: E4, E8, E9, E10
• Domain boundary: E1, E2, E5, E6

Set constant potential values of 20 V to the movable electrode and 0 V to the fixed electrode and
domain boundary.

V0 = 0;
V1 = 20;
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[4,8,9,10],'u',V0);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[1,2,5,6],'u',V0);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[3,7,11,12],'u',V1);

The PDE governing this problem is the Poisson equation,

−∇ ⋅ (ϵ∇V) = ρ,

where ϵ is the coefficient of permittivity and ρ is the charge density. The coefficient of permittivity
does not affect the result in this example as long as the coefficient is constant. Assuming that there is
no charge in the domain, you can simplify the Poisson equation to the Laplace equation,

ΔV = 0.

Specify the coefficients.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',0);

Generate a relatively fine mesh.

hmax = 5e-6;
generateMesh(model,'Hmax',hmax);
pdeplot(model)
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square

3 Solving PDEs

3-62

Solve the model.

results = solvepde(model);

Plot the electric potential in the exterior domain.

u = results.NodalSolution;
figure
pdeplot(model,'XYData',results.NodalSolution,...
 'ColorMap','jet');

title('Electric Potential');
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square

 Finite Element Analysis of Electrostatically Actuated MEMS Device

3-63

Mechanical Analysis

In the mechanical analysis part of this example, you compute the deformation of the movable
electrode.

Create a structural model.

structuralmodel = createpde('structural','static-planestress');

Create the movable electrode geometry and include it in the model. Plot the geometry.

dl = decsg(rect_movable);
geometryFromEdges(structuralmodel,dl);
pdegplot(structuralmodel,'EdgeLabels','on')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square

3 Solving PDEs

3-64

Specify the structural properties: the Young's modulus E is 170 GPa and the Poisson ratio ν is 0.34.

structuralProperties(structuralmodel,'YoungsModulus',170e9, ...
 'PoissonsRatio',0.34);

Specify the pressure as a boundary load on the edges. The pressure tends to draw the conductor into
the field regardless of the sign of the surface charge. For the definition of the
CalculateElectrostaticPressure function, see Electrostatic Pressure Function on page 3-0 .

pressureFcn = @(location,state) - ...
 CalculateElectrostaticPressure(results,[],location);
structuralBoundaryLoad(structuralmodel,'Edge',[1,2,4], ...
 'Pressure',pressureFcn, ...
 'Vectorized','on');

Specify that the movable electrode is fixed at edge 3.

structuralBC(structuralmodel,'Edge',3,'Constraint','fixed');

Generate a mesh.

hmax = 1e-6;
generateMesh(structuralmodel,'Hmax',hmax);
pdeplot(structuralmodel);
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square

 Finite Element Analysis of Electrostatically Actuated MEMS Device

3-65

Solve the equations.

R = solve(structuralmodel);

Plot the displacement for the movable electrode.

pdeplot(structuralmodel,'XYData',R.VonMisesStress, ...
 'Deformation',R.Displacement, ...
 'DeformationScaleFactor',10, ...
 'ColorMap','jet');

title('von Mises Stress in Deflected Electrode')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square

3 Solving PDEs

3-66

Find the maximal displacement.

maxdisp = max(abs(R.Displacement.uy));
fprintf('Finite element maximal tip deflection is: %12.4e\n', ...
 maxdisp);

Finite element maximal tip deflection is: 1.5630e-07

Repeatedly update the charge density along the movable electrode and solve the model until the
electrode deformation values converge.

olddisp = 0;
while abs((maxdisp-olddisp)/maxdisp) > 1e-10
% Impose boundary conditions
 pressureFcn = @(location,state) - ...
 CalculateElectrostaticPressure(results,R,location);
 bl = structuralBoundaryLoad(structuralmodel, ...
 'Edge',[1,2,4], ...
 'Pressure',pressureFcn, ...
 'Vectorized','on');
% Solve the equations
 R = solve(structuralmodel);
 olddisp = maxdisp;
 maxdisp = max(abs(R.Displacement.uy));
 delete(bl)
end

Plot the displacement.

 Finite Element Analysis of Electrostatically Actuated MEMS Device

3-67

pdeplot(structuralmodel,'XYData',R.VonMisesStress, ...
 'Deformation',R.Displacement, ...
 'DeformationScaleFactor',10, ...
 'ColorMap','jet');

title('von Mises Stress in Deflected Electrode')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1e-4, 1e-4,-1e-5, 1e-5])
axis square

Find the maximal displacement.

maxdisp = max(abs(R.Displacement.uy));
fprintf('Finite element maximal tip deflection is: %12.4e\n', maxdisp);

Finite element maximal tip deflection is: 1.8162e-07

References

[1] Sumant, P. S., N. R. Aluru, and A. C. Cangellaris. “A Methodology for Fast Finite Element Modeling
of Electrostatically Actuated MEMS.” International Journal for Numerical Methods in Engineering.
Vol 77, Number 13, 2009, 1789-1808.

Electrostatic Pressure Function

The electrostatic pressure on the movable electrode is given by

3 Solving PDEs

3-68

P = 1
2ϵ |D|2,

where |D | = ϵ |E| is the magnitude of the electric flux density, ϵ is the electric permittivity next to the
movable electrode, and E is the magnitude of the electric field. The electric field E is the gradient of
the electric potential V:

E = − ∇V.

Solve the mechanical FEA to compute the deformation of the movable electrode. Using the calculated
displacement of the movable electrode, update the charge density along the movable electrode.

|Ddef x | ≈ |D0 x | G
G− v(x) ,

where |Ddef x | is the magnitude of the electric flux density in the deformed electrode, |D0 x | is the
magnitude of the electric flux density in the undeformed electrode, G is the distance between the
movable and fixed electrodes in the absence of actuation, and v x is the displacement of the movable
electrode at position x along its axis. Initially, the movable electrode is undeformed, v x = 0, and
therefore, Ddef x ≈ D0 x .

function ePressure = ...
 CalculateElectrostaticPressure(elecResults,structResults,location)
% Function to compute electrostatic pressure.
% structuralBoundaryLoad is used to specify
% the pressure load on the movable electrode.
% Inputs:
% elecResults: Electrostatic FEA results
% structResults: Mechanical FEA results (optional)
% location: The x,y coordinate
% where pressure is obtained
%
% Output:
% ePressure: Electrostatic pressure at location
%
% location.x : The x-coordinate of the points
% location.y : The y-coordinate of the points
xq = location.x;
yq = location.y;

% Compute the magnitude of the electric field
% from the potential difference.
[gradx,grady] = evaluateGradient(elecResults,xq,yq);
absE = sqrt(gradx.^2 + grady.^2);

% The permittivity of vacuum is 8.854*10^-12 farad/meter.
epsilon0 = 8.854e-12;

% Compute the magnitude of the electric flux density.
absD0 = epsilon0*absE;
absD = absD0;

% If structResults (deformation) is available,
% update the charge density along the movable electrode.
if ~isempty(structResults)
 % Displacement of the movable electrode at position x
 intrpDisp = interpolateDisplacement(structResults,xq,yq);

 Finite Element Analysis of Electrostatically Actuated MEMS Device

3-69

 vdisp = abs(intrpDisp.uy);
 G = 2e-6; % Gap 2 micron
 absD = absD0.*G./(G-vdisp);
end

% Compute the electrostatic pressure.
ePressure = absD.^2/(2*epsilon0);

end

3 Solving PDEs

3-70

Deflection Analysis of Bracket
This example shows how to analyze a 3-D mechanical part under an applied load using finite element
analysis (FEA) and determine the maximal deflection.

Create Structural Analysis Model

The first step in solving a linear elasticity problem is to create a structural analysis model. This is a
container that holds the geometry, structural material properties, damping parameters, body loads,
boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and
mesh.

model = createpde('structural','static-solid');

Import Geometry

Import an STL file of a simple bracket model using the importGeometry function. This function
reconstructs the faces, edges and vertices of the model. It can merge some faces and edges, so the
numbers can differ from those of the parent CAD model.

importGeometry(model,'BracketWithHole.stl');

Plot the geometry, displaying face labels.

figure
pdegplot(model,'FaceLabels','on')
view(30,30);
title('Bracket with Face Labels')

 Deflection Analysis of Bracket

3-71

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

Specify Structural Properties of Material

Specify Young's modulus and Poisson's ratio of the material.

structuralProperties(model,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3);

Apply Boundary Conditions and Loads

The problem has two boundary conditions: the back face (face 4) is fixed, and the front face has an
applied load. All other boundary conditions, by default, are free boundaries.

structuralBC(model,'Face',4,'Constraint','fixed');

Apply a distributed load in the negative z-direction to the front face (face 8).

structuralBoundaryLoad (model,'Face',8,'SurfaceTraction',[0;0;-1e4]);

Generate Mesh

Generate and plot a mesh.

generateMesh(model);
figure

3 Solving PDEs

3-72

pdeplot3D(model)
title('Mesh with Quadratic Tetrahedral Elements');

Calculate Solution

Use the solve function to calculate the solution.

result = solve(model)

result =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [5993x1 double]
 Mesh: [1x1 FEMesh]

Examine Solution

Find the maximal deflection of the bracket in the z-direction.

minUz = min(result.Displacement.uz);
fprintf('Maximal deflection in the z-direction is %g meters.', minUz)

Maximal deflection in the z-direction is -4.43075e-05 meters.

 Deflection Analysis of Bracket

3-73

Plot Displacement Components

Plot the components of the solution vector. The maximal deflections are in the z-direction. Because
the part and the loading are symmetric, the x-displacement and z-displacement are symmetric, and
the y-displacement is antisymmetric with respect to the center line.

Here, the plotting routine uses the 'jet' colormap, which has blue as the color representing the
lowest value and red representing the highest value. The bracket loading causes face 8 to dip down,
so the maximum z-displacement appears blue.

figure
pdeplot3D(model,'ColorMapData',result.Displacement.ux)
title('x-displacement')
colormap('jet')

figure
pdeplot3D(model,'ColorMapData',result.Displacement.uy)
title('y-displacement')
colormap('jet')

3 Solving PDEs

3-74

figure
pdeplot3D(model,'ColorMapData',result.Displacement.uz)
title('z-displacement')
colormap('jet')

 Deflection Analysis of Bracket

3-75

Plot von Mises Stress

Plot values of the von Mises stress at nodal locations. Use the same jet colormap.

figure
pdeplot3D(model,'ColorMapData',result.VonMisesStress)
title('von Mises stress')
colormap('jet')

3 Solving PDEs

3-76

 Deflection Analysis of Bracket

3-77

Vibration of Square Plate
This example shows how to calculate the vibration modes and frequencies of a 3-D simply supported,
square, elastic plate.

The dimensions and material properties of the plate are taken from a standard finite element
benchmark problem published by NAFEMS, FV52 (See Reference).

First, create a structural model container for your 3-D modal analysis problem. This is a container
that holds the geometry, properties of the material, body loads, boundary loads, boundary constraints,
and mesh.

model = createpde('structural','modal-solid');

Import an STL file of a simple plate model using the importGeometry function. This function
reconstructs the faces, edges, and vertices of the model. It can merge some faces and edges, so the
numbers can differ from those of the parent CAD model.

importGeometry(model,'Plate10x10x1.stl');

Plot the geometry and turn on face labels. You need the face labels when defining the boundary
conditions.

figure
hc = pdegplot(model,'FaceLabels','on');
hc(1).FaceAlpha = 0.5;
title('Plate with Face Labels')

3 Solving PDEs

3-78

Define the elastic modulus of steel, Poisson's ratio, and the material density.

structuralProperties(model,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

In this example, the only boundary condition is the zero z-displacement on the four edge faces. These
edge faces have labels 1 through 4.

structuralBC(model,'Face',1:4,'ZDisplacement',0);

Create and plot a mesh. Specify the target minimum edge length so that there is one row of elements
per plate thickness.

generateMesh(model,'Hmin',1.3);
figure
pdeplot3D(model);
title('Mesh with Quadratic Tetrahedral Elements');

For comparison with the published values, load the reference frequencies in Hz.

refFreqHz = [0 0 0 45.897 109.44 109.44 167.89 193.59 206.19 206.19];

Solve the problem for the specified frequency range. Define the upper limit as slightly larger than the
highest reference frequency and the lower limit as slightly smaller than the lowest reference
frequency.

 Vibration of Square Plate

3-79

maxFreq = 1.1*refFreqHz(end)*2*pi;
result = solve(model,'FrequencyRange',[-0.1 maxFreq]);

Calculate frequencies in Hz.

freqHz = result.NaturalFrequencies/(2*pi);

Compare the reference and computed frequencies (in Hz) for the lowest 10 modes. The lowest three
mode shapes correspond to rigid-body motion of the plate. Their frequencies are close to zero.

tfreqHz = table(refFreqHz.',freqHz(1:10));
tfreqHz.Properties.VariableNames = {'Reference','Computed'};
disp(tfreqHz);

 Reference Computed
 _________ __________

 0 6.4321e-05
 0 1.1519e-05
 0 2.9842e-05
 45.897 44.871
 109.44 109.74
 109.44 109.77
 167.89 168.59
 193.59 193.74
 206.19 207.51
 206.19 207.52

You see good agreement between the computed and published frequencies.

Plot the third component (z-component) of the solution for the seven lowest nonzero-frequency
modes.

h = figure;
h.Position = [100,100,900,600];
numToPrint = min(length(freqHz),length(refFreqHz));
for i = 4:numToPrint
 subplot(4,2,i-3);
 pdeplot3D(model,'ColorMapData',result.ModeShapes.uz(:,i));
 axis equal
 title(sprintf(['Mode=%d, z-displacement\n', ...
 'Frequency(Hz): Ref=%g FEM=%g'], ...
 i,refFreqHz(i),freqHz(i)));
end

3 Solving PDEs

3-80

Reference

[1] National Agency for Finite Element Methods and Standards. The Standard NAFEMS Benchmarks.
United Kingdom: NAFEMS, October 1990.

 Vibration of Square Plate

3-81

Structural Dynamics of Tuning Fork
Perform modal and transient analysis of a tuning fork.

A tuning fork is a U-shaped beam. When struck on one of its prongs or tines, it vibrates at its
fundamental (first) frequency and produces an audible sound.

The first flexible mode of a tuning fork is characterized by symmetric vibration of the tines: they move
towards and away from each other simultaneously, balancing the forces at the base where they
intersect. The fundamental mode of vibration does not produce any bending effect on the handle
attached at the intersection of tines. The lack of bending at the base enables easy handling of tuning
fork without influencing its dynamics.

Transverse vibration of the tines causes the handle to vibrate axially at the fundamental frequency.
This axial vibration can be used to amplify the audible sound by bringing the end of the handle in
contact with a larger surface area, like a metal table top. The next higher mode with symmetric mode
shape is about 6.25 times the fundamental frequency. Therefore, a properly excited tuning fork tends
to vibrate with a dominant frequency corresponding to fundamental frequency, producing a pure
audible tone. This example simulates these aspects of the tuning fork dynamics by performing a
modal analysis and a transient dynamics simulation.

You can find the helper functions animateSixTuningForkModes and tuningForkFFT and the
geometry file TuningFork.stl under matlab/R20XXx/examples/pde/main.

Modal Analysis of Tuning Fork

Find natural frequencies and mode shapes for the fundamental mode of a tuning fork and the next
several modes. Show the lack of bending effect on the fork handle at the fundamental frequency.

First, create a structural model for modal analysis of a solid tuning fork.

model = createpde('structural','modal-solid');

To perform unconstrained modal analysis of a structure, it is enough to specify geometry, mesh, and
material properties. First, import and plot the tuning fork geometry.

importGeometry(model,'TuningFork.stl');
figure
pdegplot(model)

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material
behavior. Specify all physical properties in consistent units.

E = 210E9;
nu = 0.3;
rho = 8000;
structuralProperties(model,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

Generate a mesh.

generateMesh(model,'Hmax',0.001);

Solve the model for a chosen frequency range. Specify the lower frequency limit below zero so that
all modes with frequencies near zero appear in the solution.

3 Solving PDEs

3-82

RF = solve(model,'FrequencyRange',[-1,4000]*2*pi);

By default, the solver returns circular frequencies.

modeID = 1:numel(RF.NaturalFrequencies);

Express the resulting frequencies in Hz by dividing them by 2π. Display the frequencies in a table.

tmodalResults = table(modeID.',RF.NaturalFrequencies/2/pi);
tmodalResults.Properties.VariableNames = {'Mode','Frequency'};
disp(tmodalResults);

 Mode Frequency
 ____ _________

 1 0.0072398
 2 0.0033543
 3 0.0025636
 4 0.0039618
 5 0.0053295
 6 0.0094544
 7 460.42
 8 706.34
 9 1911.5
 10 2105.5
 11 2906.5
 12 3814.7

Because there are no boundary constraints in this example, modal results include the rigid body
modes. The first six near-zero frequencies indicate the six rigid body modes of a 3-D solid body. The
first flexible mode is the seventh mode with a frequency around 460 Hz.

The best way to visualize mode shapes is to animate the harmonic motion at their respective
frequencies. The animateSixTuningForkModes function animates the six flexible modes, which are
modes 7 through 12 in the modal results RF.

frames = animateSixTuningForkModes(RF);

 Structural Dynamics of Tuning Fork

3-83

3 Solving PDEs

3-84

To play the animation, use the following command:

movie(figure('units','normalized','outerposition',[0 0 1 1]),frames,5,30)

In the first mode, two oscillating tines of the tuning fork balance out transverse forces at the handle.
The next mode with this effect is the fifth flexible mode with the frequency 2906.5 Hz. This frequency
is about 6.25 times greater than the fundamental frequency 460 Hz.

Transient Analysis of Tuning Fork

Simulate the dynamics of a tuning fork being gently and quickly struck on one of its tines. Analyze
vibration of tines over time and axial vibration of the handle.

First, create a structural transient analysis model.

tmodel = createpde('structural','transient-solid');

Import the same tuning fork geometry you used for the modal analysis.

importGeometry(tmodel,'TuningFork.stl');

Generate a mesh.

mesh = generateMesh(tmodel,'Hmax',0.005);

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(tmodel,'YoungsModulus',E, ...
 'PoissonsRatio',nu, ...
 'MassDensity',rho);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure('units','normalized','outerposition',[0 0 1 1])
pdegplot(tmodel,'FaceLabels','on')
view(-50,15)
title 'Geometry with Face Labels'

 Structural Dynamics of Tuning Fork

3-85

Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically,
you hold a tuning fork by hand or mount it on a table. A simplified approximation to this boundary
condition is fixing a region near the intersection of tines and the handle (faces 21 and 22).

structuralBC(tmodel,'Face',[21,22],'Constraint','fixed');

Approximate an impulse loading on a face of a tine by applying a pressure load for a very small
fraction of the time period of the fundamental mode. By using this very short pressure pulse, you
ensure that only the fundamental mode of a tuning fork is excited. To evaluate the time period T of
the fundamental mode, use the results of modal analysis.

T = 2*pi/RF.NaturalFrequencies(7);

Specify the pressure loading on a tine as a short rectangular pressure pulse.

structuralBoundaryLoad(tmodel,'Face',11,'Pressure',5E6,'EndTime',T/300);

Apply zero displacement and velocity as initial conditions.

structuralIC(tmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the transient model for 50 periods of the fundamental mode. Sample the dynamics 60 times per
period of the fundamental mode.

ncycle = 50;
samplingFrequency = 60/T;
tlist = linspace(0,ncycle*T,ncycle*T*samplingFrequency);
R = solve(tmodel,tlist)

R =
 TransientStructuralResults with properties:

3 Solving PDEs

3-86

 Displacement: [1×1 FEStruct]
 Velocity: [1×1 FEStruct]
 Acceleration: [1×1 FEStruct]
 SolutionTimes: [1×3000 double]
 Mesh: [1×1 FEMesh]

Plot the time-series of the vibration of the tine tip, which is face 12. Find nodes on the tip face and
plot the y-component of the displacement over time, using one of these nodes.

excitedTineTipNodes = findNodes(mesh,'region','Face',12);
tipDisp = R.Displacement.uy(excitedTineTipNodes(1),:);

figure
plot(R.SolutionTimes,tipDisp)
title('Transverse Displacement at Tine Tip')
xlim([0,0.1])
xlabel('Time')
ylabel('Y-Displacement')

Perform fast Fourier transform (FFT) on the tip displacement time-series to see that the vibration
frequency of the tuning fork is close to its fundamental frequency. A small deviation from the
fundamental frequency computed in an unconstrained modal analysis appears because of constraints
imposed in the transient analysis.

[fTip,PTip] = tuningForkFFT(tipDisp,samplingFrequency);
figure

 Structural Dynamics of Tuning Fork

3-87

plot(fTip,PTip)
title({'Single-sided Amplitude Spectrum', 'of Tip Vibration'})
xlabel('f (Hz)')
ylabel('|P1(f)|')
xlim([0,4000])

Transverse vibration of tines causes the handle to vibrate axially with the same frequency. To observe
this vibration, plot the axial displacement time-series of the end face of the handle.

baseNodes = tmodel.Mesh.findNodes('region','Face',6);
baseDisp = R.Displacement.ux(baseNodes(1),:);
figure
plot(R.SolutionTimes,baseDisp)
title('Axial Displacement at the End of Handle')
xlim([0,0.1])
ylabel('X-Displacement')
xlabel('Time')

3 Solving PDEs

3-88

Perform an FFT of the time-series of the axial vibration of the handle. This vibration frequency is also
close to its fundamental frequency.

[fBase,PBase] = tuningForkFFT(baseDisp,samplingFrequency);
figure
plot(fBase,PBase)
title({'Single-sided Amplitude Spectrum', 'of Base Vibration'})
xlabel('f (Hz)')
ylabel('|P1(f)|')
xlim([0,4000])

 Structural Dynamics of Tuning Fork

3-89

3 Solving PDEs

3-90

Modal Superposition Method for Structural Dynamics Problem
This example shows how to solve a structural dynamics problem by using modal analysis results.
Solve for the transient response at the center of a 3-D beam under a harmonic load on one of its
corners. Compare the direct integration results with the results obtained by modal superposition.

Modal Analysis

Create a modal analysis model for a 3-D problem.

modelM = createpde('structural','modal-solid');

Create the geometry and include it in the model. Plot the geometry and display the edge and vertex
labels.

gm = multicuboid(0.05,0.003,0.003);
modelM.Geometry=gm;
pdegplot(modelM,'EdgeLabels','on','VertexLabels','on');
view([95 5])

Generate a mesh.

msh = generateMesh(modelM);

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

 Modal Superposition Method for Structural Dynamics Problem

3-91

structuralProperties(modelM,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Specify minimal constraints on one end of the beam to prevent rigid body modes. For example,
specify that edge 4 and vertex 7 are fixed boundaries.

structuralBC(modelM,'Edge',4,'Constraint','fixed');
structuralBC(modelM,'Vertex',7,'Constraint','fixed');

Solve the problem for the frequency range from 0 to 500000. The recommended approach is to use a
value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0.

Rm = solve(modelM,'FrequencyRange',[-0.1,500000]);

Transient Analysis

Create a transient analysis model for a 3-D problem.

modelD = createpde('structural','transient-solid');

Use the same geometry and mesh as for the modal analysis.

modelD.Geometry = gm;
modelD.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelD,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Specify the same minimal constraints on one end of the beam to prevent rigid body modes.

structuralBC(modelD,'Edge',4,'Constraint','fixed');
structuralBC(modelD,'Vertex',7,'Constraint','fixed');

Apply a sinusoidal force on the corner opposite the constrained edge and vertex.

structuralBoundaryLoad(modelD,'Vertex',5, ...
 'Force',[0,0,10], ...
 'Frequency',7600);

Specify the zero initial displacement and velocity.

structuralIC(modelD,'Velocity',[0;0;0],'Displacement',[0;0;0]);

Specify the relative and absolute tolerances for the solver.

modelD.SolverOptions.RelativeTolerance = 1E-5;
modelD.SolverOptions.AbsoluteTolerance = 1E-9;

Solve the model using the default direct integration method.

tlist = linspace(0,0.004,120);
Rd = solve(modelD,tlist)

Rd =
 TransientStructuralResults with properties:

3 Solving PDEs

3-92

 Displacement: [1x1 FEStruct]
 Velocity: [1x1 FEStruct]
 Acceleration: [1x1 FEStruct]
 SolutionTimes: [0 3.3613e-05 6.7227e-05 1.0084e-04 1.3445e-04 ...]
 Mesh: [1x1 FEMesh]

Now, solve the model using the modal results.

tlist = linspace(0,0.004,120);
Rdm = solve(modelD,tlist,'ModalResults',Rm)

Rdm =
 TransientStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Velocity: [1x1 FEStruct]
 Acceleration: [1x1 FEStruct]
 SolutionTimes: [0 3.3613e-05 6.7227e-05 1.0084e-04 1.3445e-04 ...]
 Mesh: [1x1 FEMesh]

Interpolate the displacement at the center of the beam.

intrpUd = interpolateDisplacement(Rd,0,0,0.0015);
intrpUdm = interpolateDisplacement(Rdm,0,0,0.0015);

Compare the direct integration results with the results obtained by modal superposition.

plot(Rd.SolutionTimes,intrpUd.uz,'bo')
hold on
plot(Rdm.SolutionTimes,intrpUdm.uz,'rx')
grid on
legend('Direct integration', 'Modal superposition')
xlabel('Time');
ylabel('Center of beam displacement')

 Modal Superposition Method for Structural Dynamics Problem

3-93

3 Solving PDEs

3-94

Stress Concentration in Plate with Circular Hole
Perform a 2-D plane-stress elasticity analysis.

A thin rectangular plate under a uniaxial tension has a uniform stress distribution. Introducing a
circular hole in the plate disturbs the uniform stress distribution near the hole, resulting in a
significantly higher than average stress. Such a thin plate, subject to in-plane loading, can be
analyzed as a 2-D plane-stress elasticity problem. In theory, if the plate is infinite, then the stress near
the hole is three times higher than the average stress. For a rectangular plate of finite width, the
stress concentration factor is a function of the ratio of hole diameter to the plate width. This example
approximates the stress concentration factor using a plate of a finite width.

Create Structural Model and Include Geometry

Create a structural model for static plane-stress analysis.

model = createpde('structural','static-planestress');

The plate must be sufficiently long, so that the applied loads and boundary conditions are far from the
circular hole. This condition ensures that a state of uniform tension prevails in the far field and,
therefore, approximates an infinitely long plate. In this example the length of the plate is four times
greater than its width. Specify the following geometric parameters of the problem.

radius = 20.0;
width = 50.0;
totalLength = 4*width;

Define the geometry description matrix (GDM) for the rectangle and circle.

R1 = [3 4 -totalLength totalLength ...
 totalLength -totalLength ...
 -width -width width width]';
C1 = [1 0 0 radius 0 0 0 0 0 0]';

Define the combined GDM, name-space matrix, and set formula to construct decomposed geometry
using decsg.

gdm = [R1 C1];
ns = char('R1','C1');
g = decsg(gdm,'R1 - C1',ns');

Create the geometry and include it into the structural model.

geometryFromEdges(model,g);

Plot the geometry displaying edge labels.

figure
pdegplot(model,'EdgeLabel','on');
axis([-1.2*totalLength 1.2*totalLength -1.2*width 1.2*width])
title 'Geometry with Edge Labels';

 Stress Concentration in Plate with Circular Hole

3-95

Plot the geometry displaying vertex labels.

figure
pdegplot(model,'VertexLabels','on');
axis([-1.2*totalLength 1.2*totalLength -1.2*width 1.2*width])
title 'Geometry with Vertex Labels';

3 Solving PDEs

3-96

Specify Model Parameters

Specify the Young's modulus and Poisson's ratio to model linear elastic material behavior. Remember
to specify physical properties in consistent units.

structuralProperties(model,'YoungsModulus',200E3,'PoissonsRatio',0.25);

Restrain all rigid-body motions of the plate by specifying sufficient constraints. For static analysis, the
constraints must also resist the motion induced by applied load.

Set the x-component of displacement on the left edge (edge 3) to zero to resist the applied load. Set
the y-component of displacement at the bottom left corner (vertex 3) to zero to restraint the rigid
body motion.

structuralBC(model,'Edge',3,'XDisplacement',0);
structuralBC(model,'Vertex',3,'YDisplacement',0);

Apply the surface traction with a non-zero x-component on the right edge of the plate.

structuralBoundaryLoad(model,'Edge',1,'SurfaceTraction',[100;0]);

Generate Mesh and Solve

To capture the gradation in solution accurately, use a fine mesh. Generate the mesh, using Hmax to
control the mesh size.

generateMesh(model,'Hmax',radius/6);

 Stress Concentration in Plate with Circular Hole

3-97

Plot the mesh.

figure
pdemesh(model)

Solve the plane-stress elasticity model.

R = solve(model);

Plot Stress Contours

Plot the x-component of the normal stress distribution. The stress is equal to applied tension far away
from the circular boundary. The maximum value of stress occurs near the circular boundary.

figure
pdeplot(model,'XYData',R.Stress.sxx,'ColorMap','jet')
axis equal
title 'Normal Stress Along x-Direction';

3 Solving PDEs

3-98

Interpolate Stress

To see the details of the stress variation near the circular boundary, first define a set of points on the
boundary.

thetaHole = linspace(0,2*pi,200);
xr = radius*cos(thetaHole);
yr = radius*sin(thetaHole);
CircleCoordinates = [xr;yr];

Then interpolate stress values at these points by using interpolateStress. This function returns a
structure array with its fields containing interpolated stress values.

stressHole = interpolateStress(R,CircleCoordinates);

Plot the normal direction stress versus angular position of the interpolation points.

figure
plot(thetaHole,stressHole.sxx)
xlabel('\theta')
ylabel('\sigma_{xx}')
title 'Normal Stress Around Circular Boundary';

 Stress Concentration in Plate with Circular Hole

3-99

Solve the Same Problem Using Symmetric Model

The plate with a hole model has two axes of symmetry. Therefore, you can model a quarter of the
geometry. The following model solves a quadrant of the full model with appropriate boundary
conditions.

Create a structural model for the static plane-stress analysis.

symModel = createpde('structural','static-planestress');

Create the geometry that represents one quadrant of the original model. You do not need to create
additional edges to constrain the model properly.

R1 = [3 4 0 totalLength/2 totalLength/2 ...
 0 0 0 width width]';
C1 = [1 0 0 radius 0 0 0 0 0 0]';
gm = [R1 C1];
sf = 'R1-C1';
ns = char('R1','C1');
g = decsg(gm,sf,ns');
geometryFromEdges(symModel,g);

Plot the geometry displaying the edge labels.

figure
pdegplot(symModel,'EdgeLabel','on');
axis equal
title 'Symmetric Quadrant with Edge Labels';

3 Solving PDEs

3-100

Specify structural properties of the material.

structuralProperties(symModel,'YoungsModulus',200E3, ...
 'PoissonsRatio',0.25);

Apply symmetric constraints on the edges 3 and 4.

structuralBC(symModel,'Edge',[3 4],'Constraint','symmetric');

Apply surface traction on the edge 1.

structuralBoundaryLoad(symModel,'Edge',1,'SurfaceTraction',[100;0]);

Generate mesh and solve the symmetric plane-stress model.

generateMesh(symModel,'Hmax',radius/6);
Rsym = solve(symModel);

Plot the x-component of the normal stress distribution. The results are identical to the first quadrant
of the full model.

figure
pdeplot(symModel,'XYData',Rsym.Stress.sxx,'ColorMap','jet');
axis equal
title 'Normal Stress Along x-Direction for Symmetric Model';

 Stress Concentration in Plate with Circular Hole

3-101

3 Solving PDEs

3-102

Thermal Deflection of Bimetallic Beam
This example shows how to solve a coupled thermo-elasticity problem. Thermal expansion or
contraction in mechanical components and structures occurs due to temperature changes in the
operating environment. Thermal stress is a secondary manifestation: the structure experiences
stresses when structural constraints prevent free thermal expansion or contraction of the component.
Deflection of a bimetallic beam is a common physics experiment. A typical bimetallic beam consists of
two materials bonded together. The coefficients of thermal expansion (CTE) of these materials are
significantly different.

This example finds the deflection of a bimetallic beam using a structural finite-element model. The
example compares this deflection to the analytic solution based on beam theory approximation.

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Create a beam geometry with the following dimensions.

L = 0.1; % m
W = 5E-3; % m
H = 1E-3; % m
gm = multicuboid(L,W,[H,H],'Zoffset',[0,H]);

Include the geometry in the structural model.

structuralmodel.Geometry = gm;

Plot the geometry.

figure
pdegplot(structuralmodel)

 Thermal Deflection of Bimetallic Beam

3-103

Identify the cell labels of the cells for which you want to specify material properties.

First, display the cell label for the bottom cell. To see the cell label clearly, zoom onto the left end of
the beam and rotate the geometry as follows.

figure
pdegplot(structuralmodel,'CellLabels','on')
axis([-L/2 -L/3 -W/2 W/2 0 2*H])
view([0 0])
zticks([])

3 Solving PDEs

3-104

Now, display the cell label for the top cell. To see the cell label clearly, zoom onto the right end of the
beam and rotate the geometry as follows.

figure
pdegplot(structuralmodel,'CellLabels','on')
axis([L/3 L/2 -W/2 W/2 0 2*H])
view([0 0])
zticks([])

 Thermal Deflection of Bimetallic Beam

3-105

Specify the Young's modulus, Poisson's ratio, and linear coefficient of thermal expansion to model
linear elastic material behavior. To maintain unit consistency, specify all physical properties in SI
units.

Assign the material properties of copper to the bottom cell.

Ec = 137E9; % N/m^2
nuc = 0.28;
CTEc = 20.00E-6; % m/m-C
structuralProperties(structuralmodel,'Cell',1, ...
 'YoungsModulus',Ec, ...
 'PoissonsRatio',nuc, ...
 'CTE',CTEc);

Assign the material properties of invar to the top cell.

Ei = 130E9; % N/m^2
nui = 0.354;
CTEi = 1.2E-6; % m/m-C
structuralProperties(structuralmodel,'Cell',2, ...
 'YoungsModulus',Ei, ...
 'PoissonsRatio',nui, ...
 'CTE',CTEi);

For this example, assume that the left end of the beam is fixed. To impose this boundary condition,
display the face labels on the left end of the beam.

3 Solving PDEs

3-106

figure
pdegplot(structuralmodel,'faceLabels','on','FaceAlpha',0.25)
axis([-L/2 -L/3 -W/2 W/2 0 2*H])
view([60 10])
xticks([])
yticks([])
zticks([])

Apply a fixed boundary condition on faces 5 and 10.

structuralBC(structuralmodel,'Face',[5,10],'Constraint','fixed');

Apply the temperature change as a thermal load. Use a reference temperature of 25 degrees Celsius
and an operating temperature of 125 degrees Celsius. Thus, the temperature change for this model is
100 degrees Celsius.

structuralBodyLoad(structuralmodel,'Temperature',125);
structuralmodel.ReferenceTemperature = 25;

Generate a mesh and solve the model.

generateMesh(structuralmodel,'Hmax',H/2);
R = solve(structuralmodel);

Plot the deflected shape of the bimetallic beam with the magnitude of displacement as the color map
data.

figure
pdeplot3D(structuralmodel,'ColorMapData',R.Displacement.Magnitude, ...

 Thermal Deflection of Bimetallic Beam

3-107

 'Deformation',R.Displacement, ...
 'DeformationScaleFactor',2)
title('Deflection of Invar-Copper Beam')

Compute the deflection analytically, based on beam theory. The deflection of the strip is

δ =
6Δ T αc− αi L2

K1
, where K1 = 14 +

Ec
Ei

+
Ei
Ec

, Δ T is the temperature difference, αc and αi are the
coefficients of thermal expansion of copper and invar, Ec and Ei are the Young's modulus of copper
and invar, and L is the length of the strip.

K1 = 14 + (Ec/Ei)+ (Ei/Ec);
deflectionAnalytical = 3*(CTEc - CTEi)*100*2*H*L^2/(H^2*K1);

Compare the analytical results and the results obtained in this example. The results are comparable
because of the large aspect ratio.

PDEToobox_Deflection = max(R.Displacement.uz);
percentError = 100*(PDEToobox_Deflection - ...
 deflectionAnalytical)/PDEToobox_Deflection;

bimetallicResults = table(PDEToobox_Deflection, ...
 deflectionAnalytical,percentError);
bimetallicResults.Properties.VariableNames = {'PDEToolbox', ...
 'Analytical', ...
 'PercentageError'};
disp(bimetallicResults)

3 Solving PDEs

3-108

 PDEToolbox Analytical PercentageError
 __________ __________ _______________

 0.0071061 0.0070488 0.80608

 Thermal Deflection of Bimetallic Beam

3-109

Axisymmetric Thermal and Structural Analysis of Disc Brake
This example shows a quasistatic axisymmetric thermal stress analysis workflow by reproducing the
results of the simplified disc brake model discussed in [1] on page 3-0 . Disc brakes absorb
mechanical energy through friction and transform it into thermal energy, which then dissipates. The
example uses a simplified model of a disc brake in a single braking process from a constant initial
angular speed to a standstill. The workflow has two steps:

1 Transient thermal analysis to compute the temperature distribution in the disc using the heat
flux from brake pads

2 Quasistatic structural analysis to compute thermal stresses at several solution times using
previously obtained temperature distribution to specify thermal loads

The resulting plots show the temperature distribution, radial stress, hoop stress, and von Mises stress
for the corresponding solution times.

Disc Brake Properties and Geometry

Based on the assumptions used in [1] on page 3-0 , the example reduces the analysis domain to a
rectangular region corresponding to the axisymmetric section of the annular disc. Because of the
geometric and load symmetry of the disc, the example models only half the thickness of the disc and
the effect of one pad. In the following figure, the left edge corresponds to the inner radius of the disc
rd. The right edge corresponds to the outer radius of the disc Rd and also coincides with the outer
radius of the pad Rp. The disc experiences pressure from the pad, which generates the heat flux.
Instead of modeling the pad explicitly, include its effect in the thermal analysis by specifying this heat
flux as a boundary condition from the inner radius of the pad rp to the outer radius of the pad Rp.

Thermal Analysis: Compute Temperature Distribution

Create a transient axisymmetric thermal model.

modelT = createpde('thermal','transient-axisymmetric');

Create a geometry with two adjacent rectangles. The top edge of the longer rectangle (on the right)
represents the disc-pad contact region.

3 Solving PDEs

3-110

R1 = [3,4, [66, 76.5, 76.5, 66, -5.5, -5.5, 0, 0]/1000]';
R2 = [3,4, [76.5, 113.5, 113.5, 76.5, -5.5, -5.5, 0, 0]/1000]';

gdm = [R1 R2];
ns = char('R1','R2');
g = decsg(gdm,'R1 + R2',ns');

Assign the geometry to the thermal model.

geometryFromEdges(modelT,g);

Plot the geometry with the edge and face labels.

figure
pdegplot(modelT,'EdgeLabels','on','FaceLabels','on')

Generate a mesh. To match the mesh used in [1] on page 3-0 , use the linear geometric order
instead of the default quadratic order.

generateMesh(modelT,'Hmax',0.5E-04,'GeometricOrder','linear');

Specify the thermal material properties of the disc.

alphad = 1.44E-5; % Diffusivity of disc
Kd = 51;
rhod = 7100;
cpd = Kd/rhod/alphad;
thermalProperties(modelT,'ThermalConductivity',Kd, ...

 Axisymmetric Thermal and Structural Analysis of Disc Brake

3-111

 'MassDensity',rhod, ...
 'SpecificHeat',cpd);

Specify the heat flux boundary condition to account for the pad region. For the definition of the qFcn
function, see Heat Flux Function on page 3-0 .

thermalBC(modelT,'Edge',6,'HeatFlux',@qFcn);

Set the initial temperature.

thermalIC(modelT,20);

Solve the model for the times used in [1] on page 3-0 .

tlist = [0 0.1 0.2 1.0 2.0 3.0 3.96];
Rt = solve(modelT,tlist);

Plot the temperature variation with time at three key radial locations. The resulting plot is
comparable to the plot obtained in [1] on page 3-0 .

iTRd = interpolateTemperature(Rt,[0.1135;0],1:numel(Rt.SolutionTimes));
iTrp = interpolateTemperature(Rt,[0.0765;0],1:numel(Rt.SolutionTimes));
iTrd = interpolateTemperature(Rt,[0.066;0],1:numel(Rt.SolutionTimes));

figure
plot(tlist,iTRd)
hold on
plot(tlist,iTrp)
plot(tlist,iTrd)
title('Temperature Variation with Time at Key Radial Locations')
legend('R_d','r_p','r_d')
xlabel 't, s'
ylabel 'T,^{\circ}C'

3 Solving PDEs

3-112

Structural Analysis: Compute Thermal Stress

Create an axisymmetric static structural analysis model.

model = createpde('structural','static-axisymmetric');

Assign the geometry and mesh used for the thermal model.

model.Geometry = modelT.Geometry;
model.Mesh = modelT.Mesh;

Specify the structural properties of the disc.

structuralProperties(model,'YoungsModulus',99.97E9, ...
 'PoissonsRatio',0.29, ...
 'CTE',1.08E-5);

Constrain the model to prevent rigid motion.

structuralBC(model,'Edge',[3,4],'ZDisplacement',0);

Specify the reference temperature that corresponds to the state of zero thermal stress of the model.

model.ReferenceTemperature = 20;

Specify the thermal load by using the transient thermal results Rt. The solution times are the same as
in the thermal model analysis. For each solution time, solve the corresponding static structural
analysis problem and plot the temperature distribution, radial stress, hoop stress, and von Mises

 Axisymmetric Thermal and Structural Analysis of Disc Brake

3-113

stress. For the definition of the plotResults function, see Plot Results Function on page 3-0 . The
results are comparable to figure 5 from [1] on page 3-0 .

for n = 2:numel(Rt.SolutionTimes)
structuralBodyLoad(model,'Temperature',Rt,'TimeStep',n);
R = solve(model);
plotResults(model,R,modelT,Rt,n);
end

3 Solving PDEs

3-114

 Axisymmetric Thermal and Structural Analysis of Disc Brake

3-115

3 Solving PDEs

3-116

 Axisymmetric Thermal and Structural Analysis of Disc Brake

3-117

3 Solving PDEs

3-118

Heat Flux Function

This helper function computes the transient value of the heat flux from the pad to the disc. It uses the
empirical formula from [1] on page 3-0 .

function q = qFcn(r,s)
alphad = 1.44E-5; % Diffusivity of disc
Kd = 51; % Conductivity of disc
rhod = 7100; % Density of disc
cpd = Kd/rhod/alphad; % Specific heat capacity of disc

alphap = 1.46E-5; % Diffusivity of pad
Kp = 34.3; % Conductivity of pad
rhop = 4700; % Density of pad
cpp = Kp/rhop/alphap; % Specific heat capacity of pad

f = 0.5; % Coefficient of friction
omega0 = 88.464; % Initial angular velocity
ts = 3.96; % Stopping time
p0 = 1.47E6*(64.5/360); % Pressure only spans 64.5 deg occupied by pad

omegat = omega0*(1 - s.time/ts); % Angular speed over time

eta = sqrt(Kd*rhod*cpd)/(sqrt(Kd*rhod*cpd) + sqrt(Kp*rhop*cpp));
q = (eta)*f*omegat*r.r*p0;
end

 Axisymmetric Thermal and Structural Analysis of Disc Brake

3-119

Plot Results Function

This helper function plots the temperature distribution, radial stress, hoop stress, and von Mises
stress.

function plotResults(model,R,modelT,Rt,tID)
figure
subplot(2,2,1)
pdeplot(modelT,'XYData',Rt.Temperature(:,tID), ...
 'ColorMap','jet','Contour','on')
title({'Temperature'; ...
 ['max = ' num2str(max(Rt.Temperature(:,tID))) '^{\circ}C']})
xlabel 'r, m'
ylabel 'z, m'

subplot(2,2,2)
pdeplot(model,'XYData',R.Stress.srr, ...
 'ColorMap','jet','Contour','on')
title({'Radial Stress'; ...
 ['min = ' num2str(min(R.Stress.srr)/1E6,'%3.2f') ' MPa']; ...
 ['max = ' num2str(max(R.Stress.srr)/1E6,'%3.2f') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'

subplot(2,2,3)
pdeplot(model,'XYData',R.Stress.sh, ...
 'ColorMap','jet','Contour','on')
title({'Hoop Stress'; ...
 ['min = ' num2str(min(R.Stress.sh)/1E6,'%3.2f') ' MPa']; ...
 ['max = ' num2str(max(R.Stress.sh)/1E6,'%3.2f') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'

subplot(2,2,4)
pdeplot(model,'XYData',R.VonMisesStress, ...
 'ColorMap','jet','Contour','on')
title({'Von Mises Stress'; ...
 ['max = ' num2str(max(R.VonMisesStress)/1E6,'%3.2f') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'

sgtitle(['Time = ' num2str(Rt.SolutionTimes(tID)) ' s'])
end

References

[1] Adamowicz, Adam. "Axisymmetric FE Model to Analysis of Thermal Stresses in a Brake Disc."
Journal of Theoretical and Applied Mechanics 53, issue 2 (April 2015): 357–370. https://doi.org/
10.15632/jtam-pl.53.2.357.

3 Solving PDEs

3-120

https://doi.org/10.15632/jtam-pl.53.2.357
https://doi.org/10.15632/jtam-pl.53.2.357

Electrostatic Potential in Air-Filled Frame
This example shows how to find the electrostatic potential in an air-filled annular quadrilateral frame.

The PDE governing this problem is the Poisson equation

−∇ ⋅ ε∇V = ρ .

Here, ρ is the space charge density, and ε is the absolute dielectric permittivity of the material. The
toolbox uses the relative permittivity of the material εr, such that ε = εrε0, where ε0 is the absolute
permittivity of the vacuum. The relative permittivity for air is 1.00059. Note that the permittivity of
the air does not affect the result in this example as long as the coefficient is constant.

Assuming that there is no charge in the domain, the Poisson equation simplifies to the Laplace
equation: ΔV = 0 . For this example, use the following boundary conditions:

• The electrostatic potential at the inner boundary is 1000V.
• The electrostatic potential at the outer boundary is 0V.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot a geometry of a simple frame.

importGeometry(emagmodel,'Frame.STL');
pdegplot(emagmodel,'EdgeLabels','on')

 Electrostatic Potential in Air-Filled Frame

3-121

Specify the vacuum permittivity value in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1.00059);

Specify the electrostatic potential at the inner boundary.

electromagneticBC(emagmodel,'Voltage',1000,'Edge',[1 2 4 6]);

Specify the electrostatic potential at the outer boundary.

electromagneticBC(emagmodel,'Voltage',0,'Edge',[3 5 7 8]);

Generate the mesh.

generateMesh(emagmodel);

Solve the model. Plot the electric potential using the Contour parameter to display equipotential
lines.

R = solve(emagmodel);
u = R.ElectricPotential;
pdeplot(emagmodel,'XYData',u,'Contour','on')

3 Solving PDEs

3-122

Electrostatic Potential in Air-Filled Frame: PDE Modeler App
Find the electrostatic potential in an air-filled annular quadrilateral frame using the PDE Modeler
app. For this example, use the following parameters:

• Inner square side is 0.2 m
• Outer square side is 0.5 m
• Electrostatic potential at the inner boundary is 1000V
• Electrostatic potential at the outer boundary is 0V

The PDE governing this problem is the Poisson equation

–∇ · (ε∇V) = ρ.

The PDE Modeler app uses the relative permittivity εr = ε/ε0, where ε0 is the absolute dielectric
permittivity of a vacuum (8.854 · 10-12 farad/meter). The relative permittivity for the air is 1.00059.
Note that the coefficient of permittivity does not affect the result in this example as long as the
coefficient is constant.

Assuming that there is no charge in the domain, you can simplify the Poisson equation to the Laplace
equation,

ΔV = 0.

Here, the boundary conditions are the Dirichlet boundary conditions V = 1000 at the inner boundary
and V = 0 at the outer boundary.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw the following two squares.

pderect([-0.1 0.1 -0.1 0.1])
pderect([-0.25 0.25 -0.25 0.25])

2 Set both x- and y-axis limits to [-0.3 0.3]. To do this, select Options > Axes Limits and set
the corresponding ranges. Then select Options > Axes Equal.

3 Model the frame by entering SQ2-SQ1 in the Set formula field.
4 Set the application mode to Electrostatics.
5 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

• For the inner boundaries, use the Dirichlet boundary condition with h = 1 and r = 1000.
• For the outer boundaries, use the Dirichlet boundary condition with h = 1 and r = 0.

6 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify epsilon = 1 and rho = 0.

7 Initialize the mesh by selecting Mesh > Initialize Mesh.
8 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
9 Plot the equipotential lines using a contour plot. To do this, select Plot > Parameters and

choose the contour plot in the resulting dialog box.

 Electrostatic Potential in Air-Filled Frame: PDE Modeler App

3-123

10 Improve the accuracy of the solution by refining the mesh close to the reentrant corners where
the gradients are steep. To do this, select Solve > Parameters. Select Adaptive mode, use the
Worst triangles selection method, and set the maximum number of triangles to 500. Select
Mesh > Refine Mesh.

11 Solve the PDE using the refined mesh. To display equipotential lines at every 100th volt, select
Plot > Parameters and enter 0:100:1000 in the Contour plot levels field.

3 Solving PDEs

3-124

Electrostatic Analysis of Transformer Bushing Insulator
This example shows how to compute the electric field intensity in a bushing insulator of a
transformer. Bushing insulators must withstand large electric fields due to the potential difference
between the ground and the high-voltage conductor. This example uses a 3-D electrostatic model to
compute the voltage distribution and electric field intensity in the bushing.

Create an electromagnetic model for electrostatic analysis.

 Electrostatic Analysis of Transformer Bushing Insulator

3-125

model = createpde('electromagnetic','electrostatic');

Import and plot the bushing geometry.

gmBushing = importGeometry('TransformerBushing.stl');
pdegplot(gmBushing)

Model the surrounding air as a cuboid, and position the cuboid to contain the bushing at its center.

gmAir = multicuboid(1,0.4,0.4);
gmAir.translate([0.25,0.125,-0.07]);
gmModel = addCell(gmAir,gmBushing);

Plot the resulting geometry with the cell labels.

pdegplot(gmModel,'CellLabels','on','FaceAlpha',0.25)

3 Solving PDEs

3-126

Include the geometry in the model.

model.Geometry = gmModel;

Specify the vacuum permittivity value in the SI system of units.

model.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the air.

electromagneticProperties(model,'Cell',1,'RelativePermittivity',1);

Specify the relative permittivity of the bushing insulator.

electromagneticProperties(model,'Cell',2,'RelativePermittivity',5);

Before specifying boundary conditions, identify the face IDs by plotting the geometry with the face
labels. To see the IDs more clearly, rotate the geometry.

pdegplot(gmModel,'FaceLabels','on','FaceAlpha',0.2)
view([55 5])

 Electrostatic Analysis of Transformer Bushing Insulator

3-127

Specify the voltage boundary condition on the inner walls of the bushing exposed to conductor.

electromagneticBC(model,'Face',12,'Voltage',10E3);

Specify the grounding boundary condition on the surface in contact with the oil tank.

electromagneticBC(model,'Face',9,'Voltage',0);

Generate a mesh and solve the model.

generateMesh(model);
R = solve(model)

R =
 ElectrostaticResults with properties:

 ElectricPotential: [41046x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the voltage distribution in the bushing.

elemsBushing = findElements(model.Mesh,'Region','Cell',2);
pdeplot3D(model.Mesh.Nodes, ...
 model.Mesh.Elements(:,elemsBushing), ...
 'ColorMapData',R.ElectricPotential);

3 Solving PDEs

3-128

Plot the magnitude of the electric field intensity in the bushing.

Emag = sqrt(R.ElectricField.Ex.^2 + ...
 R.ElectricField.Ey.^2 + ...
 R.ElectricField.Ez.^2);
pdeplot3D(model.Mesh.Nodes, ...
 model.Mesh.Elements(:,elemsBushing), ...
 'ColorMapData',Emag);

 Electrostatic Analysis of Transformer Bushing Insulator

3-129

3 Solving PDEs

3-130

Magnetic Flux Density in H-Shaped Magnet
This example shows how to solve a 2-D magnetostatic model for a ferromagnetic frame with an H-
shaped cavity. This setup generates a uniform magnetic field due to the presence of two coils.

Create a geometry that consists of a rectangular frame with an H-shaped cavity, four rectangles
representing the two coils, and a unit square representing the air domain around the magnet. Specify
all dimensions in millimeters, and use the value convfactor = 1000 to convert the dimensions to
meters.

convfactor = 1000;

Create the H-shaped geometry to model the cavity.

xCoordsCavity = [-425 -125 -125 125 125 425 425 ...
 125 125 -125 -125 -425]/convfactor;
yCoordsCavity = [-400 -400 -100 -100 -400 -400 ...
 400 400 100 100 400 400]/convfactor;
RH = [2;12;xCoordsCavity';yCoordsCavity'];

Create the geometry to model the rectangular ferromagnetic frame.

RS = [3;4;[-525;525;525;-525;-500;-500;500;500]/convfactor];
zeroPad = zeros(numel(RH)-numel(RS),1);
RS = [RS;zeroPad];

Create the geometries to model the coils.

RC1 = [3;4;[150;250;250;150;120;120;350;350]/convfactor;
 zeroPad];
RC2 = [3;4;[-150;-250;-250;-150;120;120;350;350]/convfactor;
 zeroPad];
RC3 = [3;4;[150;250;250;150;-120;-120;-350;-350]/convfactor;
 zeroPad];
RC4 = [3;4;[-150;-250;-250;-150;-120;-120;-350;-350]/convfactor;
 zeroPad];

Create the geometry to model the air domain around the magnet.

RD = [3;4;[-1000;1000;1000;-1000;-1000; ...
 -1000;1000;1000]/convfactor;zeroPad];

Combine the shapes into one matrix.

gd = [RS,RH,RC1,RC2,RC3,RC4,RD];

Create a set formula and create the geometry.

ns = char('RS','RH','RC1','RC2','RC3','RC4','RD');
g = decsg(gd,'(RS+RH+RC1+RC2+RC3+RC4)+RD',ns');

Plot the geometry with the face labels.

figure
pdegplot(g,'FaceLabels','on')

 Magnetic Flux Density in H-Shaped Magnet

3-131

Plot the geometry with the edge labels.

figure
pdegplot(g,'EdgeLabels','on')

3 Solving PDEs

3-132

Create a magnetostatic model and include the geometry in the model.

model = createpde('electromagnetic','magnetostatic');
geometryFromEdges(model,g);

Generate a mesh with fine refinement in the ferromagnetic frame.

generateMesh(model,'Hface',{2,0.01},'Hmax',0.1,'Hgrad',2);
figure
pdemesh(model)

 Magnetic Flux Density in H-Shaped Magnet

3-133

Specify the vacuum permeability value in the SI system of units.

model.VacuumPermeability = 1.2566370614E-6;

Specify a relative permeability of 1 for all domains.

electromagneticProperties(model,'RelativePermeability',1);

Now specify the large relative permeability of the ferromagnetic frame.

electromagneticProperties(model,'RelativePermeability',10000,'Face',2);

Specify the current density values on the upper and lower coils.

electromagneticSource(model,'CurrentDensity',1E6,'Face',[5,6]);
electromagneticSource(model,'CurrentDensity',-1E6,'Face',[4,7]);

Specify that the magnetic potential on the outer surface of the air domain is 0.

electromagneticBC(model,'Edge',[5,6,13,14],'MagneticPotential',0);

Solve the model.

R = solve(model)

R =
 MagnetostaticResults with properties:

3 Solving PDEs

3-134

 MagneticPotential: [26381x1 double]
 MagneticField: [1x1 FEStruct]
 MagneticFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the magnitude of the flux density.

Bmag = sqrt(R.MagneticFluxDensity.Bx.^2 + ...
 R.MagneticFluxDensity.By.^2);

pdeplot(model,'XYData',Bmag, ...
 'FlowData',[R.MagneticFluxDensity.Bx ...
 R.MagneticFluxDensity.By])

References

[1] Kozlowski, A., R. Rygal, and S. Zurek. "Large DC electromagnet for semi-industrial
thermomagnetic processing of nanocrystalline ribbon." IEEE Transactions on Magnetics 50, issue 4
(April 2014): 1-4. https://ieeexplore.ieee.org/document/6798057.

 Magnetic Flux Density in H-Shaped Magnet

3-135

https://ieeexplore.ieee.org/document/6798057

Magnetic Flux Density in Electromagnet
This example shows how to solve a 3-D magnetostatic problem for a solenoid with a finite length iron
core. Using a ferromagnetic core with high permeability, such as an iron core, inside a solenoid
increases magnetic field and flux density. In this example, you find the magnetic flux density for a
geometry consisting of a coil with a finite length core in a cylindrical air domain.

The first part of the example solves the magnetostatic problem using a 3-D model. The second part
solves the same problem using an axisymmetric 2-D model to speed up computations.

3-D Model of Coil with Core

Create geometries consisting of three cylinders: a solid circular cylinder models the core, an annular
circular cylinder models the coil, and a larger circular cylinder models the air around the coil.

3 Solving PDEs

3-136

coreGm = multicylinder(0.03,0.1);
coilGm = multicylinder([0.05 0.07],0.2,'Void',[1 0]);
airGm = multicylinder(1,2);

Position the core and coil so that the finite length core is located near the top of coil.

coreGm = translate(coreGm,[0 0 1.025]);
coilGm = translate(coilGm,[0 0 0.9]);

Combine the geometries and plot the result.

gm = addCell(airGm,coreGm);
gm = addCell(gm,coilGm);
pdegplot(gm,'FaceAlpha',0.2,'CellLabels','on')

Zoom in to see the cell labels on the core and coil.

figure
pdegplot(gm,'FaceAlpha',0.2,'CellLabels','on')
axis([-0.1 0.1 -0.1 0.1 0.8 1.2])

 Magnetic Flux Density in Electromagnet

3-137

Create an electromagnetic model and assign air geometry to the model.

model3D = createpde('electromagnetic','magnetostatic');
model3D.Geometry = gm;

Specify the vacuum permeability value in the SI system of units.

model3D.VacuumPermeability = 1.2566370614E-6;

Specify a relative permeability of 1 for all domains.

electromagneticProperties(model3D,'RelativePermeability',1);

Now specify the large relative permeability of the core.

electromagneticProperties(model3D,'RelativePermeability',10000, ...
 'Cell',2);

Assign an excitation current using a function that defines counterclockwise current density in the
coil.

electromagneticSource(model3D,'CurrentDensity',@windingCurrent3D, ...
 'Cell',3);

Specify that the magnetic potential on the outer surface of the air domain is 0.

electromagneticBC(model3D,'MagneticPotential',[0;0;0],'Face',1:3);

3 Solving PDEs

3-138

Generate a mesh where only the core and coil regions are well refined and the air domain is relatively
coarse to limit the size of the problem.

internalFaces = cellFaces(model3D.Geometry,2:3);
generateMesh(model3D,'Hface',{internalFaces,0.007});

Solve the model.

R = solve(model3D)

R =
 MagnetostaticResults with properties:

 MagneticPotential: [1×1 FEStruct]
 MagneticField: [1×1 FEStruct]
 MagneticFluxDensity: [1×1 FEStruct]
 Mesh: [1×1 FEMesh]

Find the magnitude of the flux density.

Bmag = sqrt(R.MagneticFluxDensity.Bx.^2 + ...
 R.MagneticFluxDensity.By.^2 + ...
 R.MagneticFluxDensity.Bz.^2);

Find the mesh elements belonging to the core and the coil.

coreAndCoilElem = findElements(model3D.Mesh,'region','Cell',[2 3]);

Plot the magnitude of the flux density on the core and coil.

pdeplot3D(model3D.Mesh.Nodes, ...
 model3D.Mesh.Elements(:,coreAndCoilElem), ...
 'ColorMapData',Bmag)
axis([-0.1 0.1 -0.1 0.1 0.8 1.2])

 Magnetic Flux Density in Electromagnet

3-139

Interpolate the flux to a grid covering the portion of the geometry near the core.

x = -0.05:0.01:0.05;
z = 1.02:0.01:1.14;
y = x;
[X,Y,Z] = meshgrid(x,y,z);
intrpBcore = R.interpolateMagneticFlux(X,Y,Z);

Reshape intrpBcore.Bx, intrpBcore.By, and intrpBcore.Bz and plot the magnetic flux density
as a vector plot.

Bx = reshape(intrpBcore.Bx,size(X));
By = reshape(intrpBcore.By,size(Y));
Bz = reshape(intrpBcore.Bz,size(Z));

quiver3(X,Y,Z,Bx,By,Bz,'Color','r')
hold on
pdegplot(coreGm,'FaceAlpha',0.2);

3 Solving PDEs

3-140

2-D Axisymmetric Model of Coil with Core

Now, simplify this 3-D problem to 2-D using the symmetry around the axis of rotation.

First, create the geometry. The axisymmetric section consists of two small rectangular regions (the
core and coil) located within a large rectangular region (air).

R1 = [3,4,0.0,1,1,0.0,0,0,2,2]';
R2 = [3,4,0,0.03,0.03,0,1.025,1.025,1.125,1.125]';
R3 = [3,4,0.05,0.07,0.07,0.05,0.90,0.90,1.10,1.10]';
ns = char('R1','R2','R3');
sf = 'R1+R2+R3';
gdm = [R1, R2, R3];
g = decsg(gdm,sf,ns');

Plot the geometry with the face labels.

pdegplot(g,'FaceLabels','on')

 Magnetic Flux Density in Electromagnet

3-141

Zoom in to see the face labels on the core and coil.

figure
pdegplot(g,'FaceLabels','on')
axis([0 0.1 0.8 1.2])

3 Solving PDEs

3-142

Create an electromagnetic model for axisymmetric magnetostatic analysis and assign the geometry.

model2D = createpde('electromagnetic','magnetostatic-axisymmetric');
geometryFromEdges(model2D,g);

Specify the vacuum permeability value in the SI system of units.

model2D.VacuumPermeability = 1.2566370614E-6;

Specify a relative permeability of 1 for all domains.

electromagneticProperties(model2D,'RelativePermeability',1);

Now specify the large relative permeability of the core.

electromagneticProperties(model2D,'RelativePermeability',10000, ...
 'Face',3);

Specify the current density in the coil. For an axisymmetric model, use the constant current value.

electromagneticSource(model2D,'CurrentDensity',5E6,'Face',2);

Assign zero magnetic potential on the outer edges of the air domain as the boundary condition.

electromagneticBC(model2D,'MagneticPotential',0,'Edge',[2 8]);

Generate a mesh.

generateMesh(model2D,'Hmin',0.0004,'Hgrad',2,'Hmax',0.008);

 Magnetic Flux Density in Electromagnet

3-143

Solve the model.

R = solve(model2D);

Find the magnitude of the flux density.

Bmag = sqrt(R.MagneticFluxDensity.Bx.^2 + ...
 R.MagneticFluxDensity.By.^2);

Plot the magnitude of the flux density on the core and coil.

pdeplot(model2D,'XYData',Bmag)
xlim([0,0.05]);
ylim([1.0,1.14])

Interpolate the flux to a grid covering the portion of the geometry near the core.

x = 0:0.01:0.05;
y = 1.02:0.01:1.14;
[X,Y] = meshgrid(x,y);
intrpBcore = R.interpolateMagneticFlux(X,Y);

Reshape intrpBcore.Bx and intrpBcore.By and plot the magnetic flux density as a vector plot.

Bx = reshape(intrpBcore.Bx,size(X));
By = reshape(intrpBcore.By,size(Y));

quiver(X,Y,Bx,By,'Color','r')

3 Solving PDEs

3-144

hold on
pdegplot(model2D);
xlim([0,0.07]);
ylim([1.0,1.14])

Function Defining Current Density in Coil for 3-D Model

function f3D = windingCurrent3D(region,~)
[TH,~,~] = cart2pol(region.x,region.y,region.z);
f3D = -5E6*[sin(TH); -cos(TH); zeros(size(TH))];
end

References

[1] Thierry Lubin, Kévin Berger, Abderrezak Rezzoug. "Inductance and Force Calculation for
Axisymmetric Coil Systems Including an Iron Core of Finite Length." Progress In Electromagnetics
Research B, EMW Publishing 41 (2012): 377-396. https://hal.archives-ouvertes.fr/hal-00711310.

 Magnetic Flux Density in Electromagnet

3-145

https://hal.archives-ouvertes.fr/hal-00711310

Linear Elasticity Equations

In this section...
“Summary of the Equations of Linear Elasticity” on page 3-146
“3D Linear Elasticity Problem” on page 3-147
“Plane Stress” on page 3-149
“Plane Strain” on page 3-150

Summary of the Equations of Linear Elasticity
The stiffness matrix of linear elastic isotropic material contains two parameters:

• E, Young's modulus (elastic modulus)
• ν, Poisson’s ratio

Define the following quantities.

σ = stress
f = body force
ε = strain
u = displacement

The equilibrium equation is

−∇ · σ = f

The linearized, small-displacement strain-displacement relationship is

ε = 1
2 ∇u + ∇uT

The balance of angular momentum states that stress is symmetric:

σi j = σ ji

The Voigt notation for the constitutive equation of the linear isotropic model is

σ11
σ22
σ33
σ23
σ13
σ12

= E
1 + ν 1 − 2ν

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν

ε11
ε22
ε33
ε23
ε13
ε12

The expanded form uses all the entries in σ and ε takes symmetry into account.

3 Solving PDEs

3-146

σ11
σ12
σ13
σ21
σ22
σ23
σ31
σ32
σ33

= E
1 + ν 1 − 2ν

1 − ν 0 0 0 ν 0 0 0 ν
• 1 − 2ν 0 0 0 0 0 0 0
• • 1 − 2ν 0 0 0 0 0 0
• • • 1 − 2ν 0 0 0 0 0
• • • • 1 − ν 0 0 0 ν
• • • • • 1 − 2ν 0 0 0
• • • • • • 1 − 2ν 0 0
• • • • • • • 1 − 2ν 0
• • • • • • • • 1 − ν

ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32
ε33

 (3-1)

In the preceding diagram, • means the entry is symmetric.

3D Linear Elasticity Problem
The toolbox form for the equation is

−∇ · c⊗ ∇u = f

But the equations in the summary do not have ∇u alone, it appears together with its transpose:

ε = 1
2 ∇u + ∇uT

It is a straightforward exercise to convert this equation for strain ε to ∇u. In column vector form,

∇u =

∂ux/ ∂x
∂ux/ ∂y
∂ux/ ∂z
∂uy/ ∂x
∂uy/ ∂y
∂uy/ ∂z
∂uz/ ∂x
∂uz/ ∂y
∂uz/ ∂z

Therefore, you can write the strain-displacement equation as

 Linear Elasticity Equations

3-147

ε =

1 0 0 0 0 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0

0 1
2 0 1

2 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1
2 0 1

2 0

0 0 1
2 0 0 0 1

2 0 0

0 0 0 0 0 1
2 0 1

2 0

0 0 0 0 0 0 0 0 1

∇u ≡ A∇u

where A stands for the displayed matrix. So rewriting “Equation 3-1”, and recalling that • means an
entry is symmetric, you can write the stiffness tensor as

σ = E
1 + ν 1 − 2ν

1 − ν 0 0 0 ν 0 0 0 ν
• 1 − 2ν 0 0 0 0 0 0 0
• • 1 − 2ν 0 0 0 0 0 0
• • • 1 − 2ν 0 0 0 0 0
• • • • 1 − ν 0 0 0 ν
• • • • • 1 − 2ν 0 0 0
• • • • • • 1 − 2ν 0 0
• • • • • • • 1 − 2ν 0
• • • • • • • • 1 − ν

A∇u

= E
1 + ν 1 − 2ν

1 − ν 0 0 0 ν 0 0 0 ν
0 1/2 − ν 0 1/2 − ν 0 0 0 0 0
0 0 1/2 − ν 0 0 0 1/2 − ν 0 0
0 1/2 − ν 0 1/2 − ν 0 0 0 0 0
ν 0 0 0 1 − ν 0 0 0 ν
0 0 0 0 0 1/2 − ν 0 1/2 − ν 0
0 0 1/2 − ν 0 0 0 1/2 − ν 0 0
0 0 0 0 0 1/2 − ν 0 1/2 − ν 0
ν 0 0 0 ν 0 0 0 1 − ν

∇u

Make the definitions

3 Solving PDEs

3-148

μ = E
2(1 + ν)

λ = Eν
(1 + ν)(1 − 2ν)

E(1 − ν)
(1 + ν)(1 − 2ν) = 2μ + λ

and the equation becomes

σ =

2μ + λ 0 0 0 λ 0 0 0 λ
0 μ 0 μ 0 0 0 0 0
0 0 μ 0 0 0 μ 0 0
0 μ 0 μ 0 0 0 0 0
λ 0 0 0 2μ + λ 0 0 0 λ
0 0 0 0 0 μ 0 μ 0
0 0 μ 0 0 0 μ 0 0
0 0 0 0 0 μ 0 μ 0
λ 0 0 0 λ 0 0 0 2μ + λ

∇u ≡ c∇u

If you are solving a 3-D linear elasticity problem by using PDEModel instead of StructuralModel,
use the elasticityC3D(E,nu) function (included in your software) to obtain the c coefficient. This
function uses the linearized, small-displacement assumption for an isotropic material. For examples
that use this function, see StationaryResults.

Plane Stress
Plane stress is a condition that prevails in a flat plate in the x-y plane, loaded only in its own plane
and without z-direction restraint. For plane stress, σ13 = σ23 = σ31 = σ32 = σ33 = 0. Assuming isotropic
conditions, the Hooke's law for plane stress gives the following strain-stress relation:

ε11
ε22

2ε12

= 1
E

1 −ν 0
−ν 1 0
0 0 2 + 2ν

σ11
σ22
σ12

Inverting this equation, obtain the stress-strain relation:

σ11
σ22
σ12

= E
1 − ν2

1 ν 0
ν 1 0

0 0 1 − ν
2

ε11
ε22
2ε12

Convert the equation for strain ε to ∇u.

ε =

1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1

∇u ≡ A∇u

 Linear Elasticity Equations

3-149

Now you can rewrite the stiffness matrix as

σ11
σ12
σ21
σ22

=

E
1 − ν2 0 0 Eν

1 − ν2

0 E
2 1 + ν

E
2 1 + ν 0

0 E
2 1 + ν

E
2 1 + ν 0

Eν
1 − ν2 0 0 E

1 − ν2

∇u =

2μ μ + λ
2μ + λ 0 0 2λμ

2μ + λ
0 μ μ 0
0 μ μ 0

2λμ
2μ + λ 0 0 2μ μ + λ

2μ + λ

∇u

Plane Strain
Plane strain is a deformation state where there are no displacements in the z-direction, and the
displacements in the x- and y-directions are functions of x and y but not z. The stress-strain relation is
only slightly different from the plane stress case, and the same set of material parameters is used.

For plane strain, ε13 = ε23 = ε31 = ε32 = ε33 = 0. Assuming isotropic conditions, the stress-strain
relation can be written as follows:

σ11
σ22
σ12

= E
1 + ν 1 − 2ν

1 − ν ν 0
ν 1 − ν 0

0 0 1 − 2ν
2

ε11
ε22

2ε12

Convert the equation for strain ε to ∇u.

ε =

1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1

∇u ≡ A∇u

Now you can rewrite the stiffness matrix as

σ11
σ12
σ21
σ22

=

E 1 − ν
1 + ν 1 − 2ν 0 0 Eν

1 + ν 1 − 2ν

0 E
2 1 + ν

E
2 1 + ν 0

0 E
2 1 + ν

E
2 1 + ν 0

Eν
1 + ν 1 − 2ν 0 0 E 1 − ν

1 + ν 1 − 2ν

∇u =

2μ + λ 0 0 λ
0 μ μ 0
0 μ μ 0
λ 0 0 2μ + λ

∇u

3 Solving PDEs

3-150

Magnetic Field in Two-Pole Electric Motor
Find the static magnetic field induced by the stator windings in a two-pole electric motor. Assuming
that the motor is long and the end effects are negligible, you can use a 2-D model. The geometry
consists of three regions:

• Two ferromagnetic pieces: the stator and the rotor, made of transformer steel
• The air gap between the stator and the rotor
• The armature copper coil carrying the DC current

The magnetic permeability of air and of copper are both close to the magnetic permeability of a
vacuum, μ = μ0. The magnetic permeability of the stator and the rotor is μ = 5000μ0. The current
density J is 0 everywhere except in the coil, where it is 10 A/m2.

The geometry of the problem makes the magnetic vector potential A symmetric with respect to the y-
axis and antisymmetric with respect to the x-axis. Therefore, you can limit the domain to x ≥ 0, y ≥ 0,
with the default boundary condition

n ⋅ 1
μ ∇A = 0

on the x-axis and the boundary condition A = 0 on the y-axis. Because the field outside the motor is
negligible, you can use the boundary condition A = 0 on the exterior boundary.

First, create the geometry in the PDE Modeler app. The geometry of this electric motor is a union of
five circles and two rectangles. To draw the geometry, enter the following commands in the MATLAB
Command Window:

 Magnetic Field in Two-Pole Electric Motor

3-151

pdecirc(0,0,1,'C1')
pdecirc(0,0,0.8,'C2')
pdecirc(0,0,0.6,'C3')
pdecirc(0,0,0.5,'C4')
pdecirc(0,0,0.4,'C5')
pderect([-0.2 0.2 0.2 0.9],'R1')
pderect([-0.1 0.1 0.2 0.9],'R2')
pderect([0 1 0 1],'SQ1')

Reduce the geometry to the first quadrant by intersecting it with a square. To do this, enter
(C1+C2+C3+C4+C5+R1+R2)*SQ1 in the Set formula field.

From the PDE Modeler app, export the geometry description matrix, set formula, and name-space
matrix to the MATLAB workspace by selecting Export Geometry Description, Set Formula,
Labels... from the Draw menu.

In the MATLAB Command Window, use the decsg function to decompose the exported geometry into
minimal regions. This command creates an AnalyticGeometry object d1. Plot the geometry d1.

[d1,bt1] = decsg(gd,sf,ns);
pdegplot(d1,'EdgeLabels','on','FaceLabels','on')

Remove unnecessary edges using the csgdel function. Specify the edges to delete as a vector of
edge IDs. Plot the resulting geometry.

[d2,bt2] = csgdel(d1,bt1,[1 3 8 25 7 2 12 26 30 33 4 9 34 10 31]);
pdegplot(d2,'EdgeLabels','on','FaceLabels','on')

3 Solving PDEs

3-152

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Include the geometry in the model.

geometryFromEdges(emagmodel,d2);

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the air gap and copper coil, which correspond to the faces 3 and 4
of the geometry.

electromagneticProperties(emagmodel,'RelativePermeability',1, ...
 'Face',[3 4]);

Specify the relative permeability of the stator and the rotor, which correspond to the faces 1 and 2 of
the geometry.

electromagneticProperties(emagmodel,'RelativePermeability',5000, ...
 'Face',[1 2]);

Specify the current density in the coil.

electromagneticSource(emagmodel,'CurrentDensity',10,'Face',4);

Apply the zero magnetic potential condition to all boundaries, except the edges along the x-axis. The
edges along the x-axis retain the default boundary condition.

 Magnetic Field in Two-Pole Electric Motor

3-153

electromagneticBC(emagmodel,'MagneticPotential',0,...
 'Edge',[16 9 10 11 12 13 14 15]);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the magnetic potential. Use the Contour parameter to display equipotential
lines.

R = solve(emagmodel);
figure
pdeplot(emagmodel,'XYData',R.MagneticPotential,'Contour','on')
title 'Magnetic Potential'

Add the magnetic field data to the plot. Use the FaceAlpha parameter to make the quiver plot for
magnetic field more visible.

figure
pdeplot(emagmodel,'XYData',R.MagneticPotential, ...
 'FlowData',[R.MagneticField.Hx, ...
 R.MagneticField.Hy], ...
 'Contour','on', ...
 'FaceAlpha',0.5)
title 'Magnetic Potential and Field'

3 Solving PDEs

3-154

 Magnetic Field in Two-Pole Electric Motor

3-155

Magnetic Field in Two-Pole Electric Motor: PDE Modeler App
Find the static magnetic field induced by the stator windings in a two-pole electric motor. The
example uses the PDE Modeler app. Assuming that the motor is long and end effects are negligible,
you can use a 2-D model. The geometry consists of three regions:

• Two ferromagnetic pieces: the stator and the rotor (transformer steel)
• The air gap between the stator and the rotor
• The armature copper coil carrying the DC current

Magnetic permeability of the air and copper is close to the magnetic permeability of a vacuum, μ0 =
4π*10-7 H/m. In this example, use the magnetic permeability μ = μ0 for both the air gap and copper
coil. For the stator and the rotor, μ is

μ = μ0
μmax

1 + c ∇A 2 + μmin

where µmax = 5000, µmin = 200, and c = 0.05. The current density J is 0 everywhere except in the coil,
where it is 10 A/m2.

The geometry of the problem makes the magnetic vector potential A symmetric with respect to y and
antisymmetric with respect to x. Therefore, you can limit the domain to x ≥ 0, y ≥ 0 with the
Neumann boundary condition

n ⋅ 1
μ ∇A = 0

3 Solving PDEs

3-156

on the x-axis and the Dirichlet boundary condition A = 0 on the y-axis. Because the field outside the
motor is negligible, you can use the Dirichlet boundary condition A = 0 on the exterior boundary.

To solve this problem in the PDE Modeler app, follow these steps:

1 Set the x-axis limits to [-1.5 1.5] and the y-axis limits to [-1 1]. To do this, select Options >
Axes Limits and set the corresponding ranges.

2 Set the application mode to Magnetostatics.
3 Create the geometry. The geometry of this electric motor is complex. The model is a union of five

circles and two rectangles. The reduction to the first quadrant is achieved by intersection with a
square. To draw the geometry, enter the following commands in the MATLAB Command Window:

pdecirc(0,0,1,'C1')
pdecirc(0,0,0.8,'C2')
pdecirc(0,0,0.6,'C3')
pdecirc(0,0,0.5,'C4')
pdecirc(0,0,0.4,'C5')
pderect([-0.2 0.2 0.2 0.9],'R1')
pderect([-0.1 0.1 0.2 0.9],'R2')
pderect([0 1 0 1],'SQ1')

4 Reduce the model to the first quadrant. To do this, enter (C1+C2+C3+C4+C5+R1+R2)*SQ1 in the
Set formula field.

 Magnetic Field in Two-Pole Electric Motor: PDE Modeler App

3-157

5 Remove unnecessary subdomain borders. To do this, switch to the boundary mode by selecting
Boundary > Boundary Mode. Using Shift+click, select borders, and then select Boundary >
Remove Subdomain Border until the geometry consists of four subdomains: the rotor
(subdomain 1), the stator (subdomain 2), the air gap (subdomain 3), and the coil (subdomain 4).
The numbering of your subdomains can differ. If you do not see the numbers, select Boundary >
Show Subdomain Labels.

6 Specify the boundary conditions. To do this, select the boundaries along the x-axis. Select
Boundary > Specify Boundary Conditions. In the resulting dialog box, specify a Neumann
boundary condition with g = 0 and q = 0.

All other boundaries have a Dirichlet boundary condition with h = 1 and r = 0, which is the
default boundary condition in the PDE Modeler app.

7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Double-click each subdomain and specify the following coefficients:

• Coil: µ = 4*pi*10^(-7) H/m, J = 10 A/m2.
• Stator and rotor: µ = 4*pi*10^(-7)*(5000./(1+0.05*(ux.^2+uy.^2))+200) H/m,

where ux.^2+uy.^2 equals to |∇A |2, J = 0 (no current).
• Air gap: µ = 4*pi*10^(-7) H/m, J = 0.

8 Initialize the mesh by selecting Mesh > Initialize Mesh.
9 Choose the nonlinear solver. To do this, select Solve > Parameters and check Use nonlinear

solver. Here, you also can adjust the tolerance parameter and choose to use the adaptive solver
together with the nonlinear solver.

3 Solving PDEs

3-158

10 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
11 Plot the magnetic flux density B using arrows and the equipotential lines of the magnetostatic

potential A using a contour plot. To do this, select Plot > Parameters and choose the contour
and arrows plots in the resulting dialog box. Using Options > Axes Limits, adjust the axes
limits as needed. For example, use the Auto check box.

The plot shows that the magnetic flux is parallel to the equipotential lines of the magnetostatic
potential.

 Magnetic Field in Two-Pole Electric Motor: PDE Modeler App

3-159

Scattering Problem
This example shows how to solve a simple scattering problem, where you compute the waves
reflected by a square object illuminated by incident waves that are coming from the left.

For this problem, assume an infinite horizontal membrane subjected to small vertical displacements
U. The membrane is fixed at the object boundary. The medium is homogeneous, and the phase
velocity (propagation speed) of a wave, α, is constant. The wave equation is

∂2U
∂t2 − α2 ▵ U = 0

The solution U is the sum of the incident wave V and the reflected wave R:

U = V + R

When the illumination is harmonic in time, you can compute the field by solving a single steady
problem. Assume that the incident wave is a plane wave traveling in the -x direction:

V x, y, t = ei −kx− ωt = e−ikx ⋅ e−iωt

The reflected wave can be decomposed into spatial and time components:

R x, y, t = r x, y e−iωt

Now you can rewrite the wave equation as the Helmholtz equation for the spatial component of the
reflected wave with the wave number k = ω/α:

−Δr − k2r = 0

The Dirichlet boundary condition for the boundary of the object is U = 0, or in terms of the incident
and reflected waves, R = -V. For the time-harmonic solution and the incident wave traveling in the -x
direction, you can write this boundary condition as follows:

r x, y = − e−ikx

The reflected wave R travels outward from the object. The condition at the outer computational
boundary must allow waves to pass without reflection. Such conditions are usually called
nonreflecting. As x approaches infinity, R approximately satisfies the one-way wave equation

∂R
∂t + αξ ⋅ ∇R = 0

This equation considers only the waves moving in the positive ξ-direction. Here, ξ is the radial
distance from the object. With the time-harmonic solution, this equation turns into the generalized
Neumann boundary condition

ξ ⋅ ∇r − ikr = 0

To solve the scattering problem using the programmatic workflow, first create a PDE model with a
single dependent variable.

3 Solving PDEs

3-160

numberOfPDE = 1;
model = createpde(numberOfPDE);

Specify the variables that define the problem:

• g: A geometry specification function. For more information, see the documentation section
“Parametrized Function for 2-D Geometry Creation” on page 2-10 and the code for scatterg.m.

• k, c, a, f: The coefficients and inhomogeneous term.

g = @scatterg;
k = 60;
c = 1;
a = -k^2;
f = 0;

Convert the geometry and append it to the model.

geometryFromEdges(model,g);

Plot the geometry and display the edge labels for use in the boundary condition definition.

figure;
pdegplot(model,'EdgeLabels','on');
axis equal
title 'Geometry with Edge Labels Displayed';
ylim([0,1])

Apply the boundary conditions.

 Scattering Problem

3-161

bOuter = applyBoundaryCondition(model,'neumann','Edge',(5:8), ...
 'g',0,'q',-60i);
innerBCFunc = @(loc,state)-exp(-1i*k*loc.x);
bInner = applyBoundaryCondition(model,'dirichlet','Edge',(1:4), ...
 'u',innerBCFunc);

Specify the coefficients.

specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

Generate a mesh.

generateMesh(model,'Hmax',0.02);
figure
pdemesh(model);
axis equal

Solve for the complex amplitude. The real part of vector u stores an approximation to a real value
solution of the Helmholtz equation.

result = solvepde(model);
u = result.NodalSolution;

Plot the solution.

figure
pdeplot(model,'XYData',real(u),'Mesh','off');
colormap(jet)

3 Solving PDEs

3-162

xlabel 'x'
ylabel 'y'
title('Real Value Solution of Helmholtz Equation')

Using the solution to the Helmholtz equation, create an animation showing the corresponding
solution to the time-dependent wave equation.

figure
m = 10;
maxu = max(abs(u));
for j = 1:m
 uu = real(exp(-j*2*pi/m*sqrt(-1))*u);
 pdeplot(model,'XYData',uu,'ColorBar','off','Mesh','off');
 colormap(jet)
 caxis([-maxu maxu]);
 axis tight
 ax = gca;
 ax.DataAspectRatio = [1 1 1];
 axis off
 M(j) = getframe;
end

 Scattering Problem

3-163

To play the movie, use the movie(M) command.

3 Solving PDEs

3-164

Electrostatics and Magnetostatics
Maxwell's equations describe electrodynamics as follows:

∇ ⋅D = ρ
∇ ⋅B = 0

∇ × E = − ∂B∂t

∇ × H = ∂D
∂t + J

The electric flux density D is related to the electric field E, D = εE, where ε is the electrical
permittivity of the material.

The magnetic flux density B is related to the magnetic field H, B = μH, where µ is the magnetic
permeability of the material.

Also, here J is the electric current density, and ρ is the electric charge density.

For electrostatic problems, Maxwell's equations simplify to this form:

∇ ⋅ εE = ρ
∇ × E = 0

Since the electric field E is the gradient of the electric potential V, E = − ∇V, the first equation
yields the following PDE:

−∇ ⋅ ε ∇V = ρ

For electrostatic problems, Dirichlet boundary conditions specify the electric potential V on the
boundary.

For magnetostatic problems, Maxwell's equations simplify to this form:

∇ ⋅B = 0
∇ × H = J

Since ∇ ⋅ B = 0, there exists a magnetic vector potential A, such that

B = ∇ × A

∇ × 1
μ ∇ × A = J

Using the identity

∇ × ∇ × A = ∇ ∇ ⋅ A − ∇2A

and the Coulomb gauge ∇ · A = 0, simplify the equation for A in terms of J to the following PDE:

−∇2A = − ∇ ⋅ ∇A = μJ

For magnetostatic problems, Dirichlet boundary conditions specify the magnetic potential on the
boundary.

 Electrostatics and Magnetostatics

3-165

Skin Effect in Copper Wire with Circular Cross Section: PDE
Modeler App

This example shows the skin effect when a wire with a circular cross section carries AC current. In a
solid conductor, such as the wire, AC current travels near the surface of a wire and avoids the area
close to the center of the wire. This effect is called the skin effect. The example uses the PDE Modeler
app.

The Helmholtz equation

−∇ · 1
μ ∇Ec + jωσ − ω2ε Ec = 0

describes the propagation of plane electromagnetic waves in imperfect dielectrics and good
conductors (σ » ωε). The coefficient of dielectricity is ε = 8.8*10-12 F/m. The conductivity of copper is
σ = 57 * 106 S/m. The magnetic permeability of copper is close to the magnetic permeability of a
vacuum, µ = 4π*10–7 H/m. The ω2ε-term is negligible at the line frequency (50 Hz).

Due to induction, the current density in the interior of the conductor is smaller than at the outer
surface, where it is set to JS = 1. The Dirichlet condition for the electric field is Ec = 1/σ. In this case,
the analytical solution is

J = JS
J0 kr
J0 kR

Here,

k = jωμσ,

R is the radius of the wire, r is the distance from the center line, and J0(x) is the first Bessel function
of zeroth order.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw a circle with a radius of 0.1. The circle represents a cross section of the conductor.

pdecirc(0,0.05,0.1)
2 Set the x-axis limit to [-0.2 0.2] and the y-axis limit to [-0.1 0.2]. To do this, select

Options > Axes Limits and set the corresponding ranges. Then select Options > Axes Equal.
3 Set the application mode to AC Power Electromagnetics.
4 Specify the Dirichlet boundary condition E = JS/σ = 1/σ for the boundary of the circle. To do this:

a Switch to the boundary mode by selecting Boundary > Boundary Mode.
b Select all boundaries by using Edit > Select All.
c Select Boundary > Specify Boundary Conditions.
d Specify h = 1 and r = 1/57E6.

5 Specify the PDE coefficients. To do this, switch to the PDE mode by selecting PDE > PDE Mode.
Then select PDE > PDE Specification or click the PDE button on the toolbar. Specify the
following values:

• Angular frequency omega = 2*pi*50

3 Solving PDEs

3-166

• Magnetic permeability mu = 4*pi*1E-7
• Conductivity sigma = 57E6
• Coefficient of dielectricity epsilon = 8.8E-12

6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

The solution of the AC power electromagnetics equation is complex. When plotting the solution,
you get a warning message.

8 Plot the current density as a 3-D plot. To do this:

a Select Plot > Parameters.
b Select the Color and Height(3-D plot) options.
c Select current density from the Property drop-down menu for both the Color and

Height(3-D plot) options.
d Select Show Mesh to observe the mesh.

Due to the skin effect, the current density at the surface of the conductor is much higher than in
the conductor's interior.

 Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

3-167

9 Improve the accuracy of the solution close to the surface by using adaptive mesh refinement. To
do this:

a Select Solve > Parameters.
b In the resulting dialog box, select Adaptive mode.
c Set the maximum numbers of triangles to Inf.
d Set the maximum numbers of refinements to 1.
e Select the Worst triangles selection method.

10 Recompute the solution five times. Each time, the adaptive solver refines the area with the
largest errors. The number of triangles is printed at the command line.

11 Plot the current density as a 3-D plot.

3 Solving PDEs

3-168

12 These plots show the real part of the solution, but the solution vector is the full complex solution.
Plot the imaginary part of the solution. To do this:

a Select Plot > Parameters.
b Select the Color and Height(3-D plot) options.
c Select user entry from the Property drop-down menu for both Color and Height(3-D

plot) options.
d Type imag(u) in the corresponding User entry fields.
e Select Show Mesh to observe the mesh.

 Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

3-169

f

13 Observe that the skin effect depends on the frequency of the alternating current. When you
increase or decrease the frequency, the skin "depth" increases or decreases, respectively. At high
frequencies, only a thin layer on the surface of the wire conducts the current. At very low
frequencies (approaching DC conditions), almost the entire cross section area of the wire
conducts the current.

Find the solution for the angular frequencies omega = 2*pi*1000, omega = 2*pi*50, and
omega = 1E-6. Plot the real parts of the solutions in 2-D.

3 Solving PDEs

3-170

Current density for omega = 2*pi*1000

 Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

3-171

Current density for omega = 2*pi*50

3 Solving PDEs

3-172

Current density for omega = 1E-6

 Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

3-173

Current Density Between Two Metallic Conductors: PDE
Modeler App

Two circular metallic conductors are placed on a brine-soaked blotting paper which serves as a plane,
thin conductor. The physical model for this problem consists of the Laplace equation

–∇ · (σ∇V) = 0

for the electric potential V and these boundary conditions:

• V = 1 on the left circular conductor
• V = –1 on the right circular conductor
• the natural Neumann boundary condition on the outer boundaries

∂V
∂n = 0

The conductivity is σ = 1.

To solve this equation in the PDE Modeler app, follow these steps:

1 Model the geometry: draw the rectangle with corners at (-1.2,-0.6), (1.2,-0.6), (1.2,0.6), and
(-1.2,0.6), and two circles with a radius of 0.3 and centers at (-0.6,0) and (0.6,0). The rectangle
represents the blotting paper, and the circles represent the conductors.

pderect([-1.2 1.2 -0.6 0.6])
pdecirc(-0.6,0,0.3)
pdecirc(0.6,0,0.3)

2 Model the geometry by entering R1-(C1+C2) in the Set formula field.
3 Set the application mode to Conductive Media DC.
4 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

• For the rectangle, use the Neumann boundary condition with g = 0 and q = 0.
• For the left circle, use the Dirichlet boundary condition with h = 1 and r = 1.
• For the right circle, use the Dirichlet boundary condition with h = 1 and r = -1.

5 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify sigma = 1 and q = 0.

6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Refine the mesh by selecting Mesh > Refine Mesh.
8 Improve the triangle quality by selecting Mesh > Jiggle Mesh.
9 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The

resulting potential is zero along the y-axis, which, for this problem, is a vertical line of
antisymmetry.

3 Solving PDEs

3-174

10 Plot the current density J. To do this:

a Select Plot > Parameters.
b In the resulting dialog box, select the Color, Contour, and Arrows options.
c Set the Arrows value to current density.

The current flows, as expected, from the conductor with a positive potential to the conductor
with a negative potential. The conductivity σ is isotropic, and the equipotential lines are
orthogonal to the current lines.

 Current Density Between Two Metallic Conductors: PDE Modeler App

3-175

3 Solving PDEs

3-176

Heat Transfer Between Two Squares Made of Different
Materials: PDE Modeler App

Solve the following heat transfer problem with different material parameters. This example uses the
PDE Modeler app. For the command-line solutions see “Heat Transfer Between Two Squares Made of
Different Materials” on page 5-232.

The 2-D geometry for this problem is a square with an embedded diamond (a square with 45 degrees
rotation). PDE governing this problem is a parabolic heat equation:

ρC∂T∂t − ∇ ⋅ k∇T = Q + h Text− T

where ρ is the density, C is the heat capacity, k is the coefficient of heat conduction, Q is the heat
source, h is convective heat transfer coefficient, and Text is the external temperature.

To solve this problem in the PDE Modeler app, follow these steps:

1 Model the geometry: draw the square region with corners in (0,0), (3,0), (3,3), and (0,3) and the
diamond-shaped region with corners in (1.5,0.5), (2.5,1.5), (1.5,2.5), and (0.5,1.5).

pderect([0 3 0 3])
pdepoly([1.5 2.5 1.5 0.5],[0.5 1.5 2.5 1.5])

2 Set the x-axis limit to [-1.5 4.5] and y-axis limit to [-0.5 3.5]. To do this, select Options >
Axes Limits and set the corresponding ranges.

3 Set the application mode to Heat Transfer.
4 The temperature is kept at 0 on all the outer boundaries, so you do not have to change the

default Dirichlet boundary condition T = 0.
5 Specify the coefficients. To do this, select PDE > PDE Mode. Then click each region and select

PDE > PDE Specification or click the PDE button on the toolbar. Since you are solving the
parabolic heat equation, select the Parabolic type of PDE for both regions. For the square
region, specify the following coefficients:

• Density, pho = 2
• Heat capacity, C = 0.1
• Coefficient of heat conduction, k = 10
• Heat source, Q = 0
• Convective heat transfer coefficient, h = 0
• External temperature, Text = 0

For the diamond-shaped region, specify the following coefficients:

• Density, pho = 1
• Heat capacity, C = 0.1
• Coefficient of heat conduction, k = 2
• Heat source, Q = 4
• Convective heat transfer coefficient, h = 0
• External temperature, Text = 0

 Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App

3-177

6 Initialize the mesh by selecting Mesh > Initialize Mesh. For a more accurate solution, refine
the mesh by selecting Mesh > Refine Mesh.

7 Set the initial value and the solution time. To do this, select Solve > Parameters.

The dynamics for this problem is very fast — the temperature reaches steady state in about 0.1
time units. To capture the interesting part of the dynamics, set time to logspace(-2,-1,10).
This gives 10 logarithmically spaced numbers between 0.01 and 0.1. Set the initial value of the
temperature u(t0) to 0.

8 Solve the equation by selecting Solve > Solve PDE or clicking the = button on the toolbar.
9 Plot the solution. By default, the app plots the temperature distribution at the last time. The best

way to visualize the dynamic behavior of the temperature is to animate the solution. To do this,
select Plot > Parameters and select the Animation and Height (3-D plot) options to animate
a 3-D plot. Also, you can select the Plot in x-y grid option to use a rectangular grid instead of
the default triangular grid. Using a rectangular grid instead of a triangular grid speeds up the
animation process significantly.

You can also plot isothermal lines using a contour plot and the heat flux vector field using arrows.

a Select Plot > Parameters.
b In the resulting dialog box, deselect the Animation, and Height (3-D plot), and Plot in x-y

grid options.
c Change the colormap to hot by using the corresponding drop-down menu in the same dialog

box.
d To obtain the first plot, select the Color and Contour options.
e For the second plot, select the Color and Arrows and set their values to temperature and

heat flux, respectively.

3 Solving PDEs

3-178

Isothermal Lines

 Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App

3-179

Temperature and Heat Flux

3 Solving PDEs

3-180

Temperature Distribution in Heat Sink
This example shows how to create a simple 3-D heat sink geometry and analyze heat transfer on the
heat sink. The process has three steps.

1 “Create 2-D Geometry in the PDE Modeler App” on page 3-181.
2 “Extrude 2-D Geometry into 3-D Geometry of Heat Sink” on page 3-182.
3 “Perform Thermal Analysis” on page 3-185.

Create 2-D Geometry in the PDE Modeler App
Create a geometry in the PDE Modeler app. First, open the PDE Modeler app with a geometry
consisting of a rectangle and 12 circles.

pderect([0 0.01 0 0.008])
for i = 0.002:0.002:0.008
 for j = 0.002:0.002:0.006
 pdecirc(i,j,0.0005)
 end
end

Adjust the axes limits by selecting Options > Axes Limits. Select Auto to use automatic scaling for
both axes.

 Temperature Distribution in Heat Sink

3-181

Export the geometry description matrix, set formula, and name-space matrix into the MATLAB
workspace by selecting Draw > Export Geometry Description, Set Formula, Labels. This data
lets you reconstruct the geometry in the workspace.

Extrude 2-D Geometry into 3-D Geometry of Heat Sink
In the MATLAB Command Window, use the decsg function to decompose the exported geometry into
minimal regions. Plot the result.

g = decsg(gd,sf,ns);
pdegplot(g,'FaceLabels','on')

3 Solving PDEs

3-182

Create a thermal model for transient analysis.

model = createpde('thermal','transient');

Create a 2-D geometry from decomposed geometry matrix and assign the geometry to the thermal
model.

g = geometryFromEdges(model,g);

Extrude the 2-D geometry along the z-axis by 0.0005 units.

g = extrude(g,0.0005);

Plot the extruded geometry so that you can see the face labels on the top.

figure
pdegplot(g,'FaceLabels','on')
view([0 90])

 Temperature Distribution in Heat Sink

3-183

Extrude the circular faces (faces with IDs from 15 to 26) along the z-axis by 0.005 more units. These
faces form the fins of the heat sink.

g = extrude(g,[15:26],0.005);

Assign the modified geometry to the thermal model and plot the geometry.

model.Geometry = g;
figure
pdegplot(g)

3 Solving PDEs

3-184

Perform Thermal Analysis
Assuming that the heat sink is made of copper, specify the thermal conductivity, mass density, and
specific heat.

thermalProperties(model,'ThermalConductivity',400, ...
 'MassDensity',8960, ...
 'SpecificHeat',386);

Specify the Stefan-Boltzmann constant.

model.StefanBoltzmannConstant = 5.670367e-8;

Apply temperature boundary condition on the bottom surface of the heat sink, which consists of 13
faces.

thermalBC(model,'Face',1:13,'Temperature',1000);

Specify the convection and radiation parameters on all other surfaces of the heat sink.

thermalBC(model,'Face',14:g.NumFaces, ...
 'ConvectionCoefficient',5, ...
 'AmbientTemperature',300, ...
 'Emissivity',0.8);

Set the initial temperature of all the surfaces to the ambient temperature.

thermalIC(model,300);

Generate a mesh.

generateMesh(model);

 Temperature Distribution in Heat Sink

3-185

Solve the transient thermal problem for times between 0 and 0.0075 seconds with a time step of
0.0025 seconds.

results = solve(model,0:0.0025:0.0075);

Plot the temperature distribution for each time step.

for i = 1:length(results.SolutionTimes)
 figure
 pdeplot3D(model,'ColorMapData',results.Temperature(:,i))
 title({['Time = ' num2str(results.SolutionTimes(i)) 's']})
end

3 Solving PDEs

3-186

 Temperature Distribution in Heat Sink

3-187

3 Solving PDEs

3-188

 Temperature Distribution in Heat Sink

3-189

Nonlinear Heat Transfer in Thin Plate
This example shows how to perform a heat transfer analysis of a thin plate.

The plate is square and the temperature is fixed along the bottom edge. No heat is transferred from
the other three edges (i.e. they are insulated). Heat is transferred from both the top and bottom faces
of the plate by convection and radiation. Because radiation is included, the problem is nonlinear. One
of the purposes of this example is to show how to handle nonlinearities in PDE problems.

Both a steady state and a transient analysis are performed. In a steady state analysis we are
interested in the final temperature at different points in the plate after it has reached an equilibrium
state. In a transient analysis we are interested in the temperature in the plate as a function of time.
One question that can be answered by this transient analysis is how long does it take for the plate to
reach an equilibrium temperature.

Heat Transfer Equations for the Plate

The plate has planar dimensions one meter by one meter and is 1 cm thick. Because the plate is
relatively thin compared with the planar dimensions, the temperature can be assumed constant in the
thickness direction; the resulting problem is 2D.

Convection and radiation heat transfer are assumed to take place between the two faces of the plate
and a specified ambient temperature.

The amount of heat transferred from each plate face per unit area due to convection is defined as

Qc = hc(T − Ta)

where Ta is the ambient temperature, T is the temperature at a particular x and y location on the
plate surface, and hc is a specified convection coefficient.

The amount of heat transferred from each plate face per unit area due to radiation is defined as

Qr = ϵσ(T4− Ta
4)

where ϵ is the emissivity of the face and σ is the Stefan-Boltzmann constant. Because the heat
transferred due to radiation is proportional to the fourth power of the surface temperature, the
problem is nonlinear.

The PDE describing the temperature in this thin plate is

ρCptz
∂T
∂t − ktz∇2T + 2Qc + 2Qr = 0

where ρ is the material density, Cp is the specific heat, tz is the plate thickness, and the factors of two
account for the heat transfer from both plate faces.

It is convenient to rewrite this equation in the form expected by PDE Toolbox

ρCptz
∂T
∂t − ktz∇2T + 2hcT + 2ϵσT4 = 2hcTa + 2ϵσTa

4

Problem Setup

The plate is composed of copper which has the following properties:

3 Solving PDEs

3-190

k = 400; % thermal conductivity of copper, W/(m-K)
rho = 8960; % density of copper, kg/m^3
specificHeat = 386; % specific heat of copper, J/(kg-K)
thick = .01; % plate thickness in meters
stefanBoltz = 5.670373e-8; % Stefan-Boltzmann constant, W/(m^2-K^4)
hCoeff = 1; % Convection coefficient, W/(m^2-K)
% The ambient temperature is assumed to be 300 degrees-Kelvin.
ta = 300;
emiss = .5; % emissivity of the plate surface

Create the PDE model with a single dependent variable.

numberOfPDE = 1;
model = createpde(numberOfPDE);

For a square, the geometry and mesh are easily defined as shown below.

width = 1;
height = 1;

Define the square by giving the 4 x-locations followed by the 4 y-locations of the corners.

gdm = [3 4 0 width width 0 0 0 height height]';
g = decsg(gdm, 'S1', ('S1')');

Convert the DECSG geometry into a geometry object on doing so it is appended to the PDEModel

geometryFromEdges(model,g);

Plot the geometry and display the edge labels for use in the boundary condition definition.

figure;
pdegplot(model,'EdgeLabels','on');
axis([-.1 1.1 -.1 1.1]);
title 'Geometry With Edge Labels Displayed';

 Nonlinear Heat Transfer in Thin Plate

3-191

Specify the coefficients. The expressions for the coefficients required by PDE Toolbox can easily be
identified by comparing the equation above with the scalar parabolic equation in the PDE Toolbox
documentation.

c = thick*k;

Because of the radiation boundary condition, the "a" coefficient is a function of the temperature, u. It
is defined as a MATLAB expression so it can be evaluated for different values of u during the analysis.

a = @(~,state) 2*hCoeff + 2*emiss*stefanBoltz*state.u.^3;
f = 2*hCoeff*ta + 2*emiss*stefanBoltz*ta^4;
d = thick*rho*specificHeat;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

The bottom edge of the plate is set to 1000 degrees-Kelvin.

Apply the boundary conditions. Three of the plate edges are insulated. Because a Neumann boundary
condition equal zero is the default in the finite element formulation, the boundary conditions on these
edges do not need to be set explicitly. A Dirichlet condition is set on all nodes on the bottom edge,
edge 1,

applyBoundaryCondition(model,'dirichlet','Edge',1,'u',1000);

Specify the initial guess.

setInitialConditions(model,0);

Create the triangular mesh on the square with approximately ten elements in each direction.

3 Solving PDEs

3-192

hmax = .1; % element size
msh = generateMesh(model,'Hmax',hmax);
figure;
pdeplot(model);
axis equal
title 'Plate With Triangular Element Mesh'
xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'

Steady State Solution

Because the a and f coefficients are functions of temperature (due to the radiation boundary
conditions), solvepde automatically picks the nonlinear solver to obtain the solution.

R = solvepde(model);
u = R.NodalSolution;
figure;
pdeplot(model,'XYData',u,'Contour','on','ColorMap','jet');
title 'Temperature In The Plate, Steady State Solution'
xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'
axis equal

 Nonlinear Heat Transfer in Thin Plate

3-193

p = msh.Nodes;
plotAlongY(p,u,0);
title 'Temperature As a Function of the Y-Coordinate'
xlabel 'Y-coordinate, meters'
ylabel 'Temperature, degrees-Kelvin'

3 Solving PDEs

3-194

fprintf(['Temperature at the top edge of the plate =' ...
 ' %5.1f degrees-K\n'],u(4));

Temperature at the top edge of the plate = 449.8 degrees-K

Transient Solution

Include the d coefficient.

specifyCoefficients(model,'m',0,'d',d,'c',c,'a',a,'f',f);
endTime = 5000;
tlist = 0:50:endTime;
numNodes = size(p,2);

Set the initial temperature of all nodes to ambient, 300 K.

u0(1:numNodes) = 300;

Set the initial temperature on the bottom edge E1 to the value of the constant BC, 1000 K.

setInitialConditions(model,1000,'Edge',1);

Set the following solver options.

model.SolverOptions.RelativeTolerance = 1.0e-3;
model.SolverOptions.AbsoluteTolerance = 1.0e-4;

Solve the problem by using solvepde. The solver automatically picks the parabolic solver to obtain
the solution.

 Nonlinear Heat Transfer in Thin Plate

3-195

R = solvepde(model,tlist);
u = R.NodalSolution;
figure;
plot(tlist,u(3, :));
grid on
title ['Temperature Along the Top Edge of ' ...
 'the Plate as a Function of Time']
xlabel 'Time, seconds'
ylabel 'Temperature, degrees-Kelvin'

figure;
pdeplot(model,'XYData',u(:,end),'Contour','on','ColorMap','jet');
title(sprintf(['Temperature In The Plate,' ...
 'Transient Solution(%d seconds)\n'],tlist(1,end)));
xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'
axis equal;

fprintf(['\nTemperature at the top edge(t = %5.1f secs) = ' ...
 '%5.1f degrees-K\n'],tlist(1,end),u(4,end));

3 Solving PDEs

3-196

Temperature at the top edge(t = 5000.0 secs) = 441.8 degrees-K

Summary

The plots of temperature in the plate from the steady state and transient solution at the ending time
are very close. That is, after around 5000 seconds, the transient solution has reached the steady state
values. The temperatures from the two solutions at the top edge of the plate agree to within one
percent.

 Nonlinear Heat Transfer in Thin Plate

3-197

Poisson's Equation on Unit Disk: PDE Modeler App
This example shows how to solve the Poisson's equation on a unit disk and evaluate the numeric
solution error.

This example uses the PDE Modeler app. For a programmatic workflow, see “Poisson's Equation on
Unit Disk” on page 3-204. Because the app and the programmatic workflow use different meshers,
they yield slightly different results.

The problem formulation is –Δu = 1 in Ω, u = 0 on ∂Ω, where Ω is the unit disk. The exact solution is

u x, y = 1 − x2− y2

4

To solve this problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options > Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4

Draw a circle with the radius 1 and the center at (0,0). To do this, first click the button.
Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape you
draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle, double-
click it. In the resulting dialog box, specify the exact center location and radius of the circle.

5 Check that the application mode is set to Generic Scalar.
6

Specify the boundary conditions. To do this, switch to boundary mode by clicking the
button or selecting Boundary > Boundary Mode. Select all boundaries by selecting Edit >
Select All. Then select Boundary > Specify Boundary Conditions and specify the Dirichlet
boundary condition u = 0. This boundary condition is the default (h = 1, r = 0), so you do not
need to change it.

7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify c = 1, a = 0, and f = 1.

8 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size to 0.1.

9
Initialize the mesh by selecting Mesh > Initialize Mesh or clicking the button.

3 Solving PDEs

3-198

10 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The
toolbox assembles the PDE problem, solves it, and plots the solution.

 Poisson's Equation on Unit Disk: PDE Modeler App

3-199

11 Compare the numerical solution to the exact solution:

a Select Plot > Parameters.
b In the resulting dialog box, select user entry from the Color drop-down menu.
c Plot the absolute error in the solution by typing the MATLAB expression u-(1-x.^2-

y.^2)/4 in the User entry field.

3 Solving PDEs

3-200

12
Refine the mesh by selecting Mesh > Refine Mesh or clicking the button.

 Poisson's Equation on Unit Disk: PDE Modeler App

3-201

13 Compare the numerical solution to the exact solution for the refined mesh. Plot the absolute
error.

3 Solving PDEs

3-202

14 Export the mesh data and the solution to the MATLAB workspace by selecting Mesh > Export
Mesh and Solve > Export Solution, respectively.

 Poisson's Equation on Unit Disk: PDE Modeler App

3-203

Poisson's Equation on Unit Disk
This example shows how to numerically solve a Poisson's equation, compare the numerical solution
with the exact solution, and refine the mesh until the solutions are close.

The Poisson equation on a unit disk with zero Dirichlet boundary condition can be written as −Δu = 1
in Ω, u = 0 on δΩ, where Ω is the unit disk. The exact solution is

u(x, y) = 1 − x2− y2

4 .

For most PDEs, the exact solution is not known. However, the Poisson's equation on a unit disk has a
known, exact solution that you can use to see how the error decreases as you refine the mesh.

Problem Definition

Create the PDE model and include the geometry.

model = createpde();
geometryFromEdges(model,@circleg);

Plot the geometry and display the edge labels for use in the boundary condition definition.

figure
pdegplot(model,'EdgeLabels','on');
axis equal

3 Solving PDEs

3-204

Specify zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Specify the coefficients.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);

Solution and Error with a Coarse Mesh

Create a mesh with target maximum element size 0.1.

hmax = 0.1;
generateMesh(model,'Hmax',hmax);
figure
pdemesh(model);
axis equal

Solve the PDE and plot the solution.

results = solvepde(model);
u = results.NodalSolution;
pdeplot(model,'XYData',u)
title('Numerical Solution');
xlabel('x')
ylabel('y')

 Poisson's Equation on Unit Disk

3-205

Compare this result with the exact analytical solution and plot the error.

p = model.Mesh.Nodes;
exact = (1 - p(1,:).^2 - p(2,:).^2)/4;
pdeplot(model,'XYData',u - exact')
title('Error');
xlabel('x')
ylabel('y')

3 Solving PDEs

3-206

Solutions and Errors with Refined Meshes

Solve the equation while refining the mesh in each iteration and comparing the result with the exact
solution. Each refinement halves the Hmax value. Refine the mesh until the infinity norm of the error
vector is less than 5 ⋅ 10−7.

hmax = 0.1;
error = [];
err = 1;
while err > 5e-7 % run until error <= 5e-7
 generateMesh(model,'Hmax',hmax); % refine mesh
 results = solvepde(model);
 u = results.NodalSolution;
 p = model.Mesh.Nodes;
 exact = (1 - p(1,:).^2 - p(2,:).^2)/4;
 err = norm(u - exact',inf); % compare with exact solution
 error = [error err]; % keep history of err
 hmax = hmax/2;
end

Plot the infinity norm of the error vector for each iteration. The value of the error decreases in each
iteration.

plot(error,'rx','MarkerSize',12);
ax = gca;
ax.XTick = 1:numel(error);
title('Error History');

 Poisson's Equation on Unit Disk

3-207

xlabel('Iteration');
ylabel('Norm of Error');

Plot the final mesh and its corresponding solution.

figure
pdemesh(model);
axis equal

3 Solving PDEs

3-208

figure
pdeplot(model,'XYData',u)
title('Numerical Solution');
xlabel('x')
ylabel('y')

 Poisson's Equation on Unit Disk

3-209

Compare the result with the exact analytical solution and plot the error.

p = model.Mesh.Nodes;
exact = (1 - p(1,:).^2 - p(2,:).^2)/4;
pdeplot(model,'XYData',u - exact')
title('Error');
xlabel('x')
ylabel('y')

3 Solving PDEs

3-210

 Poisson's Equation on Unit Disk

3-211

Scattering Problem: PDE Modeler App
This example shows how to solve a simple scattering problem, where you compute the waves
reflected by a square object illuminated by incident waves that are coming from the left. This example
uses the PDE Modeler app. For the programmatic workflow, see “Scattering Problem” on page 3-160.

For this problem, assume an infinite horizontal membrane subjected to small vertical displacements
U. The membrane is fixed at the object boundary. The medium is homogeneous, and the phase
velocity (propagation speed) of a wave, α, is constant. The wave equation is

∂2U
∂t2 − α2ΔU = 0

The solution U is the sum of the incident wave V and the reflected wave R:

U = V + R

When the illumination is harmonic in time, you can compute the field by solving a single steady
problem. Assume that the incident wave is a plane wave traveling in the –x direction:

V(x, y, t) = ei −kx− ωt = e−ikxe−iωt

The reflected wave can be decomposed into spatial and time components:

R x, y, t = r x, y e−iωt

Now you can rewrite the wave equation as the Helmholtz equation for the spatial component of the
reflected wave with the wave number k = ω/α:

–Δr – k2r = 0

The Dirichlet boundary condition for the boundary of the object is U = 0, or in terms of the incident
and reflected waves, R = -V. For the time-harmonic solution and the incident wave traveling in the –x
direction, you can write this boundary condition as follows:

r x, y = − e−ikx

The reflected wave R travels outward from the object. The condition at the outer computational
boundary must allow waves to pass without reflection. Such conditions are usually called
nonreflecting. As x approaches infinity, R approximately satisfies the one-way wave equation

∂R
∂t + αξ · ∇R = 0

This equation considers only the waves moving in the positive ξ-direction. Here, ξ is the radial
distance from the object. With the time-harmonic solution, this equation turns into the generalized
Neumann boundary condition

ξ · ∇r = ikr

To solve the scattering problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.

3 Solving PDEs

3-212

2 Set the x-axis limit to [0.1 1.5] and the y-axis limit to [0 1]. To do this, select Options >
Axes Limits and set the corresponding ranges.

3 Display grid lines. To do this:

a Select Options > Grid Spacing and clear the Auto checkboxes.
b Enter X-axis linear spacing as 0.1:0.05:1.5 and Y-axis linear spacing as 0:0.05:1.
c Select Options > Grid.

4 Align new shapes to the grid lines by selecting Options > Snap.
5 Draw a square with sides of length 0.1 and a center in [0.8 0.5]. To do this, first click the

 button. Then right-click the origin and drag to draw a square. Right-clicking constrains the
shape you draw so that it is a square rather than a rectangle. If the square is not a perfect
square, double-click it. In the resulting dialog box, specify the exact location of the bottom left
corner and the side length.

6 Rotate the square by 45 degrees. To do this, select Draw > Rotate... and enter 45 in the
resulting dialog box. The rotated square represents the illuminated object.

7
Draw a circle with a radius of 0.45 and a center in [0.8 0.5]. To do this, first click the
button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape
you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle,
double-click it. In the resulting dialog box, specify the exact center location and radius of the
circle.

8 Model the geometry by entering C1-SQ1 in the Set formula field.
9 Check that the application mode is set to Generic Scalar.
10 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

• For the perimeter of the circle, the boundary condition is the Neumann boundary condition
with q = -ik, where the wave number k = 60 corresponds to a wavelength of about 0.1
units. Enter g = 0 and q = -60*i.

• For the perimeter of the square, the boundary condition is the Dirichlet boundary condition:

r = − v x, y = − eika ⋅ x

In this problem, because the reflected wave travels in the –x direction, the boundary condition
is r = –e–ikx. Enter h = 1 and r = -exp(-i*60*x).

11 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. The Helmholtz equation is a wave equation, but in Partial Differential Equation
Toolbox you can treat it as an elliptic equation with a = -k2. Specify c = 1, a = -3600, and f
= 0.

12 Initialize the mesh by selecting Mesh > Initialize Mesh.

For sufficient accuracy, you need about 10 finite elements per wavelength. The outer boundary
must be located a few object diameters away from the object itself. Refine the mesh by selecting
Mesh > Refine Mesh. Refine the mesh two more times to achieve the required resolution.

13 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

The solution is complex. When plotting the solution, you get a warning message.

 Scattering Problem: PDE Modeler App

3-213

14 Plot the reflected waves. Change the colormap to jet by selecting Plot > Parameters and then
selecting jet from the Colormap drop-down menu.

15 Animate the solution for the time-dependent wave equation. To do this:

a Export the mesh data and the solution to the MATLAB workspace by selecting Mesh >
Export Mesh and Solve > Export Solution, respectively.

b Enter the following commands in the MATLAB Command Window.

figure
maxu = max(abs(u));
m = 10;
for j = 1:m,
 uu = real(exp(-j*2*pi/10*sqrt(-1))*u);
 pdeplot(p,e,t,'XYData',uu,'ColorBar','off','Mesh','off');
 colormap(jet)

3 Solving PDEs

3-214

 caxis([-maxu maxu]);
 axis tight
 ax = gca;
 ax.DataAspectRatio = [1 1 1];
 axis off
 M(:,j) = getframe;
 end
movie(M);

 Scattering Problem: PDE Modeler App

3-215

Minimal Surface Problem
This example shows how to solve the minimal surface equation

−∇ ⋅ 1
1 + ∇u 2 ∇u = 0

on the unit disk Ω = x, y x2 + y2 ≤ 1 , with u x, y = x2 on the boundary ∂Ω. An elliptic equation in
the toolbox form is

−∇ ⋅ c∇u + au = f .

Therefore, for the minimal surface problem, the coefficients are as follows:

c = 1

1 + ∇u 2 , a = 0, f = 0.

Because the coefficient c is a function of the solution u, the minimal surface problem is a nonlinear
elliptic problem.

To solve the minimal surface problem using the programmatic workflow, first create a PDE model
with a single dependent variable.

model = createpde;

Create the geometry and include it in the model. The circleg function represents this geometry.

geometryFromEdges(model,@circleg);

Plot the geometry with the edge labels.

pdegplot(model,'EdgeLabels','on');
axis equal
title 'Geometry with Edge Labels';

3 Solving PDEs

3-216

Specify the coefficients.

a = 0;
f = 0;
cCoef = @(region,state) 1./sqrt(1+state.ux.^2 + state.uy.^2);
specifyCoefficients(model,'m',0,'d',0,'c',cCoef,'a',a,'f',f);

Specify the boundary conditions using the function u x, y = x2.

bcMatrix = @(region,~)region.x.^2;
applyBoundaryCondition(model,'dirichlet',...
 'Edge',1:model.Geometry.NumEdges,...
 'u',bcMatrix);

Generate and plot a mesh.

generateMesh(model,'Hmax',0.1);
figure;
pdemesh(model);
axis equal

 Minimal Surface Problem

3-217

Solve the problem by using the solvepde function. Because the problem is nonlinear, solvepde
invokes a nonlinear solver. Observe the solver progress by setting the
SolverOptions.ReportStatistics property of the model to 'on'.

model.SolverOptions.ReportStatistics = 'on';
result = solvepde(model);

Iteration Residual Step size Jacobian: Full
 0 1.8540e-02
 1 2.8715e-04 1.0000000
 2 1.2146e-06 1.0000000

u = result.NodalSolution;

Plot the solution.

figure;
pdeplot(model,'XYData',u,'ZData',u);
xlabel 'x'
ylabel 'y'
zlabel 'u(x,y)'
title 'Minimal Surface'

3 Solving PDEs

3-218

 Minimal Surface Problem

3-219

Minimal Surface Problem: PDE Modeler App
This example shows how to solve the minimal surface equation

−∇ ⋅ 1
1 + ∇u 2 ∇u = 0

on the unit disk Ω = {(x,y) | x2 + y2 ≤ 1}, with u = x2 on the boundary ∂Ω.

This example uses the PDE Modeler app. For the programmatic workflow, see “Minimal Surface
Problem” on page 3-216.

An elliptic equation in the toolbox form is

−∇ ⋅ c∇u + au = f

Therefore, for the minimal surface problem the coefficients are as follows:

c = 1
1 + ∇u 2 , a = 0, f = 0

Because the coefficient c is a function of the solution u, the minimal surface problem is a nonlinear
elliptic problem.

To solve the minimal surface problem in the PDE Modeler app, follow these steps:

1 Model the surface as a unit circle.

pdecirc([0 0 1])
2 Check that the application mode is set to Generic Scalar.
3 Specify the boundary conditions. To do this:

a
Switch to boundary mode by clicking the button or selecting Boundary > Boundary
Mode.

b Select all boundaries by selecting Edit > Select All.
c Select Boundary > Specify Boundary Conditions.
d Specify the Dirichlet boundary condition u = x2. To do this, specify h = 1, r = x.^2.

4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify c = 1./sqrt(1+ux.^2+uy.^2), a = 0, and f = 0.

5 Initialize the mesh by selecting Mesh > Initialize Mesh.
6 Refine the mesh by selecting Mesh > Refine Mesh.
7 Choose the nonlinear solver. To do this, select Solve > Parameters and check Use nonlinear

solver. Set the tolerance parameter to 0.001.
8 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.
9 Plot the solution in 3-D. To do this, select PlotParameters. In the resulting dialog box, select

Height (3-D plot).

3 Solving PDEs

3-220

 Minimal Surface Problem: PDE Modeler App

3-221

Poisson's Equation with Point Source and Adaptive Mesh
Refinement

This example shows how to solve a Poisson's equation with a delta-function point source on the unit
disk using the adaptmesh function.

Specifically, solve the Poisson's equation

−Δu = δ(x, y)

on the unit disk with zero Dirichlet boundary conditions. The exact solution expressed in polar
coordinates is

u(r, θ) = log(r)
2π ,

which is singular at the origin.

By using adaptive mesh refinement, Partial Equation Toolbox™ can accurately find the solution
everywhere away from the origin.

The following variables define the problem:

• c, a: The coefficients of the PDE.
• f: A function that captures a point source at the origin. It returns 1/area for the triangle

containing the origin and 0 for other triangles.

c = 1;
a = 0;
f = @circlef;

Create a PDE Model with a single dependent variable.

numberOfPDE = 1;
model = createpde(numberOfPDE);

Create a geometry and include it in the model.

g = @circleg;
geometryFromEdges(model,g);

Plot the geometry and display the edge labels.

figure;
pdegplot(model,'EdgeLabels','on');
axis equal
title 'Geometry With Edge Labels Displayed';

3 Solving PDEs

3-222

Specify the zero solution at all four outer edges of the circle.

applyBoundaryCondition(model,'dirichlet','Edge',(1:4),'u',0);

adaptmesh solves elliptic PDEs using the adaptive mesh generation. The tripick parameter lets
you specify a function that returns which triangles will be refined in the next iteration. circlepick
returns triangles with computed error estimates greater a given tolerance. The tolerance is provided
to circlepick using the 'par' parameter.

[u,p,e,t] = adaptmesh(g,model,c,a,f,'tripick', ...
 'circlepick', ...
 'maxt',2000, ...
 'par',1e-3);

Number of triangles: 258
Number of triangles: 515
Number of triangles: 747
Number of triangles: 1003
Number of triangles: 1243
Number of triangles: 1481
Number of triangles: 1705
Number of triangles: 1943
Number of triangles: 2155

Maximum number of triangles obtained.

Plot the finest mesh.

 Poisson's Equation with Point Source and Adaptive Mesh Refinement

3-223

figure;
pdemesh(p,e,t);
axis equal

Plot the error values.

x = p(1,:)';
y = p(2,:)';
r = sqrt(x.^2+y.^2);
uu = -log(r)/2/pi;
figure;
pdeplot(p,e,t,'XYData',u-uu,'ZData',u-uu,'Mesh','off');

3 Solving PDEs

3-224

Plot the FEM solution on the finest mesh.

figure;
pdeplot(p,e,t,'XYData',u,'ZData',u,'Mesh','off');

 Poisson's Equation with Point Source and Adaptive Mesh Refinement

3-225

3 Solving PDEs

3-226

Heat Transfer in Block with Cavity: PDE Modeler App
This example shows how to solve a heat equation that describes the diffusion of heat in a body. This
example uses the PDE Modeler app. For programmatic workflow, see “Heat Transfer in Block with
Cavity” on page 3-231.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100
degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at
a constant rate, for example -10 W/m2. All the other boundaries are insulated. The temperature in the
block at the starting time t0 = 0 is 0 degrees. The goal is to model the heat distribution during the
first five seconds.

The PDE governing this problem is a parabolic heat equation. Partial Differential Equation Toolbox
solves the generic parabolic PDE of the form

d∂u∂t − ∇ ⋅ c∇u + au = f

The heat equation has the form:

d∂u∂t − Δu = 0

To solve this problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.

pdeModeler
2 Model the geometry: draw a rectangle with corners (-0.5,-0.8), (0.5,-0.8), (0.5,0.8), and (-0.5,0.8)

and a rectangle with corners (-0.05,-0.4), (0.05,-0.4), (0.05,0.4), and (-0.05,0.4). Draw the first
rectangle by using the pderect function.

pderect([-0.5 0.5 -0.8 0.8])
3 Display grid lines with extra ticks at -0.05 and 0.05. To do this, select Options > Grid

Spacing, clear the Auto checkbox, and enter X-axis extra ticks at -0.05 and 0.05. Then select
Options > Grid.

 Heat Transfer in Block with Cavity: PDE Modeler App

3-227

4 Set the x-axis limit to [-0.6 0.6] and y-axis limit to [-1 1]. To do this, select Options > Axes
Limits and set the corresponding ranges.

5 Select Options > Snap to align any new shape to the grid lines. Then draw the rectangle with
corners (-0.05,-0.4), (0.05,-0.4), (0.05,0.4), and (-0.05,0.4)

6 Model the geometry by entering R1-R2 in the Set formula field.
7 Check that the application mode is set to Generic Scalar.
8 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Then select Boundary > Specify Boundary Conditions and specify the
Neumann boundary condition.

• For convenience, first specify the insulating Neumann boundary condition ∂u/∂n = 0 for all
boundaries. To do this, select all boundaries by using Edit > Select All and specify g = 0, q
= 0.

• Specify the Dirichlet boundary condition u = 100 for the left side of the block. To do this,
specify h = 1, r = 100.

• Specify the Neumann boundary condition ∂u/∂n = –10 for the right side of the block. To do
this, specify g = -10, q = 0.

9 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Heat equation is a parabolic equation, so select the Parabolic type of PDE. Specify c
= 1, a = 0, f = 0, and d = 1.

10 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >
Refine Mesh.

11 Set the initial value to 0, the solution time to 5 seconds, and compute the solution every 0.5
seconds. To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to
0:0.5:5, and u(t0) to 0.

12 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The app
solves the heat equation at 11 different times from 0 to 5 seconds and displays the heat
distribution at the end of the time span.

3 Solving PDEs

3-228

13 Plot isothermal lines using a contour plot and the heat flux vector field using arrows and change
the colormap to hot. To do this:

a Select Plot > Parameters.
b In the resulting dialog box, select the Color, Contour, and Arrows options. Select -

c*grad(u) from Arrows drop-down menu.
c Change the colormap to hot by using the corresponding drop-down menu in the same dialog

box.

14 Use an animated plot to visualize the dynamic behavior of the temperature. For this, select Plot
> Parameters and then select the Animation option.

15 The temperature in the block rises very quickly. To improve the animation and focus on the first
second, change the list of times to the MATLAB expression logspace(-2,0.5,20). To do this,
select Solve > Parameters. In the Solve Parameters dialog box, set time to
logspace(-2,0.5,20).

 Heat Transfer in Block with Cavity: PDE Modeler App

3-229

16 You can explore the solution by varying the parameters of the model and plotting the results. For
example, change the heat capacity coefficient d and the heat flow at the right boundary to see
how these parameters affect the heat distribution.

3 Solving PDEs

3-230

Heat Transfer in Block with Cavity
This example shows how to solve for the heat distribution in a block with cavity.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100
degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at
a constant rate, for example −10W /m2. All the other boundaries are insulated. The temperature in
the block at the starting time t0 = 0 is 0 degrees. The goal is to model the heat distribution during the
first five seconds.

Create Thermal Analysis Model

The first step in solving a heat transfer problem is to create a thermal analysis model. This is a
container that holds the geometry, thermal material properties, internal heat sources, temperature on
the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

thermalmodel = createpde('thermal','transient');

Import Geometry

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges(thermalmodel,@crackg);

Plot the geometry, displaying edge labels.

pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

 Heat Transfer in Block with Cavity

3-231

Specify Thermal Properties of Material

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1,...
 'MassDensity',1,...
 'SpecificHeat',1);

Apply Boundary Conditions

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. The toolbox uses the default insulating boundary condition for all other
boundaries.

thermalBC(thermalmodel,'Edge',6,'Temperature',100);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10);

Set Initial Conditions

Set an initial value of 0 for the temperature.

thermalIC(thermalmodel,0);

Generate Mesh

Create and plot a mesh.

generateMesh(thermalmodel);
figure

3 Solving PDEs

3-232

pdemesh(thermalmodel)
title('Mesh with Quadratic Triangular Elements')

Specify Solution Times

Set solution times to be 0 to 5 seconds in steps of 1/2.

tlist = 0:0.5:5;

Calculate Solution

Use the solve function to calculate the solution.

thermalresults = solve(thermalmodel,tlist)

thermalresults =
 TransientThermalResults with properties:

 Temperature: [1320x11 double]
 SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5]
 XGradients: [1320x11 double]
 YGradients: [1320x11 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Evaluate Heat Flux

Compute the heat flux density.

 Heat Transfer in Block with Cavity

3-233

[qx,qy] = evaluateHeatFlux(thermalresults);

Plot Temperature Distribution and Heat Flux

Plot the solution at the final time step, t = 5.0 seconds, with isothermal lines using a contour plot, and
plot the heat flux vector field using arrows.

pdeplot(thermalmodel,'XYData',thermalresults.Temperature(:,end), ...
 'Contour','on',...
 'FlowData',[qx(:,end),qy(:,end)], ...
 'ColorMap','hot')

3 Solving PDEs

3-234

Heat Transfer Problem with Temperature-Dependent
Properties

This example shows how to solve the heat equation with a temperature-dependent thermal
conductivity. The example shows an idealized thermal analysis of a rectangular block with a
rectangular cavity in the center.

The partial differential equation for transient conduction heat transfer is:

ρCp
∂T
∂t − ∇ ⋅ (k∇T) = f

where T is the temperature, ρ is the material density, Cp is the specific heat, and k is the thermal
conductivity. f is the heat generated inside the body which is zero in this example.

Steady-State Solution: Constant Thermal Conductivity

Create a steady-state thermal model.

thermalmodelS = createpde('thermal','steadystate');

Create a 2-D geometry by drawing one rectangle the size of the block and a second rectangle the size
of the slot.

r1 = [3 4 -.5 .5 .5 -.5 -.8 -.8 .8 .8];
r2 = [3 4 -.05 .05 .05 -.05 -.4 -.4 .4 .4];
gdm = [r1; r2]';

Subtract the second rectangle from the first to create the block with a slot.

g = decsg(gdm,'R1-R2',['R1'; 'R2']');

Convert the decsg format into a geometry object. Include the geometry in the model.

geometryFromEdges(thermalmodelS,g);

Plot the geometry with edge labels displayed. The edge labels will be used below in the function for
defining boundary conditions.

figure
pdegplot(thermalmodelS,'EdgeLabels','on');
axis([-.9 .9 -.9 .9]);
title 'Block Geometry With Edge Labels Displayed'

 Heat Transfer Problem with Temperature-Dependent Properties

3-235

Set the temperature on the left edge to 100 degrees. On the right edge, there is a prescribed heat
flux out of the block. The top and bottom edges and the edges inside the cavity are all insulated, that
is, no heat is transferred across these edges.

thermalBC(thermalmodelS,'Edge',6,'Temperature',100);
thermalBC(thermalmodelS,'Edge',1,'HeatFlux',-10);

Specify the thermal conductivity of the material. First, consider the constant thermal conductivity, for
example, equal one. Later, consider a case where the thermal conductivity is a function of
temperature.

thermalProperties(thermalmodelS,'ThermalConductivity',1);

Create a mesh with elements no larger than 0.2.

generateMesh(thermalmodelS,'Hmax',0.2);
figure
pdeplot(thermalmodelS);
axis equal
title 'Block With Finite Element Mesh Displayed'

3 Solving PDEs

3-236

Calculate the steady-state solution.

R = solve(thermalmodelS);
T = R.Temperature;
figure
pdeplot(thermalmodelS,'XYData',T,'Contour','on','ColorMap','hot');
axis equal
title 'Temperature, Steady State Solution'

 Heat Transfer Problem with Temperature-Dependent Properties

3-237

Transient Solution: Constant Thermal Conductivity

Create a transient thermal model and include the geometry.

thermalmodelT = createpde('thermal','transient');

r1 = [3 4 -.5 .5 .5 -.5 -.8 -.8 .8 .8];
r2 = [3 4 -.05 .05 .05 -.05 -.4 -.4 .4 .4];
gdm = [r1; r2]';
g = decsg(gdm,'R1-R2',['R1'; 'R2']');
geometryFromEdges(thermalmodelT,g);

Specify thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodelT,'ThermalConductivity',1,...
 'MassDensity',1,...
 'SpecificHeat',1);

Define boundary conditions. In the transient cases, the temperature on the left edge is zero at time=0
and ramps to 100 degrees over .5 seconds. You can find the helper function
transientBCHeatedBlock under matlab/R20XXx/examples/pde/main.

thermalBC(thermalmodelT,'Edge',6,'Temperature',@transientBCHeatedBlock);

On the right edge, there is a prescribed heat flux out of the block.

thermalBC(thermalmodelT,'Edge',1,'HeatFlux',-10);

3 Solving PDEs

3-238

The top and bottom edges as well as the edges inside the cavity are all insulated, that is no heat is
transferred across these edges.

Create a mesh with elements no larger than 0.2.

msh = generateMesh(thermalmodelT,'Hmax',0.2);
figure
pdeplot(thermalmodelT);
axis equal
title 'Block With Finite Element Mesh Displayed'

Calculate the transient solution. Perform a transient analysis from zero to five seconds. The toolbox
saves the solution every .1 seconds so that plots of the results as functions of time can be created.

tlist = 0:.1:5;
thermalIC(thermalmodelT,0);
R = solve(thermalmodelT,tlist);
T = R.Temperature;

Two plots are useful in understanding the results from this transient analysis. The first is a plot of the
temperature at the final time. The second is a plot of the temperature at a specific point in the block,
in this case near the center of the right edge, as a function of time. To identify a node near the center
of the right edge, it is convenient to define this short utility function.

getClosestNode = @(p,x,y) min((p(1,:) - x).^2 + (p(2,:) - y).^2);

Call this function to get a node near the center of the right edge.

 Heat Transfer Problem with Temperature-Dependent Properties

3-239

[~,nid] = getClosestNode(msh.Nodes, .5, 0);

The two plots are shown side-by-side in the figure below. The temperature distribution at this time is
very similar to that obtained from the steady-state solution above. At the right edge, for times less
than about one-half second, the temperature is less than zero. This is because heat is leaving the
block faster than it is arriving from the left edge. At times greater than about three seconds, the
temperature has essentially reached steady-state.

h = figure;
h.Position = [1 1 2 1].*h.Position;
subplot(1,2,1);
axis equal
pdeplot(thermalmodelT,'XYData',T(:,end),'Contour','on', ...
 'ColorMap','hot');
axis equal
title 'Temperature, Final Time, Transient Solution'
subplot(1,2,2);
axis equal
plot(tlist, T(nid,:));
grid on
title 'Temperature at Right Edge as a Function of Time';
xlabel 'Time, seconds'
ylabel 'Temperature, degrees-Celsius'

Steady State Solution: Temperature-Dependent Thermal Conductivity

It is not uncommon for material properties to be functions of the dependent variables. For example,
assume that the thermal conductivity is a simple linear function of temperature:

k = @(~,state) 0.3+0.003*state.u;

In this case, the variable u is the temperature. For this example, assume that the density and specific
heat are not functions of temperature.

thermalProperties(thermalmodelS,'ThermalConductivity',k);

Calculate the steady-state solution. Compared with the constant-conductivity case, the temperature
on the right-hand edge is lower. This is due to the lower conductivity in regions with lower
temperature.

3 Solving PDEs

3-240

R = solve(thermalmodelS);
T = R.Temperature;
figure
pdeplot(thermalmodelS,'XYData',T,'Contour','on','ColorMap','hot');
axis equal
title 'Temperature, Steady State Solution'

Transient Solution: Temperature-Dependent Thermal Conductivity

Now perform a transient analysis with the temperature-dependent conductivity.

thermalProperties(thermalmodelT,'ThermalConductivity',k,...
 'MassDensity',1,...
 'SpecificHeat',1);

Use the same timespan tlist = 0:.1:5 as for the linear case.

thermalIC(thermalmodelT,0);
R = solve(thermalmodelT,tlist);
T = R.Temperature;

Plot the temperature at the final time step and the temperature at the right edge as a function of
time. The plot of temperature at the final time step is only slightly different from the comparable plot
from the linear analysis: temperature at the right edge is slightly lower than the linear case. The plot
of temperature as a function of time is considerably different from the linear case. Because of the
lower conductivity at lower temperatures, the heat takes longer to reach the right edge of the block.
In the linear case, the temperature is essentially constant at around three seconds but for this
nonlinear case, the temperature curve is just beginning to flatten at five seconds.

 Heat Transfer Problem with Temperature-Dependent Properties

3-241

h = figure;
h.Position = [1 1 2 1].*h.Position;
subplot(1,2,1);
axis equal
pdeplot(thermalmodelT,'XYData',T(:,end),'Contour','on', ...
 'ColorMap','hot');
axis equal
title 'Temperature, Final Time, Transient Solution'
subplot(1,2,2);
axis equal
plot(tlist(1:size(T,2)), T(nid,:));
grid on
title 'Temperature at Right Edge as a Function of Time (Nonlinear)';
xlabel 'Time, seconds'
ylabel 'Temperature, degrees-Celsius'

3 Solving PDEs

3-242

Heat Conduction in Multidomain Geometry with Nonuniform
Heat Flux

This example shows how to perform a 3-D transient heat conduction analysis of a hollow sphere made
of three different layers of material.

The sphere is subject to a nonuniform external heat flux.

The physical properties and geometry of this problem are described in Singh, Jain, and Rizwan-uddin
(see Reference), which also has an analytical solution for this problem. The inner face of the sphere
has a temperature of zero at all times. The outer hemisphere with positive y value has a nonuniform
heat flux defined by

qouter = θ2(π − θ)2ϕ2(π − ϕ)2

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ π .

θ and ϕ are azimuthal and elevation angles of points in the sphere. Initially, the temperature at all
points in the sphere is zero.

Create a thermal model for transient thermal analysis.

thermalmodel = createpde('thermal','transient');

Create a multilayered sphere using the multisphere function. Assign the resulting geometry to the
thermal model. The sphere has three layers of material with a hollow inner core.

gm = multisphere([1,2,4,6],'Void',[true,false,false,false]);
thermalmodel.Geometry = gm;

Plot the geometry and show the cell labels and face labels. Use a FaceAlpha of 0.25 so that labels of
the interior layers are visible.

figure('Position',[10,10,800,400]);
subplot(1,2,1)
pdegplot(thermalmodel,'FaceAlpha',0.25,'CellLabel','on')
title('Geometry with Cell Labels')
subplot(1,2,2)
pdegplot(thermalmodel,'FaceAlpha',0.25,'FaceLabel','on')
title('Geometry with Face Labels')

 Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

3-243

Generate a mesh for the geometry. Choose a mesh size that is coarse enough to speed the solution,
but fine enough to represent the geometry reasonably accurately.

generateMesh(thermalmodel,'Hmax',1);

Specify the thermal conductivity, mass density, and specific heat for each layer of the sphere. The
material properties are dimensionless values, not given by realistic material properties.

thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',1, ...
 'MassDensity',1, ...
 'SpecificHeat',1);
thermalProperties(thermalmodel,'Cell',2,'ThermalConductivity',2, ...
 'MassDensity',1, ...
 'SpecificHeat',0.5);
thermalProperties(thermalmodel,'Cell',3,'ThermalConductivity',4, ...
 'MassDensity',1, ...
 'SpecificHeat',4/9);

Specify boundary conditions. The innermost face has a temperature of zero at all times.

thermalBC(thermalmodel,'Face',1,'Temperature',0);

The outer surface of the sphere has an external heat flux. Use the functional form of thermal
boundary conditions to define the heat flux.

function Qflux = externalHeatFlux(region,~)

[phi,theta,~] = cart2sph(region.x,region.y,region.z);

theta = pi/2 - theta; % transform to 0 <= theta <= pi

ids = phi > 0;

3 Solving PDEs

3-244

Qflux = zeros(size(region.x));

Qflux(ids) = theta(ids).^2.*(pi - theta(ids)).^2.*phi(ids).^2.*(pi -
phi(ids)).^2;

end

Plot the flux on the surface.

[phi,theta,r] = meshgrid(linspace(0,2*pi),linspace(-pi/2,pi/2),6);
[x,y,z] = sph2cart(phi,theta,r);
region.x = x;
region.y = y;
region.z = z;
flux = externalHeatFlux(region,[]);
figure
surf(x,y,z,flux,'LineStyle','none')
axis equal
view(130,10)
colorbar
xlabel 'x'
ylabel 'y'
zlabel 'z'
title('External Flux')

Include this boundary condition in the model.

 Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

3-245

thermalBC(thermalmodel,'Face',4, ...
 'HeatFlux',@externalHeatFlux, ...
 'Vectorized','on');

Define the initial temperature to be zero at all points.

thermalIC(thermalmodel,0);

Define a time-step vector and solve the transient thermal problem.

tlist = [0,2,5:5:50];
R = solve(thermalmodel,tlist);

To plot contours at several times, with the contour levels being the same for all plots, determine the
range of temperatures in the solution. The minimum temperature is zero because it is the boundary
condition on the inner face of the sphere.

Tmin = 0;

Find the maximum temperature from the final time-step solution.

Tmax = max(R.Temperature(:,end));

Plot contours in the range Tmin to Tmax at the times in tlist.

h = figure;
for i = 1:numel(tlist)
 pdeplot3D(thermalmodel,'ColorMapData',R.Temperature(:,i))
 caxis([Tmin,Tmax])
 view(130,10)
 title(['Temperature at Time ' num2str(tlist(i))]);
 M(i) = getframe;

end

3 Solving PDEs

3-246

To see a movie of the contours when running this example on your computer, execute the following
line:

movie(M,2)

Visualize the temperature contours on the cross-section. First, define a rectangular grid of points on
the y − z plane where x = 0.

[YG,ZG] = meshgrid(linspace(-6,6,100),linspace(-6,6,100));
XG = zeros(size(YG));

Interpolate the temperature at the grid points. Perform interpolation for several time steps to observe
the evolution of the temperature contours.

tIndex = [2,3,5,7,9,11];
varNames = {'Time_index','Time_step'};
index_step = table(tIndex.',tlist(tIndex).','VariableNames',varNames);
disp(index_step);

 Time_index Time_step
 __________ _________

 2 2
 3 5
 5 15
 7 25
 9 35
 11 45

 Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

3-247

TG = interpolateTemperature(R,XG,YG,ZG,tIndex);

Define the geometric spherical layers on the cross-section.

t = linspace(0,2*pi);
ylayer1 = cos(t); zlayer1 = sin(t);
ylayer2 = 2*cos(t); zlayer2 = 2*sin(t);
ylayer3 = 4*cos(t); zlayer3 = 4*sin(t);
ylayer4 = 6*cos(t); zlayer4 = 6*sin(t);

Plot the contours in the range Tmin to Tmax for the time steps corresponding to the time indices
tIndex.

figure('Position',[10,10,1000,550]);
for i = 1:numel(tIndex)
 subplot(2,3,i)
 contour(YG,ZG,reshape(TG(:,i),size(YG)),'ShowText','on')
 colorbar
 title(['Temperature at Time ' num2str(tlist(tIndex(i)))]);
 hold on
 caxis([Tmin,Tmax])
 axis equal
 % Plot boundaries of spherical layers for reference.
 plot(ylayer1,zlayer1,'k','LineWidth',1.5)
 plot(ylayer2,zlayer2,'k','LineWidth',1.5)
 plot(ylayer3,zlayer3,'k','LineWidth',1.5)
 plot(ylayer4,zlayer4,'k','LineWidth',1.5)
end

3 Solving PDEs

3-248

Reference

[1] Singh, Suneet, P. K. Jain, and Rizwan-uddin. "Analytical Solution for Three-Dimensional, Unsteady
Heat Conduction in a Multilayer Sphere." ASME. J. Heat Transfer. 138(10), 2016, pp.
101301-101301-11.

 Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

3-249

Inhomogeneous Heat Equation on Square Domain
This example shows how to solve the heat equation with a source term.

The basic heat equation with a unit source term is

∂u
∂t − Δu = 1

This equation is solved on a square domain with a discontinuous initial condition and zero
temperatures on the boundaries.

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Create a square geometry centered at x = 0 and y = 0 with sides of length 2. Include a circle of
radius 0.4 concentric with the square.

R1 = [3;4;-1;1;1;-1;-1;-1;1;1];
C1 = [1;0;0;0.4];
C1 = [C1;zeros(length(R1) - length(C1),1)];
gd = [R1,C1];
sf = 'R1+C1';
ns = char('R1','C1')';
g = decsg(gd,sf,ns);

Append the geometry to the model.

geometryFromEdges(thermalmodel,g);

Specify thermal properties of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1,...
 'MassDensity',1,...
 'SpecificHeat',1);

Specify internal heat source.

internalHeatSource(thermalmodel,1);

Plot the geometry and display the edge labels for use in the boundary condition definition.

figure
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
axis([-1.1 1.1 -1.1 1.1]);
axis equal
title 'Geometry With Edge and Subdomain Labels'

3 Solving PDEs

3-250

Set zero temperatures on all four outer edges of the square.

thermalBC(thermalmodel,'Edge',1:4,'Temperature',0);

The discontinuous initial value is 1 inside the circle and zero outside. Specify zero initial temperature
everywhere.

thermalIC(thermalmodel,0);

Specify non-zero initial temperature inside the circle (Face 2).

thermalIC(thermalmodel,1,'Face',2);

Generate and plot a mesh.

msh = generateMesh(thermalmodel);
figure;
pdemesh(thermalmodel);
axis equal

 Inhomogeneous Heat Equation on Square Domain

3-251

Find the solution at 20 points in time between 0 and 0.1.

nframes = 20;
tlist = linspace(0,0.1,nframes);

thermalmodel.SolverOptions.ReportStatistics ='on';
result = solve(thermalmodel,tlist);

99 successful steps
0 failed attempts
200 function evaluations
1 partial derivatives
20 LU decompositions
199 solutions of linear systems

T = result.Temperature;

Plot the solution.

figure
Tmax = max(max(T));
Tmin = min(min(T));
for j = 1:nframes
 pdeplot(thermalmodel,'XYData',T(:,j),'ZData',T(:,j));
 caxis([Tmin Tmax]);
 axis([-1 1 -1 1 0 1]);
 Mv(j) = getframe;
end

3 Solving PDEs

3-252

To play the animation, use the movie(Mv,1) command.

 Inhomogeneous Heat Equation on Square Domain

3-253

Heat Distribution in Circular Cylindrical Rod
This example shows how to simplify a 3-D axisymmetric thermal problem to a 2-D problem using the
symmetry around the axis of rotation of the body.

This example analyzes heat transfer in a rod with a circular cross section. There is a heat source at
the bottom of the rod and a fixed temperature at the top. The outer surface of the rod exchanges heat
with the environment because of convection. In addition, the rod itself generates heat because of
radioactive decay. The goal is to find the temperature in the rod as a function of time.

The model geometry, material properties, and boundary conditions must all be symmetric about the
axis of rotation. The toolbox assumes that the axis of rotation is the vertical axis passing through r =
0.

Steady-State Solution

First, compute the steady-state solution. If the final time in the transient analysis is sufficiently large,
the transient solution at the final time must be close to the steady state solution. By comparing these
two results, you can check the accuracy of the transient analysis.

Create a steady-state thermal model for solving an axisymmetric problem.

thermalModelS = createpde('thermal','steadystate-axisymmetric');

The 2-D model is a rectangular strip whose x-dimension extends from the axis of symmetry to the
outer surface and y-dimension extends over the actual length of the rod (from -1.5 m to 1.5 m).
Create the geometry by specifying the coordinates of its four corners.

g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');

Include the geometry in the model.

geometryFromEdges(thermalModelS,g);

Plot the geometry with the edge labels.

figure
pdegplot(thermalModelS,'EdgeLabels','on')
axis equal

3 Solving PDEs

3-254

The rod is composed of a material with these thermal properties.

k = 40; % Thermal conductivity, W/(m*C)
rho = 7800; % Density, kg/m^3
cp = 500; % Specific heat, W*s/(kg*C)
q = 20000; % Heat source, W/m^3

For a steady-state analysis, specify the thermal conductivity of the material.

thermalProperties(thermalModelS,'ThermalConductivity',k);

Specify the internal heat source.

internalHeatSource(thermalModelS,q);

Define the boundary conditions. There is no heat transferred in the direction normal to the axis of
symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is
kept at a constant temperature T = 100 °C.

thermalBC(thermalModelS,'Edge',2,'Temperature',100);

Specify the convection boundary condition on the outer boundary (edge 3). The surrounding
temperature at the outer boundary is 100 °C, and the heat transfer coefficient is 50 W/ m ⋅∘ C .

thermalBC(thermalModelS,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);

 Heat Distribution in Circular Cylindrical Rod

3-255

The heat flux at the bottom of the rod (edge 4) is 5000 W/m2.

thermalBC(thermalModelS,'Edge',4,'HeatFlux',5000);

Generate the mesh.

msh = generateMesh(thermalModelS);
figure
pdeplot(thermalModelS)
axis equal

Solve the model and plot the result.

result = solve(thermalModelS);
T = result.Temperature;
figure
pdeplot(thermalModelS,'XYData',T,'Contour','on')
axis equal
title 'Steady-State Temperature'

3 Solving PDEs

3-256

Transient Solution

Create a transient thermal model for solving an axisymmetric problem.

thermalModelT = createpde('thermal','transient-axisymmetric');

Use the same geometry and mesh as for the steady-state analysis.

g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');
geometryFromEdges(thermalModelT,g);

thermalModelT.Mesh = msh;

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalModelT,'ThermalConductivity',k,...
 'MassDensity',rho,...
 'SpecificHeat',cp);

Specify the internal heat source and boundary conditions.

internalHeatSource(thermalModelT,q);

thermalBC(thermalModelT,'Edge',2,'Temperature',100);
thermalBC(thermalModelT,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);
thermalBC(thermalModelT,'Edge',4,'HeatFlux',5000);

 Heat Distribution in Circular Cylindrical Rod

3-257

Specify that the Initial temperature in the rod is 0 °C.

thermalIC(thermalModelT,0);

Compute the transient solution for solution times from t = 0 to t = 50000 seconds.

tfinal = 50000;
tlist = 0:100:tfinal;
result = solve(thermalModelT,tlist);

Plot the temperature distribution at t = 50000 seconds.

T = result.Temperature;

figure
pdeplot(thermalModelT,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf(['Transient Temperature' ...
 ' at Final Time (%g seconds)'],tfinal))

Find the temperature at the bottom surface of the rod: first, at the center axis and then on the outer
surface.

Tcenter = interpolateTemperature(result,[0.0;-1.5],1:numel(tlist));
Touter = interpolateTemperature(result,[0.2;-1.5],1:numel(tlist));

Plot the temperature at the left end of the rod as a function of time. The outer surface of the rod is
exposed to the environment with a constant temperature of 100 °C. When the surface temperature of

3 Solving PDEs

3-258

the rod is less than 100 °C, the environment heats the rod. The outer surface is slightly warmer than
the inner axis. When the surface temperature is greater than 100 °C, the environment cools the rod.
The outer surface becomes cooler than the interior of the rod.

figure
plot(tlist,Tcenter)
hold on
plot(tlist,Touter,'--')
title 'Temperature at the Bottom as a Function of Time'
xlabel 'Time, s'
ylabel 'Temperature, C'
grid on
legend('Center Axis','Outer Surface','Location','SouthEast')

 Heat Distribution in Circular Cylindrical Rod

3-259

Thermal Analysis of Disc Brake
This example analyses the temperature distribution of a disc brake. Disc brakes absorb the
translational mechanical energy through friction and transform it into the thermal energy, which then
dissipates. The transient thermal analysis of a disc brake is critical because the friction and braking
performance decreases at high temperatures. Therefore, disc brakes must not exceed a given
temperature limit during operation.

This example simulates the disc behavior in two steps:

• Perform a highly detailed simulation of the brake pad moving around the disc. Because the
computational cost is high, this part of the example only simulates one half revolution (25 ms).

• Simulate full braking when the car goes from 100 km/h to 0 km/h in 2.75 seconds, and then
remains stopped for 2.25 more seconds in order to allow the heat in the disc to dissipate.

The example uses a vehicle model in Simscape Driveline™ to obtain the time dependency of the
dissipated power.

Point Heat Source Moving Around the Disc

Simulate a circular brake pad moving around the disc. This detailed simulation over a short timescale
models the heat source as a point moving around the disc.

First, create a thermal transient model.

model = createpde('thermal','transient');

Import the disc geometry.

importGeometry(model,'brake_disc.stl');

Plot the geometry with the face labels.

figure
pdegplot(model,'FaceLabels','on');
view([-5 -47])

3 Solving PDEs

3-260

Generate a fine mesh with a small target maximum element edge length. The resulting mesh has
more than 130000 nodes (degrees of freedom).

generateMesh(model,'Hmax',0.005);

Plot the mesh.

figure
pdemesh(model)
view([0,90])

 Thermal Analysis of Disc Brake

3-261

Specify the thermal properties of the material.

thermalProperties(model,'ThermalConductivity',100, ...
 'MassDensity',8000, ...
 'SpecificHeat',500);

Specify the boundary conditions. All the faces are exposed to air, so there will be free convection.

thermalBC(model,'Face',1:model.Geometry.NumFaces, ...
 'ConvectionCoefficient',10, ...
 'AmbientTemperature',30);

Model the moving heat source by using a function handle that defines the thermal load as a function
of space and time. For the definition of the movingHeatSource function, see the Heat Source
Functions section at the bottom of this page.

thermalBC(model,'Face',11,'HeatFlux',@movingHeatSource);
thermalBC(model,'Face',4,'HeatFlux',@movingHeatSource);

Specify the initial temperature.

thermalIC(model,30);

Solve the model for the time steps from 0 to 25 ms.

tlist = linspace(0,0.025,100); % Half revolution
R1 = solve(model,tlist);

3 Solving PDEs

3-262

Plot the temperature distribution at 25 ms.

figure('units','normalized','outerposition',[0 0 1 1])
pdeplot3D(model,'ColorMapData',R1.Temperature(:,end))

The animation function visualizes the solution for all time steps. To play the animation, use this
command:

animation(model,R1)

Because the heat diffusion time is much longer than the period of a revolution, you can simplify the
heat source for the long simulation.

Static Ring Heat Source

Now find the disc temperatures for a longer period of time. Because the heat does not have time to
diffuse during a revolution, it is reasonable to approximate the heat source with a static heat source
in the shape of the path of the brake pad.

Compute the heat flow applied to the disc as a function of time. To do this, use a Simscape Driveline™
model of a four-wheeled, 2000 kg vehicle that brakes from 100 km/h to 0 km/h in approximately 2.75
s.

driveline_model = 'DrivelineVehicle_isothermal';
open_system(driveline_model);

 Thermal Analysis of Disc Brake

3-263

M = 2000; % kg
V0 = 27.8; % m/s, which is around 100 km/h
P = 277; % bar

simOut = sim(driveline_model);

heatFlow = simOut.simlog.Heat_Flow_Rate_Sensor.Q.series.values;
tout = simOut.tout;

Obtain the time-dependent heat flow by using the results from the Simscape Driveline model.

drvln = struct();
drvln.tout = tout;
drvln.heatFlow = heatFlow;

Generate a mesh.

generateMesh(model);

Specify the boundary condition as a function handle. For the definition of the ringHeatSource
function, see the Heat Source Functions section at the bottom of this page.

thermalBC(model,'Face',11, ...
 'HeatFlux',@(r,s)ringHeatSource(r,s,drvln));
thermalBC(model,'Face',4, ...
 'HeatFlux',@(r,s)ringHeatSource(r,s,drvln));

3 Solving PDEs

3-264

Solve the model for times from 0 to 5 seconds.

tlist = linspace(0,5,250);
R2 = solve(model,tlist);

Plot the temperature distribution at the final time step t = 5 seconds.

figure('units','normalized','outerposition',[0 0 1 1])
pdeplot3D(model,'ColorMapData',R2.Temperature(:,end))

The animation function visualizes the solution for all time steps. To play the animation, use the
following command:

animation(model,R2)

Find the maximum temperature of the disc. The maximum temperature is low enough to ensure that
the braking pad performs as expected.

Tmax = max(max(R2.Temperature))

Tmax = 52.2895

Heat Source Functions for Moving and Static Heat Sources

function F = movingHeatSource(region,state)

% Parameters ---------

 Thermal Analysis of Disc Brake

3-265

R = 0.115; % Distance from center of disc to center of braking pad
r = 0.025; % Radius of braking pad
xc = 0.15; % x-coordinate of center of disc
yc = 0.15; % y-coordinate of center of disc

T = 0.05; % Period of 1 revolution of disc

power = 35000; % Braking power in watts
Tambient = 30; % Ambient temperature (for convection)
h = 10; % Convection heat transfer coefficient in W/m^2*K
%--------------------

theta = 2*pi/T*state.time;

xs = xc + R*cos(theta);
ys = yc + R*sin(theta);

x = region.x;
y = region.y;

F = h*(Tambient - state.u); % Convection

if isnan(state.time)
 F = nan(1,numel(x));
end

idx = (x - xs).^2 + (y - ys).^2 <= r^2;

F(1,idx) = 0.5*power/(pi*r.^2); % 0.5 because there are 2 faces

end

function F = ringHeatSource(region,state,driveline)

% Parameters ---------

R = 0.115; % Distance from center of disc to center of braking pad
r = 0.025; % Radius of braking pad
xc = 0.15; % x-coordinate of center of disc
yc = 0.15; % y-coordinate of center of disc

% Braking power in watts
power = interp1(driveline.tout,driveline.heatFlow,state.time);
Tambient = 30; % Ambient temperature (for convection)
h = 10; % Convection heat transfer coefficient in W/m^2*K
Tf = 2.5; % Time in seconds
%--------------------

x = region.x;
y = region.y;

F = h*(Tambient - state.u); % Convection

if isnan(state.time)
 F = nan(1,numel(x));

3 Solving PDEs

3-266

end

if state.time < Tf
 rad = sqrt((x - xc).^2 + (y - yc).^2);

 idx = rad >= R-r & rad <= R+r;

 area = pi*((R+r)^2 - (R-r)^2);
 F(1,idx) = 0.5*power/area; % 0.5 because there are 2 faces
end

end

 Thermal Analysis of Disc Brake

3-267

Heat Distribution in Circular Cylindrical Rod: PDE Modeler App
Solve a 3-D parabolic PDE problem by reducing the problem to 2-D using coordinate transformation.
This example uses the PDE Modeler app. For the command-line solution, see “Heat Distribution in
Circular Cylindrical Rod” on page 3-254.

Consider a cylindrical radioactive rod. Heat is continuously added at the left end of the rod, while the
right end is kept at a constant temperature. At the outer boundary, heat is exchanged with the
surroundings by transfer. At the same time, heat is uniformly produced in the whole rod due to
radioactive processes. Assuming that the initial temperature is zero leads to the following equation:

ρC∂u∂t − ∇ · k∇u = q

Here, ρ, C, and k are the density, thermal capacity, and thermal conductivity of the material, u is the
temperature, and q is the heat generated in the rod.

Since the problem is axisymmetric, it is convenient to write this equation in a cylindrical coordinate
system.

ρC∂u∂t −
1
r
∂
∂r kr ∂u∂r − 1

r2
∂
∂θ k∂u∂θ − ∂

∂z k∂u∂z = q

Here r, θ, and z are the three coordinate variables of the cylindrical system. Because the problem is
axisymmetric, ∂u/ ∂θ = 0.

This is a cylindrical problem, and Partial Differential Equation Toolbox requires equations to be in
Cartesian coordinates. To transform the equation to the Cartesian coordinates, first multiply both
sides of the equation by r:

ρrC∂u∂t −
∂
∂r kr ∂u∂r − ∂

∂z kr ∂u∂z = qr

Then define r as y and z as x:

ρyC∂u∂t − ∇ · ky∇u = qy

For this example, use these parameters:

• Density, ρ = 7800 kg/m3

• Thermal capacity, C = 500 W·s/kg·ºC
• Thermal conductivity, k = 40 W/mºC
• Radioactive heat source, q = 20000 W/m3

• Temperature at the right end, T_right = 100 ºC
• Heat flux at the left end, HF_left = 5000 W/m2

• Surrounding temperature at the outer boundary, T_outer = 100 ºC
• Heat transfer coefficient, h_outer = 50 W/m2·ºC

To solve this problem in the PDE Modeler app, follow these steps:

1 Model the rod as a rectangle with corners in (-1.5,0), (1.5,0), (1.5,0.2), and (-1.5,0.2). Here, the x-
axis represents the z direction, and the y-axis represents the r direction.

3 Solving PDEs

3-268

pderect([-1.5,1.5,0,0.2])
2 Specify the boundary conditions. To do this, double-click the boundaries to open the Boundary

Condition dialog box. The PDE Modeler app requires boundary conditions in a particular form.
Thus, Neumann boundary conditions must be in the form n · c∇u + qu = g, and Dirichlet
boundary conditions must be in the form hu = r. Also, because both sides of the equation are
multiplied by r = y, multiply coefficients for the boundary conditions by y.

• For the left end, use the Neumann condition n · k∇u = HF_lef t = 5000. Specify g =
5000*y and q = 0.

• For the right end, use the Dirichlet condition u = T_right = 100. Specify h = 1 and r = 100.
• For the outer boundary, use the Neumann condition

n · k∇u = h_outer T_outer − u = 50 100 − u . Specify g = 50*y*100 and q = 50*y.
• The cylinder axis r = 0 is not a boundary in the original problem, but in the 2-D treatment it

has become one. Use the artificial Neumann boundary condition for the axis, n · k∇u = 0.
Specify g = 0 and q = 0.

3 Specify the coefficients by selecting PDE > PDE Specification or click the PDE button on the
toolbar. Heat equation is a parabolic equation, so select the Parabolic type of PDE. Because both
sides of the equation are multiplied by r = y, multiply the coefficients by y and enter the
following values: c = 40*y, a = 0, f = 20000*y, and d = 7800*500*y.

4 Initialize the mesh by selecting Mesh > Initialize Mesh.
5 Set the initial value to 0, the solution time to 20000 seconds, and compute the solution every 100

seconds. To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to
0:100:20000, and u(t0) to 0.

6 Solve the equation by selecting Solve > Solve PDE or clicking the = button on the toolbar.
7 Plot the solution, using the color and contour plot. To do this, select Plot > Parameters and

choose the color and contour plots in the resulting dialog box.

 Heat Distribution in Circular Cylindrical Rod: PDE Modeler App

3-269

You can explore the solution by varying the parameters of the model and plotting the results. For
example, you can:

• Show the solution when u does not depend on time, that is, the steady state solution. To do this,
open the PDE Specification dialog box, and change the PDE type to Elliptic. The resulting steady
state solution is in close agreement with the transient solution at 20000 seconds.

• Show the steady state solution without cooling on the outer boundary: the heat transfer coefficient
is zero. To do this, set the Neumann boundary condition at the outer boundary (the top side of the
rectangle) to g = 0 and q = 0. The resulting plot shows that the temperature rises to more than
2500 on the left end of the rod.

3 Solving PDEs

3-270

Wave Equation on Square Domain
This example shows how to solve the wave equation using the solvepde function.

The standard second-order wave equation is

∂2u
∂t2 − ∇ ⋅ ∇u = 0 .

To express this in toolbox form, note that the solvepde function solves problems of the form

m∂
2u
∂t2 − ∇ ⋅ (c∇u) + au = f .

So the standard wave equation has coefficients m = 1, c = 1, a = 0, and f = 0.

c = 1;
a = 0;
f = 0;
m = 1;

Solve the problem on a square domain. The squareg function describes this geometry. Create a
model object and include the geometry. Plot the geometry and view the edge labels.

numberOfPDE = 1;
model = createpde(numberOfPDE);
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on');
ylim([-1.1 1.1]);
axis equal
title 'Geometry With Edge Labels Displayed';
xlabel x
ylabel y

 Wave Equation on Square Domain

3-271

Specify PDE coefficients.

specifyCoefficients(model,'m',m,'d',0,'c',c,'a',a,'f',f);

Set zero Dirichlet boundary conditions on the left (edge 4) and right (edge 2) and zero Neumann
boundary conditions on the top (edge 1) and bottom (edge 3).

applyBoundaryCondition(model,'dirichlet','Edge',[2,4],'u',0);
applyBoundaryCondition(model,'neumann','Edge',([1 3]),'g',0);

Create and view a finite element mesh for the problem.

generateMesh(model);
figure
pdemesh(model);
ylim([-1.1 1.1]);
axis equal
xlabel x
ylabel y

3 Solving PDEs

3-272

Set the following initial conditions:

• u(x, 0) = arctan cos πx
2 .

• ∂u
∂t t = 0

= 3sin(πx)exp sin πy
2 .

u0 = @(location) atan(cos(pi/2*location.x));
ut0 = @(location) 3*sin(pi*location.x).*exp(sin(pi/2*location.y));
setInitialConditions(model,u0,ut0);

This choice avoids putting energy into the higher vibration modes and permits a reasonable time step
size.

Specify the solution times as 31 equally-spaced points in time from 0 to 5.

n = 31;
tlist = linspace(0,5,n);

Set the SolverOptions.ReportStatistics of model to 'on'.

model.SolverOptions.ReportStatistics ='on';
result = solvepde(model,tlist);

459 successful steps
38 failed attempts
993 function evaluations

 Wave Equation on Square Domain

3-273

1 partial derivatives
114 LU decompositions
992 solutions of linear systems

u = result.NodalSolution;

Create an animation to visualize the solution for all time steps. Keep a fixed vertical scale by first
calculating the maximum and minimum values of u over all times, and scale all plots to use those z-
axis limits.

figure
umax = max(max(u));
umin = min(min(u));
for i = 1:n
 pdeplot(model,'XYData',u(:,i),'ZData',u(:,i), ...
 'ZStyle','continuous','Mesh','off');
 axis([-1 1 -1 1 umin umax]);
 caxis([umin umax]);
 xlabel x
 ylabel y
 zlabel u
 M(i) = getframe;
end

To play the animation, use the movie(M) command.

3 Solving PDEs

3-274

Wave Equation on Square Domain: PDE Modeler App
This example shows how to solve a wave equation for transverse vibrations of a membrane on a
square. The membrane is fixed at the left and right sides, and is free at the upper and lower sides.
This example uses the PDE Modeler app. For a programmatic workflow, see “Wave Equation on
Square Domain” on page 3-271.

A wave equation is a hyperbolic PDE:

∂2u
∂t2 − Δu = 0

To solve this problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options > Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4

Draw a square with the corners at (-1,-1), (-1,1), (1,1), and (1,-1). To do this, first click the
button. Then click one of the corners using the right mouse button and drag to draw a square.
The right mouse button constrains the shape you draw to be a square rather than a rectangle.

You also can use the pderect function:

pderect([-1 1 -1 1])

5 Check that the application mode is set to Generic Scalar.
6

Specify the boundary conditions. To do this, switch to boundary mode by clicking the
button or selecting Boundary > Boundary Mode. Select the left and right boundaries. Then
select Boundary > Specify Boundary Conditions and specify the Dirichlet boundary condition
u = 0. This boundary condition is the default one (h = 1, r = 0), so you do not need to change
it.

For the bottom and top boundaries, set the Neumann boundary condition ∂u/∂n = 0. To do this,
set g = 0, q = 0.

7 Specify the coefficients by selecting PDEPDE Specification or clicking the PDE button on the
toolbar. Select the Hyperbolic type of PDE, and specify c = 1, a = 0, f = 0, and d = 1.

8 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >
Refine Mesh.

9 Set the solution times. To do this, select Solve > Parameters. Create linearly spaced time vector
from 0 to 5 seconds by setting the solution time to linspace(0,5,31).

10 In the same dialog box, specify initial conditions for the wave equation. For a well-behaved
solution, the initial values must match the boundary conditions. If the initial time is t = 0, then
the following initial values that satisfy the boundary conditions: atan(cos(pi/2*x)) for u(0)
and 3*sin(pi*x).*exp(sin(pi/2*y)) for ∂u/∂t,

The inverse tangent function and exponential function introduce more modes into the solution.

 Wave Equation on Square Domain: PDE Modeler App

3-275

11 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The app
solves the heat equation at times from 0 to 5 seconds and displays the result at the end of the
time span.

12 Visualize the solution as a 3-D static and animated plots. To do this:

a Select Plot > Parameters.
b In the resulting dialog box, select the Color and Height (3-D plot) options.
c To visualize the dynamic behavior of the wave, select Animation in the same dialog box. If

the animation progress is too slow, select the Plot in x-y grid option. An x-y grid can speed
up the animation process significantly.

3 Solving PDEs

3-276

 Wave Equation on Square Domain: PDE Modeler App

3-277

Eigenvalues and Eigenmodes of L-Shaped Membrane
This example shows how to calculate eigenvalues and eigenvectors. The eigenvalue problem is
−Δu = λu. This example computes all eigenmodes with eigenvalues smaller than 100.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in
the file lshapeg.

model = createpde();
geometryFromEdges(model,@lshapeg);

Set zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Specify the coefficients for the problem: d = 1 and c = 1. All other coefficients are equal to zero.

specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);

Set the interval [0 100] as the region for the eigenvalues in the solution.

r = [0 100];

Create a mesh and solve the problem.

generateMesh(model,'Hmax',0.05);
results = solvepdeeig(model,r);

 Basis= 10, Time= 0.56, New conv eig= 0
 Basis= 11, Time= 0.62, New conv eig= 0
 Basis= 12, Time= 0.66, New conv eig= 0
 Basis= 13, Time= 0.78, New conv eig= 0
 Basis= 14, Time= 0.78, New conv eig= 0
 Basis= 15, Time= 0.84, New conv eig= 0
 Basis= 16, Time= 0.84, New conv eig= 0
 Basis= 17, Time= 0.84, New conv eig= 0
 Basis= 18, Time= 0.91, New conv eig= 1
 Basis= 19, Time= 0.91, New conv eig= 1
 Basis= 20, Time= 0.98, New conv eig= 1
 Basis= 21, Time= 0.98, New conv eig= 1
 Basis= 22, Time= 1.09, New conv eig= 3
 Basis= 23, Time= 1.09, New conv eig= 3
 Basis= 24, Time= 1.17, New conv eig= 4
 Basis= 25, Time= 1.41, New conv eig= 5
 Basis= 26, Time= 1.48, New conv eig= 6
 Basis= 27, Time= 1.53, New conv eig= 6
 Basis= 28, Time= 1.53, New conv eig= 6
 Basis= 29, Time= 1.53, New conv eig= 7
 Basis= 30, Time= 1.72, New conv eig= 7
 Basis= 31, Time= 1.72, New conv eig= 10
 Basis= 32, Time= 1.77, New conv eig= 10
 Basis= 33, Time= 1.77, New conv eig= 11
 Basis= 34, Time= 1.86, New conv eig= 11
 Basis= 35, Time= 1.97, New conv eig= 14
 Basis= 36, Time= 2.06, New conv eig= 14
 Basis= 37, Time= 2.06, New conv eig= 14

3 Solving PDEs

3-278

 Basis= 38, Time= 2.12, New conv eig= 14
 Basis= 39, Time= 2.31, New conv eig= 14
 Basis= 40, Time= 2.31, New conv eig= 14
 Basis= 41, Time= 2.45, New conv eig= 15
 Basis= 42, Time= 2.45, New conv eig= 15
 Basis= 43, Time= 2.47, New conv eig= 15
 Basis= 44, Time= 2.47, New conv eig= 16
 Basis= 45, Time= 2.48, New conv eig= 16
 Basis= 46, Time= 2.48, New conv eig= 16
 Basis= 47, Time= 2.50, New conv eig= 16
 Basis= 48, Time= 2.50, New conv eig= 17
 Basis= 49, Time= 2.56, New conv eig= 18
 Basis= 50, Time= 2.66, New conv eig= 18
 Basis= 51, Time= 2.66, New conv eig= 18
 Basis= 52, Time= 2.80, New conv eig= 18
 Basis= 53, Time= 2.80, New conv eig= 18
 Basis= 54, Time= 3.05, New conv eig= 21
End of sweep: Basis= 54, Time= 3.05, New conv eig= 21
 Basis= 31, Time= 3.25, New conv eig= 0
 Basis= 32, Time= 3.25, New conv eig= 0
 Basis= 33, Time= 3.27, New conv eig= 0
End of sweep: Basis= 33, Time= 3.27, New conv eig= 0

There are 19 eigenvalues smaller than 100.

length(results.Eigenvalues)

ans = 19

Plot the first eigenmode and compare it to the MATLAB's membrane function.

u = results.Eigenvectors;
pdeplot(model,'XYData',u(:,1),'ZData',u(:,1));

 Eigenvalues and Eigenmodes of L-Shaped Membrane

3-279

figure
membrane(1,20,9,9)

3 Solving PDEs

3-280

Eigenvectors can be multiplied by any scalar and remain eigenvectors. This explains the difference in
scale that you see.

membrane can produce the first 12 eigenfunctions for the L-shaped membrane. Compare the 12th
eigenmodes.

figure
pdeplot(model,'XYData',u(:,12),'ZData',u(:,12));

 Eigenvalues and Eigenmodes of L-Shaped Membrane

3-281

figure
membrane(12,20,9,9)

3 Solving PDEs

3-282

 Eigenvalues and Eigenmodes of L-Shaped Membrane

3-283

Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE
Modeler App

This example shows how to compute all eigenmodes with eigenvalues smaller than 100 for the
eigenmode PDE problem

–Δu = λu

on the geometry of the L-shaped membrane. The boundary condition is the Dirichlet condition u = 0.
This example uses the PDE Modeler app. For a programmatic workflow, see “Eigenvalues and
Eigenmodes of L-Shaped Membrane” on page 3-278.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw a polygon with the corners (0,0), (–1,0), (–1,–1), (1,–1), (1,1), and (0,1) by using the
pdepoly function.

pdepoly([0,-1,-1,1,1,0],[0,0,-1,-1,1,1])
2 Check that the application mode is set to Generic Scalar.
3 Use the default Dirichlet boundary condition u = 0 for all boundaries. To verify it, switch to

boundary mode by selecting Boundary > Boundary Mode. Use Edit > Select all to select all
boundaries. Select Boundary > Specify Boundary Conditions and verify that the boundary
condition is the Dirichlet condition with h = 1, r = 0.

4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. This is an eigenvalue problem, so select the Eigenmodes type of PDE. The general
eigenvalue PDE is described by −∇ ⋅ c∇u + au = λdu. Thus, for this problem, use the default
coefficients c = 1, a = 0, and d = 1.

5 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size value to 0.05.

6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, use

the default eigenvalue range [0 100].
8 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. By

default, the app plots the first eigenfunction.

3 Solving PDEs

3-284

9 Plot other eigenfunctions by selecting Plot > Parameters and then selecting the corresponding
eigenvalue from the drop-down list at the bottom of the dialog box. For example, plot the fifth
eigenfunction in the specified range.

 Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App

3-285

3 Solving PDEs

3-286

L-Shaped Membrane with Rounded Corner: PDE Modeler App
This example shows how to compute all eigenvalues smaller than 100 and their corresponding
eigenvectors. Consider the eigenvalue problem

–Δu = λu

on an L-shaped membrane with a rounded inner corner. The boundary condition is the Dirichlet
condition u = 0.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw an L-shaped membrane as a polygon with the corners (0,0), (–1,0), (–1,–1), (1,–1), (1,1), and
(0,1) by using the pdepoly function.

pdepoly([0 -1 -1 1 1 0],[0 0 -1 -1 1 1])
2 Draw a circle and a square as follows.

pdecirc(-0.5,0.5,0.5,'C1')
pderect([-0.5 0 0.5 0],'SQ1')

3 Model the geometry with the rounded corner by entering P1+SQ1-C1 in the Set formula field.
4 Check that the application mode is set to Generic Scalar.
5 Remove unnecessary subdomain borders by selecting Boundary > Remove All Subdomain

Borders.
6 Use the default Dirichlet boundary condition u = 0 for all boundaries. To check the boundary

condition, switch to boundary mode by selecting Boundary > Boundary Mode. Use Edit >
Select all to select all boundaries. Select Boundary > Specify Boundary Conditions and
verify that the boundary condition is the Dirichlet condition with h = 1, r = 0.

7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. This is an eigenvalue problem, so select the Eigenmodes as the type of PDE. The
general eigenvalue PDE is described by −∇ ⋅ c∇u + au = λdu. Thus, for this problem, use the
default coefficients c = 1, a = 0, and d = 1.

8 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size value to 0.05.

9 Initialize the mesh by selecting Mesh > Initialize Mesh.
10 Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, use

the default eigenvalue range [0 100].
11 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. By

default, the app plots the first eigenfunction as a color plot.

 L-Shaped Membrane with Rounded Corner: PDE Modeler App

3-287

12 Plot the same eigenfunction as a contour plot. To do this:

a Select Plot > Parameters.
b Clear the Color option and select the Contour option.

3 Solving PDEs

3-288

 L-Shaped Membrane with Rounded Corner: PDE Modeler App

3-289

Eigenvalues and Eigenmodes of Square
This example shows how to compute the eigenvalues and eigenmodes of a square domain.

The eigenvalue PDE problem is −Δu = λu. This example finds the eigenvalues smaller than 10 and
the corresponding eigenmodes.

Create a model. Import and plot the geometry. The geometry description file for this problem is called
squareg.m.

model = createpde();
geometryFromEdges(model,@squareg);

pdegplot(model,'EdgeLabels','on')
ylim([-1.5,1.5])
axis equal

Specify the Dirichlet boundary condition u = 0 for the left boundary.

applyBoundaryCondition(model,'dirichlet','Edge',4,'u',0);

Specify the zero Neumann boundary condition for the upper and lower boundary.

applyBoundaryCondition(model,'neumann','Edge',[1,3],'g',0,'q',0);

Specify the generalized Neumann condition ∂u∂n −
3
4u = 0 for the right boundary.

3 Solving PDEs

3-290

applyBoundaryCondition(model,'neumann','Edge',2,'g',0,'q',-3/4);

The eigenvalue PDE coefficients for this problem are c = 1, a = 0, and d = 1. You can enter the
eigenvalue range r as the vector [-Inf 10].

specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);
r = [-Inf,10];

Create a mesh and solve the problem.

generateMesh(model,'Hmax',0.05);
results = solvepdeeig(model,r);

 Basis= 10, Time= 1.33, New conv eig= 0
 Basis= 11, Time= 1.36, New conv eig= 0
 Basis= 12, Time= 1.38, New conv eig= 1
 Basis= 13, Time= 1.38, New conv eig= 1
 Basis= 14, Time= 1.44, New conv eig= 1
 Basis= 15, Time= 1.47, New conv eig= 1
 Basis= 16, Time= 1.53, New conv eig= 1
 Basis= 17, Time= 1.61, New conv eig= 1
 Basis= 18, Time= 1.66, New conv eig= 2
 Basis= 19, Time= 1.69, New conv eig= 2
 Basis= 20, Time= 1.81, New conv eig= 2
 Basis= 21, Time= 1.92, New conv eig= 3
 Basis= 22, Time= 1.97, New conv eig= 3
 Basis= 23, Time= 2.08, New conv eig= 4
 Basis= 24, Time= 2.09, New conv eig= 6
End of sweep: Basis= 24, Time= 2.27, New conv eig= 3
 Basis= 13, Time= 2.50, New conv eig= 0
 Basis= 14, Time= 2.62, New conv eig= 0
 Basis= 15, Time= 2.62, New conv eig= 0
 Basis= 16, Time= 2.62, New conv eig= 0
 Basis= 17, Time= 2.77, New conv eig= 0
 Basis= 18, Time= 2.86, New conv eig= 0
 Basis= 19, Time= 2.95, New conv eig= 0
 Basis= 20, Time= 2.95, New conv eig= 0
 Basis= 21, Time= 3.03, New conv eig= 0
 Basis= 22, Time= 3.03, New conv eig= 1
 Basis= 23, Time= 3.09, New conv eig= 2
End of sweep: Basis= 23, Time= 3.27, New conv eig= 0
 Basis= 13, Time= 3.62, New conv eig= 1
End of sweep: Basis= 13, Time= 3.69, New conv eig= 1
 Basis= 14, Time= 4.00, New conv eig= 0
 Basis= 15, Time= 4.14, New conv eig= 0
 Basis= 16, Time= 4.19, New conv eig= 0
 Basis= 17, Time= 4.31, New conv eig= 0
 Basis= 18, Time= 4.39, New conv eig= 0
 Basis= 19, Time= 4.59, New conv eig= 0
 Basis= 20, Time= 4.59, New conv eig= 0
 Basis= 21, Time= 4.66, New conv eig= 0
 Basis= 22, Time= 4.77, New conv eig= 0
 Basis= 23, Time= 4.86, New conv eig= 1
End of sweep: Basis= 23, Time= 4.86, New conv eig= 0
 Basis= 14, Time= 5.11, New conv eig= 1
End of sweep: Basis= 14, Time= 5.16, New conv eig= 1
 Basis= 15, Time= 5.39, New conv eig= 0
 Basis= 16, Time= 5.39, New conv eig= 0

 Eigenvalues and Eigenmodes of Square

3-291

 Basis= 17, Time= 5.50, New conv eig= 0
End of sweep: Basis= 17, Time= 5.50, New conv eig= 0

There are six eigenvalues smaller than 10 for this problem.

l = results.Eigenvalues

l = 5×1

 -0.4146
 2.0528
 4.8019
 7.2693
 9.4550

Plot the first and last eigenfunctions in the specified range.

u = results.Eigenvectors;
pdeplot(model,'XYData',u(:,1));

pdeplot(model,'XYData',u(:,length(l)));

3 Solving PDEs

3-292

This problem is separable, meaning

u(x, y) = f (x)g(y) .

The functions f and g are eigenfunctions in the x and y directions, respectively. In the x direction, the
first eigenmode is a slowly increasing exponential function. The higher modes include sinusoids. In
the y direction, the first eigenmode is a straight line (constant), the second is half a cosine, the third
is a full cosine, the fourth is one and a half full cosines, etc. These eigenmodes in the y direction are
associated with the eigenvalues

0, π2

4 , 4π2

4 , 9π2

4 , . . .

It is possible to trace the preceding eigenvalues in the eigenvalues of the solution. Looking at a plot
of the first eigenmode, you can see that it is made up of the first eigenmodes in the x and y directions.
The second eigenmode is made up of the first eigenmode in the x direction and the second eigenmode
in the y direction.

Look at the difference between the first and the second eigenvalue compared to π2/4:

l(2) - l(1) - pi^2/4

ans = 1.6751e-07

Likewise, the fifth eigenmode is made up of the first eigenmode in the x direction and the third
eigenmode in the y direction. As expected, l(5)-l(1) is approximately equal to π2:

 Eigenvalues and Eigenmodes of Square

3-293

l(5) - l(1) - pi^2

ans = 6.2135e-06

You can explore higher modes by increasing the search range to include eigenvalues greater than 10.

3 Solving PDEs

3-294

Eigenvalues and Eigenmodes of Square: PDE Modeler App
This example shows how to compute the eigenvalues and eigenmodes of a square with the corners
(-1,-1), (-1,1), (1,1), and (1,-1). This example uses the PDE Modeler app. For programmatic workflow,
see “Eigenvalues and Eigenmodes of Square” on page 3-290.

The eigenvalue PDE problem is −Δu = λu. Find the eigenvalues smaller than 10 and the
corresponding eigenmodes.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw a square with the corners (-1,-1), (-1,1), (1,1), and (1,-1) by using the pderect function.

pderect([-1 1 -1 1])
2 Check that the application mode is set to Generic Scalar.
3 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Double-click the boundary to specify the boundary condition.

• Specify the Dirichlet condition u = 0 for the left boundary. To do this, specify h = 1, r = 0.
• Specify the Neumann condition ∂u∂n = 0 for the upper and lower boundary. To do this, specify g

= 0, q = 0.
• Specify the generalized Neumann condition ∂u∂n −

3
4u = 0 for the right boundary. To do this,

specify g = 0, q = -3/4.
4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on

the toolbar. This is a eigenvalue problem, so select the Eigenmodes type of PDE. The general
eigenvalue PDE is described by −∇ ⋅ c∇u + au = λdu. Thus, for this problem, the coefficients
are c = 1, a = 0, and d = 1.

5 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size value to 0.05.

6 Initialize the mesh by selecting Mesh > Initialize Mesh.
7 Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box,

enter the eigenvalue range as the MATLAB vector [-Inf 10].
8 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. By

default, the app plots the first eigenfunction.

 Eigenvalues and Eigenmodes of Square: PDE Modeler App

3-295

9 Plot other eigenfunctions by selecting Plot > Parameters and then selecting the corresponding
eigenvalue from the drop-down list at the bottom of the dialog box. For example, plot the last
eigenfunction in the specified range.

3 Solving PDEs

3-296

10 Export the eigenfunctions and eigenvalues to the MATLAB workspace by using the Solve >
Export Solution.

 Eigenvalues and Eigenmodes of Square: PDE Modeler App

3-297

Vibration of Circular Membrane
This example shows how to calculate the vibration modes of a circular membrane.

The calculation of vibration modes requires the solution of the eigenvalue partial differential
equation. This example compares the solution obtained by using the solvepdeeig solver from
Partial Differential Toolbox™ and the eigs solver from MATLAB®. Eigenvalues calculated by
solvepdeeig and eigs are practically identical, but in some cases one solver is more convenient
than the other. For example, eigs is more convenient when calculating a specified number of
eigenvalues in the vicinity of a particular target value. While solvepdeeig requires that a lower and
upper bound surrounding this target, eigs requires only the target eigenvalue and the desired
number of eigenvalues.

Create a PDE model.

model = createpde;

Create the circle geometry and include it in the model.

radius = 2;
g = decsg([1 0 0 radius]','C1',('C1')');

geometryFromEdges(model,g);

Plot the geometry with the edge labels.

figure
pdegplot(model,'EdgeLabels','on')
axis equal
title 'Geometry with Edge Labels'

3 Solving PDEs

3-298

Specify the coefficients.

c = 1e2;
a = 0;
f = 0;
d = 10;
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',a,'f',f);

Specify that the solution is zero at all four outer edges of the circle.

bOuter = applyBoundaryCondition(model,'dirichlet','Edge',(1:4),'u',0);

Generate a mesh.

generateMesh(model,'Hmax',0.2);

Use assembleFEMatrices to calculate the global finite element mass and stiffness matrices with
boundary conditions imposed using the nullspace approach.

FEMatrices = assembleFEMatrices(model,'nullspace');
K = FEMatrices.Kc;
B = FEMatrices.B;
M = FEMatrices.M;

Solve the eigenvalue problem by using the eigs function.

 Vibration of Circular Membrane

3-299

sigma = 1e2;
numberEigenvalues = 5;
[eigenvectorsEigs,eigenvaluesEigs] = eigs(K,M,numberEigenvalues,sigma);

Reshape the diagonal eigenvaluesEigs matrix into a vector.

eigenvaluesEigs = diag(eigenvaluesEigs);

Find the largest eigenvalue and its index in the eigenvalues vector.

[maxEigenvaluesEigs,maxIndex] = max(eigenvaluesEigs);

Add the constraint values to get the full eigenvector.

eigenvectorsEigs = B*eigenvectorsEigs;

Now, solve the same eigenvalue problem using solvepdeeig. Set the range for solvepdeeig to be
slightly larger than the range from eigs.

r = [min(eigenvaluesEigs)*0.99 max(eigenvaluesEigs)*1.01];
result = solvepdeeig(model,r);

 Basis= 10, Time= 0.03, New conv eig= 0
 Basis= 13, Time= 0.06, New conv eig= 2
 Basis= 16, Time= 0.08, New conv eig= 2
 Basis= 19, Time= 0.12, New conv eig= 2
 Basis= 22, Time= 0.17, New conv eig= 3
 Basis= 25, Time= 0.20, New conv eig= 3
 Basis= 28, Time= 0.20, New conv eig= 5
End of sweep: Basis= 28, Time= 0.20, New conv eig= 5
 Basis= 15, Time= 0.22, New conv eig= 0
End of sweep: Basis= 15, Time= 0.22, New conv eig= 0

eigenvectorsPde = result.Eigenvectors;
eigenvaluesPde = result.Eigenvalues;

Compare the solutions.

eigenValueDiff = sort(eigenvaluesPde) - sort(eigenvaluesEigs);
fprintf(['Max difference in eigenvalues' ...
 ' from solvepdeeig and eigs: %e\n'], ...
 norm(eigenValueDiff,inf));

Max difference in eigenvalues from solvepdeeig and eigs: 1.989520e-13

Both functions calculate the same eigenvalues. For any eigenvalue, you can multiply the eigenvector
by an arbitrary scalar. The eigs and solvepdeeig functions might choose a different arbitrary
scalar for normalizing their eigenvectors.

h = figure;
h.Position = [1 1 2 1].*h.Position;
subplot(1,2,1)
axis equal
pdeplot(model,'XYData',eigenvectorsEigs(:,maxIndex),'Contour','on')
title(sprintf('eigs eigenvector, eigenvalue: %12.4e', ...
 eigenvaluesEigs(maxIndex)))
xlabel('x')
ylabel('y')
subplot(1,2,2)

3 Solving PDEs

3-300

axis equal
pdeplot(model,'XYData',eigenvectorsPde(:,end),'Contour','on')
title(sprintf('solvepdeeig eigenvector, eigenvalue: %12.4e', ...
 eigenvaluesPde(end)))
xlabel('x')
ylabel('y')

 Vibration of Circular Membrane

3-301

Solution and Gradient Plots with pdeplot and pdeplot3D
2-D Solution and Gradient Plots

To visualize a 2-D scalar PDE solution, you can use the pdeplot function. This function lets you plot
the solution without explicitly interpolating the solution. For example, solve the scalar elliptic
problem −∇u = 1 on the L-shaped membrane with zero Dirichlet boundary conditions and plot the
solution.

Create the PDE model, 2-D geometry, and mesh. Specify boundary conditions and coefficients. Solve
the PDE problem.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
c = 1;
a = 0;
f = 1;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
generateMesh(model);

results = solvepde(model);

Use pdeplot to plot the solution.

u = results.NodalSolution;
pdeplot(model,'XYData',u,'ZData',u,'Mesh','on')
xlabel('x')
ylabel('y')

3 Solving PDEs

3-302

To get a smoother solution surface, specify the maximum size of the mesh triangles by using the Hmax
argument. Then solve the PDE problem using this new mesh, and plot the solution again.

generateMesh(model,'Hmax',0.05);
results = solvepde(model);
u = results.NodalSolution;

pdeplot(model,'XYData',u,'ZData',u,'Mesh','on')
xlabel('x')
ylabel('y')

 Solution and Gradient Plots with pdeplot and pdeplot3D

3-303

Access the gradient of the solution at the nodal locations.

ux = results.XGradients;
uy = results.YGradients;

Plot the gradient as a quiver plot.

pdeplot(model,'FlowData',[ux,uy])

3 Solving PDEs

3-304

3-D Surface and Gradient Plots

Obtain a surface plot of a solution with 3-D geometry and N > 1.

First, import a tetrahedral geometry to a model with N = 2 equations and view its faces.

model = createpde(2);
importGeometry(model,'Tetrahedron.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(-40,24)

 Solution and Gradient Plots with pdeplot and pdeplot3D

3-305

Create a problem with zero Dirichlet boundary conditions on face 4.

applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0]);

Create coefficients for the problem, where f = [1;10] and c is a symmetric matrix in 6N form.

f = [1;10];
a = 0;
c = [2;0;4;1;3;8;1;0;2;1;2;4];
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

Create a mesh for the solution.

generateMesh(model,'Hmax',20);

Solve the problem.

results = solvepde(model);
u = results.NodalSolution;

Plot the two components of the solution.

pdeplot3D(model,'ColorMapData',u(:,1))
view(-175,4)
title('u(1)')

3 Solving PDEs

3-306

figure
pdeplot3D(model,'ColorMapData',u(:,2))
view(-175,4)
title('u(2)')

 Solution and Gradient Plots with pdeplot and pdeplot3D

3-307

Compute the flux of the solution and plot the results for both components.

[cgradx,cgrady,cgradz] = evaluateCGradient(results);
figure
pdeplot3D(model,'FlowData',[cgradx(:,1) cgrady(:,1) cgradz(:,1)])

3 Solving PDEs

3-308

figure
pdeplot3D(model,'FlowData',[cgradx(:,2) cgrady(:,2) cgradz(:,2)])

 Solution and Gradient Plots with pdeplot and pdeplot3D

3-309

3 Solving PDEs

3-310

2-D Solution and Gradient Plots with MATLAB® Functions
You can interpolate the solution and, if needed, its gradient in separate steps, and then plot the
results by using MATLAB® functions, such as surf, mesh, quiver, and so on. For example, solve the
same scalar elliptic problem −Δu = 1 on the L-shaped membrane with zero Dirichlet boundary
conditions. Interpolate the solution and its gradient, and then plot the results.

Create the PDE model, 2-D geometry, and mesh. Specify boundary conditions and coefficients. Solve
the PDE problem.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
c = 1;
a = 0;
f = 1;
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);

Interpolate the solution and its gradients to a dense grid from -1 to 1 in each direction.

v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';
uintrp = interpolateSolution(results,querypoints);

Plot the resulting solution on a mesh.

uintrp = reshape(uintrp,size(X));
mesh(X,Y,uintrp)
xlabel('x')
ylabel('y')

 2-D Solution and Gradient Plots with MATLAB® Functions

3-311

Interpolate gradients of the solution to the grid from -1 to 1 in each direction. Plot the result using
quiver.

[gradx,grady] = evaluateGradient(results,querypoints);
figure
quiver(X(:),Y(:),gradx,grady)
xlabel('x')
ylabel('y')

Zoom in to see more details. For example, restrict the range to [-0.2,0.2] in each direction.

axis([-0.2 0.2 -0.2 0.2])

3 Solving PDEs

3-312

Plot the solution and the gradients on the same range.

figure
h1 = meshc(X,Y,uintrp);
set(h1,'FaceColor','g','EdgeColor','b')
xlabel('x')
ylabel('y')
alpha(0.5)
hold on

Z = -0.05*ones(size(X));
gradz = zeros(size(gradx));

h2 = quiver3(X(:),Y(:),Z(:),gradx,grady,gradz);
set(h2,'Color','r')
axis([-0.2,0.2,-0.2,0.2])

 2-D Solution and Gradient Plots with MATLAB® Functions

3-313

Slice of the solution plot along the line x = y.

figure
mesh(X,Y,uintrp)
xlabel('x')
ylabel('y')
alpha(0.25)
hold on

z = linspace(0,0.15,101);
Z = meshgrid(z);
surf(X,X,Z')

view([-20 -45 15])
colormap winter

3 Solving PDEs

3-314

Plot the interpolated solution along the line.

figure
xq = v;
yq = v;
uintrp = interpolateSolution(results,xq,yq);

plot3(xq,yq,uintrp)
grid on
xlabel('x')
ylabel('y')

Interpolate gradients of the solution along the same line and add them to the solution plot.

[gradx,grady] = evaluateGradient(results,xq,yq);

gradx = reshape(gradx,size(xq));
grady = reshape(grady,size(yq));

hold on
quiver(xq,yq,gradx,grady)
view([-20 -45 75])

 2-D Solution and Gradient Plots with MATLAB® Functions

3-315

3 Solving PDEs

3-316

3-D Solution and Gradient Plots with MATLAB® Functions

Types of 3-D Solution Plots Available in MATLAB
In addition to surface and gradient plots available with the PDE plotting functions, you can use
MATLAB graphics capabilities to create more types of plots for your 3-D model.

• Plot on a 2-D slice — To examine the solution on the interior of the geometry, define a 2-D grid that
intersects the geometry, and interpolate the solution onto the grid. For examples, see “2-D Slices
Through 3-D Geometry” on page 3-317 and “Contour Slices Through 3-D Solution” on page 3-320.
While these two examples show planar grid slices, you can also slice on a curved grid.

• Streamline or quiver plots — Plot the gradient of the solution as streamlines or a quiver. See
“Plots of Gradients and Streamlines” on page 3-324.

• You can use any MATLAB plotting command to create 3-D plots. See “Techniques for Visualizing
Scalar Volume Data” and “Visualizing Vector Volume Data”.

2-D Slices Through 3-D Geometry
This example shows how to obtain plots from 2-D slices through a 3-D geometry.

The problem is

∂u
∂t − Δu = f

on a 3-D slab with dimensions 10-by-10-by-1, where u = 0 at time t = 0, boundary conditions are
Dirichlet, and

f x, y, z = 1 + y + 10z2

Set Up and Solve the PDE

Define a function for the nonlinear f coefficient in the syntax as given in “f Coefficient for
specifyCoefficients” on page 2-74.

function bcMatrix = myfffun(region,state)

bcMatrix = 1+10*region.z.^2+region.y;

Import the geometry and examine the face labels.

model = createpde;
g = importGeometry(model,'Plate10x10x1.stl');
pdegplot(g,'FaceLabels','on','FaceAlpha',0.5)

 3-D Solution and Gradient Plots with MATLAB® Functions

3-317

The faces are numbered 1 through 6.

Create the coefficients and boundary conditions.

c = 1;
a = 0;
d = 1;
f = @myfffun;
specifyCoefficients(model,'m',0,'d',d,'c',c,'a',a,'f',f);

applyBoundaryCondition(model,'dirichlet','face',1:6,'u',0);

Set a zero initial condition.

setInitialConditions(model,0);

Create a mesh with sides no longer than 0.3.

generateMesh(model,'Hmax',0.3);

Set times from 0 through 0.2 and solve the PDE.

tlist = 0:0.02:0.2;
results = solvepde(model,tlist);

3 Solving PDEs

3-318

Plot Slices Through the Solution

Create a grid of (x,y,z) points, where x = 5, y ranges from 0 through 10, and z ranges from 0
through 1. Interpolate the solution to these grid points and all times.

yy = 0:0.5:10;
zz = 0:0.25:1;
[YY,ZZ] = meshgrid(yy,zz);
XX = 5*ones(size(YY));
uintrp = interpolateSolution(results,XX,YY,ZZ,1:length(tlist));

The solution matrix uintrp has 11 columns, one for each time in tlist. Take the interpolated
solution for the second column, which corresponds to time 0.02.

usol = uintrp(:,2);

The elements of usol come from interpolating the solution to the XX, YY, and ZZ matrices, which are
each 5-by-21, corresponding to z-by-y variables. Reshape usol to the same 5-by-21 size, and make
a surface plot of the solution. Also make surface plots corresponding to times 0.06, 0.10, and 0.20.

figure
usol = reshape(usol,size(XX));
subplot(2,2,1)
surf(usol)
title('t = 0.02')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])

usol = uintrp(:,4);
usol = reshape(usol,size(XX));
subplot(2,2,2)
surf(usol)
title('t = 0.06')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])

usol = uintrp(:,6);
usol = reshape(usol,size(XX));
subplot(2,2,3)
surf(usol)
title('t = 0.10')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])

usol = uintrp(:,11);
usol = reshape(usol,size(XX));
subplot(2,2,4)
surf(usol)
title('t = 0.20')
zlim([0,1.5])
xlim([1,21])
ylim([1,5])

 3-D Solution and Gradient Plots with MATLAB® Functions

3-319

Contour Slices Through 3-D Solution
This example shows how to create contour slices in various directions through a solution in 3-D
geometry.

Set Up and Solve the PDE

The problem is to solve Poisson's equation with zero Dirichlet boundary conditions for a complicated
geometry. Poisson's equation is

−∇ ⋅ ∇u = f .

Partial Differential Equation Toolbox™ solves equations in the form

−∇ ⋅ ∇(cu) + au = f .

So you can represent the problem by setting c = 1 and a = 0. Arbitrarily set f = 10.

c = 1;
a = 0;
f = 10;

The first step in solving any 3-D PDE problem is to create a PDE Model. This is a container that holds
the number of equations, geometry, mesh, and boundary conditions for your PDE. Create the model,
then import the 'ForearmLink.stl' file and view the geometry.

3 Solving PDEs

3-320

N = 1;
model = createpde(N);
importGeometry(model,'ForearmLink.stl');
pdegplot(model,'FaceAlpha',0.5)
view(-42,24)

Specify PDE Coefficients

Include the PDE coefficients in model.

specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

Create zero Dirichlet boundary conditions on all faces.

applyBoundaryCondition(model,'dirichlet', ...
 'Face',1:model.Geometry.NumFaces, ...
 'u',0);

Create a mesh and solve the PDE.

generateMesh(model);
result = solvepde(model);

Plot the Solution as Contour Slices

Because the boundary conditions are u = 0 on all faces, the solution u is nonzero only in the interior.
To examine the interior, take a rectangular grid that covers the geometry with a spacing of one unit in
each coordinate direction.

 3-D Solution and Gradient Plots with MATLAB® Functions

3-321

[X,Y,Z] = meshgrid(0:135,0:35,0:61);

For plotting and analysis, create a PDEResults object from the solution. Interpolate the result at
every grid point.

V = interpolateSolution(result,X,Y,Z);
V = reshape(V,size(X));

Plot contour slices for various values of z.

figure
colormap jet
contourslice(X,Y,Z,V,[],[],0:5:60)
xlabel('x')
ylabel('y')
zlabel('z')
colorbar
view(-11,14)
axis equal

Plot contour slices for various values of y.

figure
colormap jet
contourslice(X,Y,Z,V,[],1:6:31,[])
xlabel('x')
ylabel('y')
zlabel('z')

3 Solving PDEs

3-322

colorbar
view(-62,34)
axis equal

Save Memory by Evaluating As Needed

For large problems you can run out of memory when creating a fine 3-D grid. Furthermore, it can be
time-consuming to evaluate the solution on a full grid. To save memory and time, evaluate only at the
points you plot. You can also use this technique to interpolate to tilted grids, or to other surfaces.

For example, interpolate the solution to a grid on the tilted plane 0 ≤ x ≤ 135, 0 ≤ y ≤ 35, and
z = x/10 + y/2. Plot both contours and colored surface data. Use a fine grid, with spacing 0.2.

[X,Y] = meshgrid(0:0.2:135,0:0.2:35);
Z = X/10 + Y/2;
V = interpolateSolution(result,X,Y,Z);
V = reshape(V,size(X));
figure
subplot(2,1,1)
contour(X,Y,V);
axis equal
title('Contour Plot on Tilted Plane')
xlabel('x')
ylabel('y')
colorbar
subplot(2,1,2)
surf(X,Y,V,'LineStyle','none');

 3-D Solution and Gradient Plots with MATLAB® Functions

3-323

axis equal
view(0,90)
title('Colored Plot on Tilted Plane')
xlabel('x')
ylabel('y')
colorbar

Plots of Gradients and Streamlines
This example shows how to calculate the approximate gradients of a solution, and how to use those
gradients in a quiver plot or streamline plot.

The problem is the calculation of the mean exit time of a Brownian particle from a region that
contains absorbing (escape) boundaries and reflecting boundaries. For more information, see Narrow
escape problem. The PDE is Poisson's equation with constant coefficients. The geometry is a simple
rectangular solid. The solution u(x, y, z) represents the mean time it takes a particle starting at
position (x, y, z) to exit the region.

Import and View the Geometry

model = createpde;
importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(-42,24)

3 Solving PDEs

3-324

https://en.wikipedia.org/wiki/Narrow_escape_problem
https://en.wikipedia.org/wiki/Narrow_escape_problem

Set Boundary Conditions

Set faces 1, 2, and 5 to be the places where the particle can escape. On these faces, the solution
u = 0. Keep the default reflecting boundary conditions on faces 3, 4, and 6.

applyBoundaryCondition(model,'dirichlet','Face',[1,2,5],'u',0);

Create PDE Coefficients

The PDE is

−Δu = − ∇ ⋅ ∇u = 2

In Partial Differential Equation Toolbox™ syntax,

−∇ ⋅ c∇u + au = f

This equation translates to coefficients c = 1, a = 0, and f = 2. Enter the coefficients.

c = 1;
a = 0;
f = 2;
specifyCoefficients(model,'m',0,'d',0,'c',c','a',a,'f',f);

Create Mesh and Solve PDE

Initialize the mesh.

 3-D Solution and Gradient Plots with MATLAB® Functions

3-325

generateMesh(model);

Solve the PDE.

results = solvepde(model);

Examine the Solution in a Contour Slice Plot

Create a grid and interpolate the solution to the grid.

[X,Y,Z] = meshgrid(0:135,0:35,0:61);
V = interpolateSolution(results,X,Y,Z);
V = reshape(V,size(X));

Create a contour slice plot for five fixed values of the y-coordinate.

figure
colormap jet
contourslice(X,Y,Z,V,[],0:4:16,[])
xlabel('x')
ylabel('y')
zlabel('z')
xlim([0,100])
ylim([0,20])
zlim([0,50])
axis equal
view(-50,22)
colorbar

3 Solving PDEs

3-326

The particle has the largest mean exit time near the point x, y, z = 100, 0, 0 .

Use Gradients for Quiver and Streamline Plots

Examine the solution in more detail by evaluating the gradient of the solution. Use a rather coarse
mesh so that you can see the details on the quiver and streamline plots.

[X,Y,Z] = meshgrid(1:9:99,1:3:20,1:6:50);
[gradx,grady,gradz] = evaluateGradient(results,X,Y,Z);

Plot the gradient vectors. First reshape the approximate gradients to the shape of the mesh.

gradx = reshape(gradx,size(X));
grady = reshape(grady,size(Y));
gradz = reshape(gradz,size(Z));

figure
quiver3(X,Y,Z,gradx,grady,gradz)
axis equal
xlabel 'x'
ylabel 'y'
zlabel 'z'
title('Quiver Plot of Estimated Gradient of Solution')

Plot the streamlines of the approximate gradient. Start the streamlines from a sparser set of initial
points.

 3-D Solution and Gradient Plots with MATLAB® Functions

3-327

hold on
[sx,sy,sz] = meshgrid([1,46],1:6:20,1:12:50);
streamline(X,Y,Z,gradx,grady,gradz,sx,sy,sz)
title('Quiver Plot with Streamlines')
hold off

The streamlines show that small values of y and z give larger mean exit times. They also show that
the x-coordinate has a significant effect on u when x is small, but when x is greater than 40, the
larger values have little effect on u. Similarly, when z is less than 20, its values have little effect on u.

3 Solving PDEs

3-328

Dimensions of Solutions, Gradients, and Fluxes
solvepde returns a StationaryResults or TimeDependentResults object whose properties
contain the solution and its gradient at the mesh nodes. You can interpolate the solution and its
gradient to other points in the geometry by using interpolateSolution and evaluateGradient.
You also can compute flux of the solution at the mesh nodes and at arbitrary points by using
evaluateCGradient.

Note solvepde does not compute components of flux of a PDE solution. To compute flux of the
solution at the mesh nodes, use evaluateCGradient.

solvepdeeig returns an EigenResults object whose properties contain the solution eigenvectors
calculated at the mesh nodes. You can interpolate the solution to other points by using
interpolateSolution.

The dimensions of the solution, its gradient, and flux of the solution depend on:

• The number of geometric evaluation points.

• For results returned by solvepde or solvepdeeig, this is the number of mesh nodes.
• For results returned by interpolateSolution,evaluateGradient, and

evaluateCGradient this is the number of query points.
• The number of equations.

• For results returned by solvepde or solvepdeeig, this is the number of equations in the
system.

• For results returned by interpolateSolution,evaluateGradient, and
evaluateCGradient, this is the number of query equation indices.

• The number of times for a time-dependent problem or number of modes for an eigenvalue
problem.

• For results returned by solvepde, this is the number of solution times (specified as an input to
solvepde).

• For results returned by solvepdeeig, this is the number of eigenvalues.
• For results returned by interpolateSolution, evaluateGradient, and

evaluateCGradient, this is the number of query times for time-dependent problems or query
modes for eigenvalue problems.

 Dimensions of Solutions, Gradients, and Fluxes

3-329

Suppose you have a problem in which:

• Np is the number of nodes in the mesh.
• Nt is the number of times for a time-dependent problem or number of modes for an eigenvalue

problem.
• N is the number of equations in the system.

3 Solving PDEs

3-330

Suppose you also compute the solution, its gradient, or flux of the solution at other points ("query
points") in the geometry by using interpolateSolution, evaluateGradient, or
evaluateCGradient, respectively. Here:

• Nqp is the number of query points.
• Nqt is the number of query times for a time-dependent problem or number of query modes for an

eigenvalue problem.
• Nq is the number of query equations indices.

The tables show how to index into the solution returned by solvepde or solvepdeeig, where:

• iP contains the indices of nodes.
• iT contains the indices of times for a time-dependent problem or mode numbers for an eigenvalue

problem.
• iN contains the indices of equations.

The tables also show the dimensions of solutions, gradients, and flux of the solution at nodal locations
(returned by solvepde,solvepdeeig, and evaluateCGradient) and the dimensions of
interpolated solutions and gradients (returned by interpolateSolution, evaluateGradient,
and evaluateCGradient).

Stationary
PDE problem

Access solution and components of
gradient

Size of NodalSolution,
XGradients,
YGradients,
ZGradients, and
components of flux at
nodal points

Size of solution,
components of
gradient, and
components of flux at
query points

Scalar result.NodalSolution(iP)

result.XGradients(iP)

result.YGradients(iP)

result.ZGradients(iP)

Np-by-1 Nqp-by-1

System, N > 1 result.NodalSolution(iP,iN)

result.XGradients(iP,iN)

result.YGradients(iP,iN)

result.ZGradients(iP,iN)

Np-by-N Nqp-by-N

 Dimensions of Solutions, Gradients, and Fluxes

3-331

Time-
dependent
PDE problem

Access solution and components of
gradient

Size of NodalSolution,
XGradients,
YGradients,
ZGradients, and
components of flux at
nodal points

Size of solution,
components of
gradient, and
components of flux at
query points

Scalar result.NodalSolution(iP,iT)

result.XGradients(iP,iT)

result.YGradients(iP,iT)

result.ZGradients(iP,iT)

Np-by-Nt Nqp-by-Nqt

System, N > 1 result.NodalSolution(iP,iN,iT)

result.XGradients(iP,iN,iT)

result.YGradients(iP,iN,iT)

result.ZGradients(iP,iN,iT)

Np-by-N-by-Nt Nqp-by-Nq-by-Nqt

PDE
eigenvalue
problem

Access eigenvectors Size of Eigenvectors Size of interpolated
eigenvectors

Scalar result.Eigenvectors(iP,iT) Np-by-Nt Nqp-by-Nqt
System, N > 1 result.Eigenvectors(iP,iN,iT) Np-by-N-by-Nt Nqp-by-Nq-by-Nqt

See Also
solvepde | solvepdeeig | interpolateSolution | evaluateGradient | StationaryResults
| TimeDependentResults | EigenResults

3 Solving PDEs

3-332

PDE Modeler App

You open the PDE Modeler app by entering pdeModeler at the command line. The main components
of the PDE Modeler app are the menus, the dialog boxes, and the toolbar.

• “Open the PDE Modeler App” on page 4-2
• “2-D Geometry Creation in PDE Modeler App” on page 4-3
• “Specify Boundary Conditions in the PDE Modeler App” on page 4-12
• “Specify Coefficients in PDE Modeler App” on page 4-14
• “Specify Mesh Parameters in the PDE Modeler App” on page 4-24
• “Adjust Solve Parameters in the PDE Modeler App” on page 4-26
• “Plot the Solution in the PDE Modeler App” on page 4-31

4

Open the PDE Modeler App
You can open the PDE Modeler app using the Apps tab or typing the commands in the MATLAB
Command Window.

Use the Apps Tab

1 On the MATLAB Toolstrip, click the Apps tab.
2 On the Apps tab, click the down arrow at the end of the Apps section.
3 Under Math, Statistics and Optimization, click the PDE button.

Use Commands

• To open a blank PDE Modeler app window, type pdeModeler in the MATLAB Command Window.
• To open the PDE Modeler app with a circle already drawn in it, type pdecirc in the MATLAB

Command Window.
• To open the PDE Modeler app with an ellipse already drawn in it, type pdeellip in the MATLAB

Command Window.
• To open the PDE Modeler app with a rectangle already drawn in it, type pderect in the MATLAB

Command Window.
• To open the PDE Modeler app with a polygon already drawn in it, type pdepoly in the MATLAB

Command Window.

You can use a sequence of drawing commands to create several basic shapes. For example, the
following commands create a circle, a rectangle, an ellipse, and a polygon:

pderect([-1.5,0,-1,0])
pdecirc(0,0,1)
pdepoly([-1,0,0,1,1,-1],[0,0,1,1,-1,-1])
pdeellip(0,0,1,0.3,pi)

4 PDE Modeler App

4-2

2-D Geometry Creation in PDE Modeler App

Create Basic Shapes
The PDE Modeler app lets you draw four basic shapes: a circle, an ellipse, a rectangle, and a polygon.
To draw a basic shape, use the Draw menu or one of the following buttons on the toolbar. To cut,
clear, copy, and paste the solid objects, use the Edit menu.

Draw a rectangle/square starting at a corner.

Using the left mouse button, drag to create a rectangle. Using the right mouse button (or Ctrl
+click), drag to create a square.
Draw a rectangle/square starting at the center.

Using the left mouse button, drag to create a rectangle. Using the right mouse button (or Ctrl
+click), drag to create a square.
Draw an ellipse/circle starting at the perimeter.

Using the left mouse button, drag to create an ellipse. Using the right mouse button (or Ctrl
+click), drag to create a circle.
Draw an ellipse/circle starting at the center.

Using the left mouse button, drag to create an ellipse. Using the right mouse button (or Ctrl
+click), drag to create a circle.
Draw a polygon.

Using the left mouse button, drag to create polygon edges. You can close the polygon by
pressing the right mouse button. Clicking at the starting vertex also closes the polygon.

Alternatively, you can create a basic shape by typing one of the following commands in the MATLAB
Command Window:

• pdecirc draws a circle.
• pdeellip draws an ellipse.
• pderect draws a rectangle.
• pdepoly draws a polygon.

These commands open the PDE Modeler app with the requested shape already drawn in it. If the app
is already open, these commands add the requested shape to the app window without deleting any
existing shapes.

You can use a sequence of drawing commands to create several basic shapes. For example, these
commands create a circle, a rectangle, an ellipse, and a polygon:

pderect([-1.5,0,-1,0])
pdecirc(0,0,1)
pdepoly([-1,0,0,1,1,-1],[0,0,1,1,-1,-1])
pdeellip(0,0,1,0.3,pi)

 2-D Geometry Creation in PDE Modeler App

4-3

Select Several Shapes
• To select a single shape, click it using the left mouse button.
• To select several shapes and to deselect shapes, use Shift+click (or click using the middle mouse

button). Clicking outside of all shapes, deselects all shapes.
• To select all the intersecting shapes, click the intersection of these shapes.
• To select all shapes, use the Select All option from the Edit menu.

Rotate Shapes
To rotate a shape:

1 Select the shapes.
2 Select Rotate from the Draw menu.
3 In the resulting Rotate dialog box, enter the rotation angle in degrees. To rotate

counterclockwise, use positive values of rotation angles. To rotate clockwise, use negative values.

4 By default, the rotation center is the center-of-mass of the selected shapes. To use a different
rotation center, clear the Use center-of-mass option and enter a rotation center (xc,yc) as a 1-
by-2 vector, for example, [-0.4 0.3].

Create Complex Geometries
You can specify complex geometries by overlapping basic shapes. This approach is called
Constructive Solid Geometry (CSG). The PDE Modeler app lets you combine basic shapes by using
their unique names.

The app assigns a unique name to each shape. The names depend on the type of the shape:

• For circles, the default names are C1, C2, C3, and so on.
• For ellipses, the default names are E1, E2, E3, and so on.
• For polygons, the default names are P1, P2, P3, and so on.
• For rectangles, the default names are R1, R2, R3, and so on.
• For squares, the default names are SQ1, SQ2, SQ3, and so on.

To change the name and parameters of a shape, first switch to the draw mode and then double-click
the shape. (Select Draw Mode from the Draw menu to switch to the draw mode.) The resulting

4 PDE Modeler App

4-4

dialog box lets you change the name and parameters of the selected shape. The name cannot contain
spaces.

Now you can combine basic shapes to create a complex geometry. To do this, use the Set formula
field located under the toolbar. Here you can specify a geometry by using the names of basic shapes
and the following operators:

• + is the set union operator.

For example, SQ1+C2 creates a geometry comprised of all points of the square SQ1 and all points
of the circle C2.

• * is the set intersection operator.

For example, SQ1*C2 creates a geometry comprised of the points that belong to both the square
SQ1 and the circle C2.

• - is the set difference operator.

For example, SQ1-C2 creates a geometry comprised of the points of the square SQ1 that do not
belong to the circle C2.

The operators + and * have the same precedence. The operator - has a higher precedence. You can
control the precedence by using parentheses. The resulting geometrical model (called decomposed
geometry) is the set of points for which the set formula evaluates to true. By default, it is the union of
all basic shapes.

Adjust Axes Limits and Grid
To adjust axes limits:

• Select Axes Limits from the Options menu
• Specify the range of the x-axis and the y-axis as a 1-by-2 vector such as [-10 10]. If you select

Auto, the app uses automatic scaling for the corresponding axis.

 2-D Geometry Creation in PDE Modeler App

4-5

• Apply the specified axes ranges by clicking Apply.
• Close the dialog box by clicking Close.

To add axis grid, the snap-to-grid feature, and zoom, use the Options menu. To adjust the grid
spacing:

• Select Grid Spacing from the Options menu.
• By default, the app uses automatic linear grid spacing. To enable editing the fields for linear

spacing and extra ticks, clear Auto.

• Specify the grid spacing for the x-axis and y-axis. For example, change the default linear spacing
-1.5:0.5:1.5 to -1:0.2:1.

You also can add extra ticks to customize the grid and aid in drawing. To separate extra tick
entries, use spaces, commas, semicolons, or brackets.

4 PDE Modeler App

4-6

• Apply the specified grid spacing by clicking Apply.
• Close the dialog box by clicking Done.

 2-D Geometry Creation in PDE Modeler App

4-7

Create Geometry with Rounded Corners
1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options > Grid.
3 Align new shapes to the grid lines by selecting Options > Snap.
4 Set the grid spacing for x-axis to -1.5:0.1:1.5 and for y-axis to -1:0.1:1. To do this, select

Options > Grid Spacing, clear the Auto checkboxes, and set the corresponding ranges.
5 Draw a rectangle with the width 2, the height 1, and the top left corner at (–1,0.5). To do this,

first click the button. Then click the point (–1,0.5) and drag to draw a rectangle.

To edit the parameters of the rectangle, double-click it. In the resulting dialog box, specify the
exact parameters.

6 Draw four circles with the radius 0.2 and the centers at (–0.8,–0.3), (–0.8,0.3), (0.8,–0.3), and

(0.8,0.3).To do this, first click the button. Then click the center of a circle using the right
mouse button and drag to draw a circle. The right mouse button constrains the shape you draw
to be a circle rather than an ellipse. If the circle is not a perfect unit circle, then double-click it.
In the resulting dialog box, specify the exact center location and radius of the circle.

4 PDE Modeler App

4-8

7 Add four squares with the side 0.2, one in each corner.

8 Model the geometry with rounded corners by subtracting the small squares from the rectangle,
and then adding the circles. To do this, enter the following formula in the Set formula field.

R1-(SQ1+SQ2+SQ3+SQ4)+C1+C2+C3+C4
9

Switch to the boundary mode by clicking the button or selecting Boundary > Boundary
Mode. The CSG model is now decomposed using the set formula, and you get a rectangle with
rounded corners.

 2-D Geometry Creation in PDE Modeler App

4-9

10 Because of the intersection of the solid objects used in the initial CSG model, a number of
subdomain borders remain. They appear as gray lines. To remove these borders, select
Boundary > Remove All Subdomain Borders.

4 PDE Modeler App

4-10

 2-D Geometry Creation in PDE Modeler App

4-11

Specify Boundary Conditions in the PDE Modeler App

Select Boundary Mode from the Boundary menu or click the button. Then select a
boundary or multiple boundaries for which you are specifying the conditions. Note that no if you do
not select any boundaries, then the specified conditions apply to all boundaries.

• To select a single boundary, click it using the left mouse button.
• To select several boundaries and to deselect them, use Shift+click (or click using the middle

mouse button).
• To select all boundaries, use the Select All option from the Edit menu.

Select Specify Boundary Conditions from the Boundary menu.

Specify Boundary Conditions opens a dialog box where you can specify the boundary condition for
the selected boundary segments. There are three different condition types:

• Generalized Neumann conditions, where the boundary condition is determined by the coefficients
q and g according to the following equation:

n · c∇u + qu = g .

In the system cases, q is a 2-by-2 matrix and g is a 2-by-1 vector.
• Dirichlet conditions: u is specified on the boundary. The boundary condition equation is hu = r,

where h is a weight factor that can be applied (normally 1).

In the system cases, h is a 2-by-2 matrix and r is a 2-by-1 vector.
• Mixed boundary conditions (system cases only), which is a mix of Dirichlet and Neumann

conditions. q is a 2-by-2 matrix, g is a 2-by-1 vector, h is a 1-by-2 vector, and r is a scalar.

The following figure shows the dialog box for the generic system PDE (Options > Application >
Generic System).

4 PDE Modeler App

4-12

For boundary condition entries you can use the following variables in a valid MATLAB expression:

• The 2-D coordinates x and y.
• A boundary segment parameter s, proportional to arc length. s is 0 at the start of the boundary

segment and increases to 1 along the boundary segment in the direction indicated by the arrow.
• The outward normal vector components nx and ny. If you need the tangential vector, it can be

expressed using nx and ny since tx = –ny and ty = nx.
• The solution u.
• The time t.

Note If the boundary condition is a function of the solution u, you must use the nonlinear solver. If
the boundary condition is a function of the time t, you must choose a parabolic or hyperbolic PDE.

Examples: (100-80*s).*nx, and cos(x.^2)

In the nongeneric application modes, the Description column contains descriptions of the physical
interpretation of the boundary condition parameters.

 Specify Boundary Conditions in the PDE Modeler App

4-13

Specify Coefficients in PDE Modeler App

Coefficients for Scalar PDEs
To enter coefficients for your PDE, select PDE > PDE Specification.

Enter text expressions using these conventions:

• x — x-coordinate
• y — y-coordinate
• u — Solution of equation
• ux — Derivative of u in the x-direction
• uy — Derivative of u in the y-direction
• t — Time (parabolic and hyperbolic equations)
• sd — Subdomain number

For example, you could use this expression to represent a coefficient:

(x + y)./(x.^2 + y.^2 + 1) + 3 + sin(t)./(1 + u.^4)

For elliptic problems, when you include u, ux, or uy, you must use the nonlinear solver. Select Solve
> Parameters > Use nonlinear solver.

Note

• Do not use quotes or unnecessary spaces in your entries. The parser can misinterpret a space as a
vector separator, as when a MATLAB vector uses a space to separate elements of a vector.

• Use .*, ./, and .^ for multiplication, division, and exponentiation operations. The text
expressions operate on row vectors, so the operations must make sense for row vectors. The row
vectors are the values at the triangle centroids in the mesh.

4 PDE Modeler App

4-14

You can write MATLAB functions for coefficients as well as plain text expressions. For example,
suppose your coefficient f is given by the file fcoeff.m.

function f = fcoeff(x,y,t,sd)

f = (x.*y)./(1 + x.^2 + y.^2); % f on subdomain 1
f = f + log(1 + t); % include time
r = (sd == 2); % subdomain 2
f2 = cos(x + y); % coefficient on subdomain 2
f(r) = f2(r); % f on subdomain 2

Use fcoeff(x,y,t,sd) as the f coefficient in the parabolic solver.

The coefficient c is a 2-by-2 matrix. You can give 1-, 2-, 3-, or 4-element matrix expressions. Separate
the expressions for elements by spaces. These expressions mean:

•
1-element expression:

c 0
0 c

•
2-element expression:

c(1) 0
0 c(2)

•
3-element expression:

c(1) c(2)
c(2) c(3)

•
4-element expression:

c(1) c(3)
c(2) c(4)

For example, c is a symmetric matrix with constant diagonal entries and cos(xy) as the off-diagonal
terms:

1.1 cos(x.*y) 5.5 (4-1)

 Specify Coefficients in PDE Modeler App

4-15

This corresponds to coefficients for the parabolic equation

∂u
∂t − ∇ ·

1.1 cos(xy)
cos(xy) 5.5

∇u = 10.

Coefficients for Systems of PDEs
You can enter coefficients for a system with N = 2 equations in the PDE Modeler app. To do so, open
the PDE Modeler app and select Generic System.

Then select PDE > PDE Specification.

Enter character expressions for coefficients using the form in “Coefficients for Scalar PDEs” on page
4-14, with additional options for nonlinear equations. The additional options are:

• Represent the ith component of the solution u using 'u(i)' for i = 1 or 2.

4 PDE Modeler App

4-16

• Similarly, represent the ith components of the gradients of the solution u using 'ux(i)' and
'uy(i)' for i = 1 or 2.

Note For elliptic problems, when you include coefficients u(i), ux(i), or uy(i), you must use the
nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Do not use quotes or unnecessary spaces in your entries.

For higher-dimensional systems, do not use the PDE Modeler app. Represent your problem
coefficients at the command line.

You can enter scalars into the c matrix, corresponding to these equations:

−∇ · c11∇u1 − ∇ · c12∇u2 + a11u1 + a12u2 = f1
−∇ · c21∇u1 − ∇ · c22∇u2 + a21u1 + a22u2 = f2

If you need matrix versions of any of the cij coefficients, enter expressions separated by spaces. You
can give 1-, 2-, 3-, or 4-element matrix expressions. These mean:

•
1-element expression:

c 0
0 c

•
2-element expression:

c(1) 0
0 c(2)

•
3-element expression:

c(1) c(2)
c(2) c(3)

•
4-element expression:

c(1) c(3)
c(2) c(4)

For example, these expressions show one of each type (1-, 2-, 3-, and 4-element expressions)

 Specify Coefficients in PDE Modeler App

4-17

These expressions correspond to the equations

−∇ ·
4 + cos(xy) 0

0 4 + cos(xy)
∇u1 − ∇ ·

−1 0
0 1

∇u2 = 1

−∇ ·
.1 .2
.2 .3

∇u1 − ∇ ·
7 .6
.5 exp(x− y)

∇u2 = 2

Coefficients That Depend on Time and Space
This example shows how to enter time- and coordinate-dependent coefficients in the PDE Modeler
app.

Solve the parabolic PDE,

d∂u∂t − ∇ ⋅ c∇u + au = f

with the following coefficients:

• d = 5
• a = 0
• f is a linear ramp up to 10, holds at 10, then ramps back down to 0:

f = 10 *
10t 0 ≤ t ≤ 0.1
1 0.1 ≤ t ≤ 0.9
10 − 10t 0.9 ≤ t ≤ 1

• c = 1 +.x2 + y2

To solve this equation in the PDE Modeler app, follow these steps:

4 PDE Modeler App

4-18

1 Write the file framp.m and save it on your MATLAB path.

function f = framp(t)

if t <= 0.1
 f = 10*t;
elseif t <= 0.9
 f = 1;
else
 f = 10-10*t;
end
f = 10*f;

2 Open the PDE Modeler app by using the pdeModeler command.
3 Display grid lines by selecting Options > Grid.
4 Align new shapes to the grid lines by selecting Options > Snap.
5 Draw a rectangle with the corners at (-1,-0.4), (-1,0.4), (1,0.4), and (1,-0.4). To do this, first click

the button. Then click one of the corners using the left mouse button and drag to draw a
rectangle.

6
Draw a circle with the radius 0.2 and the center at (0.5,0). To do this, first click the
button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape
you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle,
double-click it. In the resulting dialog box, specify the exact center location and radius of the
circle.

7 Model the geometry by entering R1-C1 in the Set formula field.

 Specify Coefficients in PDE Modeler App

4-19

8 Check that the application mode is set to Generic Scalar.
9 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary

> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

• For the rectangle, use the Dirichlet boundary condition with h = 1 and r = t*(x-y).
• For the circle, use the Neumann boundary condition with g = x.^2+y.^2 and q = 1.

10 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Select the Parabolic type of PDE. Specify c = 1+x.^2+y.^2, a = 0, f =
framp(t), and d = 5.

Note Do not include quotes or spaces when you specify your coefficients the PDE Modeler app.
The parser interprets all inputs as vectors of characters. It can misinterpret a space as a vector
separator, as when a MATLAB vector uses a space to separate elements of a vector.

11 Initialize the mesh by selecting Mesh > Initialize Mesh.
12 Refine the mesh twice by selecting Mesh > Refine Mesh.
13 Improve the triangle quality by selecting Mesh > Jiggle Mesh.

4 PDE Modeler App

4-20

14 Set the initial value and the solution time. To do this, select Solve > Parameters.

In the resulting dialog box, set the time to linspace(0,1,50) and the initial value u(t0) to 0.
15 Solve the equation by selecting Solve > Solve PDE or clicking the = button on the toolbar.

 Specify Coefficients in PDE Modeler App

4-21

16 Visualize the solution as a 3-D static plot. To do this:

a Select Plot > Parameters.
b In the resulting dialog box, select the Color and Height (3-D plot) options.
c Select the Show mesh option.
d Change the colormap to jet by using the corresponding drop-down menu in the same dialog

box.

4 PDE Modeler App

4-22

 Specify Coefficients in PDE Modeler App

4-23

Specify Mesh Parameters in the PDE Modeler App
Select Parameters from the Mesh menu to open the following dialog box containing mesh
generation parameters.

The parameters used by the mesh initialization algorithm are:

• Maximum edge size: Largest triangle edge length (approximately). This parameter is optional
and must be a real positive number.

• Mesh growth rate: The rate at which the mesh size increases away from small parts of the
geometry. The value must be between 1 and 2. The default value is 1.3, i.e., the mesh size
increases by 30%.

• Mesher version: Choose the geometry triangulation algorithm. R2013a is faster, and can mesh
more geometries. preR2013a gives the same mesh as previous toolbox versions.

• Jiggle mesh: Toggles automatic jiggling of the initial mesh on/off.

The parameters used by the mesh jiggling algorithm are:

4 PDE Modeler App

4-24

• Jiggle mode: Select a jiggle mode from a pop-up menu. Available modes are on, optimize
minimum, and optimize mean. on jiggles the mesh once. Using the jiggle mode optimize
minimum, the jiggling process is repeated until the minimum triangle quality stops increasing or
until the iteration limit is reached. The same applies for the optimize mean option, but it tries to
increase the mean triangle quality.

• Number of jiggle iterations: Iteration limit for the optimize minimum and optimize mean
modes. Default: 20.

For the mesh refinement algorithm refinemesh, the Refinement method can be regular or
longest. The default refinement method is regular, which results in a uniform mesh. The
refinement method longest always refines the longest edge on each triangle.

To initialize a triangular mesh, select Initialize Mesh from the Mesh menu or click the button.

To refine a mesh, select Refine Mesh from the Mesh menu or click the button.

 Specify Mesh Parameters in the PDE Modeler App

4-25

Adjust Solve Parameters in the PDE Modeler App
To specify parameters for solving a PDE, select Parameters from the Solve menu. The set of solve
parameters differs depending on the type of PDE. After you adjust the parameters, solve the PDE by
selecting Solve PDE from the Solve menu or by clicking the = button.

Elliptic Equations

By default, no specific solve parameters are used, and the elliptic PDEs are solved using the basic
elliptic solver assempde. Optionally, the adaptive mesh generator and solver adaptmesh can be
used. For the adaptive mode, the following parameters are available:

• Adaptive mode. Toggle the adaptive mode on/off.
• Maximum number of triangles. The maximum number of new triangles allowed (can be set to

Inf). A default value is calculated based on the current mesh.
• Maximum number of refinements. The maximum number of successive refinements attempted.
• Triangle selection method. There are two triangle selection methods, described below. You can

also supply your own function.

4 PDE Modeler App

4-26

• Worst triangles. This method picks all triangles that are worse than a fraction of the value of
the worst triangle (default: 0.5).

• Relative tolerance. This method picks triangles using a relative tolerance criterion (default:
1E-3).

• User-defined function. Enter the name of a user-defined triangle selection method. See
“Poisson's Equation with Point Source and Adaptive Mesh Refinement” on page 3-222 for an
example of a user-defined triangle selection method.

• Function parameter. The function parameter allows fine-tuning of the triangle selection
methods. For the worst triangle method (pdeadworst), it is the fraction of the worst value that is
used to determine which triangles to refine. For the relative tolerance method, it is a tolerance
parameter that controls how well the solution fits the PDE.

• Refinement method. Can be regular or longest. See “Specify Mesh Parameters in the PDE
Modeler App” on page 4-24.

If the problem is nonlinear, i.e., parameters in the PDE are directly dependent on the solution u, a
nonlinear solver must be used. The following parameters are used:

• Use nonlinear solver. Toggle the nonlinear solver on/off.
• Nonlinear tolerance. Tolerance parameter for the nonlinear solver.
• Initial solution. An initial guess. Can be a constant or a function of x and y given as a MATLAB

expression that can be evaluated on the nodes of the current mesh.

Examples: 1, and exp(x.*y). Optional parameter, defaults to zero.
• Jacobian. Jacobian approximation method: fixed (the default), a fixed point iteration, lumped, a

“lumped” (diagonal) approximation, or full, the full Jacobian.
• Norm. The type of norm used for computing the residual. Enter as energy for an energy norm, or

as a real scalar p to give the lp norm. The default is Inf, the infinity (maximum) norm.

Note The adaptive mode and the nonlinear solver can be used together.

 Adjust Solve Parameters in the PDE Modeler App

4-27

Parabolic Equations

The solve parameters for the parabolic PDEs are:

• Time. A MATLAB vector of times at which a solution to the parabolic PDE should be generated.
The relevant time span is dependent on the dynamics of the problem.

Examples: 0:10, and logspace(-2,0,20)
• u(t0). The initial value u(t0) for the parabolic PDE problem The initial value can be a constant or a

column vector of values on the nodes of the current mesh.
• Relative tolerance. Relative tolerance parameter for the ODE solver that is used for solving the

time-dependent part of the parabolic PDE problem.
• Absolute tolerance. Absolute tolerance parameter for the ODE solver that is used for solving the

time-dependent part of the parabolic PDE problem.

4 PDE Modeler App

4-28

Hyperbolic Equations

The solve parameters for the hyperbolic PDEs are:

• Time. A MATLAB vector of times at which a solution to the hyperbolic PDE should be generated.
The relevant time span is dependent on the dynamics of the problem.

Examples: 0:10, and logspace(-2,0,20).
• u(t0). The initial value u(t0) for the hyperbolic PDE problem. The initial value can be a constant or

a column vector of values on the nodes of the current mesh.
• u'(t0). The initial value u̇(t0) for the hyperbolic PDE problem. You can use the same formats as for

u(t0).
• Relative tolerance. Relative tolerance parameter for the ODE solver that is used for solving the

time-dependent part of the hyperbolic PDE problem.
• Absolute tolerance. Absolute tolerance parameter for the ODE solver that is used for solving the

time-dependent part of the hyperbolic PDE problem.

Eigenvalue Equations
For the eigenvalue PDE, the only solve parameter is the Eigenvalue search range, a two-element
vector, defining an interval on the real axis as a search range for the eigenvalues. The left side can be
-Inf.

Examples: [0 100], [-Inf 50]

 Adjust Solve Parameters in the PDE Modeler App

4-29

Nonlinear Equations
Before solving a nonlinear elliptic PDE in the PDE Modeler app, select SolveParameters. Then select
Use nonlinear solver and click OK.

4 PDE Modeler App

4-30

Plot the Solution in the PDE Modeler App
To plot a solution property, use the Plot menu. Use the Plot Selection dialog box to select which
property to plot, which plot style to use, and several other plot parameters. If you have recorded a
movie (animation) of the solution, you can export it to the workspace.

To open the Plot Selection dialog box, select Parameters from the Plot menu or click the
button.

Parameters opens a dialog box containing options controlling the plotting and visualization.

The upper part of the dialog box contains four columns:

• Plot type (far left) contains a row of six different plot types, which can be used for visualization:

• Color. Visualization of a scalar property using colored surface objects.
• Contour. Visualization of a scalar property using colored contour lines. The contour lines can

also enhance the color visualization when both plot types (Color and Contour) are checked.
The contour lines are then drawn in black.

• Arrows. Visualization of a vector property using arrows.
• Deformed mesh. Visualization of a vector property by deforming the mesh using the vector

property. The deformation is automatically scaled to 10% of the problem domain. This plot type
is primarily intended for visualizing x- and y-displacements (u and v) for problems in structural
mechanics. If no other plot type is selected, the deformed triangular mesh is displayed.

• Height (3-D plot). Visualization of a scalar property using height (z-axis) in a 3-D plot. 3-D
plots are plotted in separate figure windows. If the Color and Contour plot types are not used,

 Plot the Solution in the PDE Modeler App

4-31

the 3-D plot is simply a mesh plot. You can visualize another scalar property simultaneously
using Color and/or Contour, which results in a 3-D surface or contour plot.

• Animation. Animation of time-dependent solutions to parabolic and hyperbolic problems. If
you select this option, the solution is recorded and then animated in a separate figure window
using the MATLAB movie function.

A color bar is added to the plots to map the colors in the plot to the magnitude of the property that is
represented using color or contour lines.

• Property contains four pop-up menus containing lists of properties that are available for plotting
using the corresponding plot type. From the first pop-up menu you control the property that is
visualized using color and/or contour lines. The second and third pop-up menus contain vector
valued properties for visualization using arrows and deformed mesh, respectively. From the fourth
pop-up menu, finally, you control which scalar property to visualize using z-height in a 3-D plot.
The lists of properties are dependent on the current application mode. For the generic scalar
mode, you can select the following scalar properties:

• u. The solution itself.
• abs(grad(u)). The absolute value of ∇u, evaluated at the center of each triangle.
• abs(c*grad(u)). The absolute value of c · ∇u, evaluated at the center of each triangle.
• user entry. A MATLAB expression returning a vector of data defined on the nodes or the

triangles of the current triangular mesh. The solution u, its derivatives ux and uy, the x and y
components of c · ∇u, cux and cuy, and x and y are all available in the local workspace. You
enter the expression into the edit box to the right of the Property pop-up menu in the User
entry column.

Examples: u.*u, x+y

The vector property pop-up menus contain the following properties in the generic scalar case:

• -grad(u). The negative gradient of u, –∇u.
• -c*grad(u). c times the negative gradient of u, –c · ∇u.
• user entry. A MATLAB expression [px; py] returning a 2-by-ntri matrix of data defined on

the triangles of the current triangular mesh (ntri is the number of triangles in the current
mesh). The solution u, its derivatives ux and uy, the x and y components of c · ∇u, cux and
cuy, and x and y are all available in the local workspace. Data defined on the nodes is
interpolated to triangle centers. You enter the expression into the edit field to the right of the
Property pop-up menu in the User entry column.

Examples: [ux;uy], [x;y]

For the generic system case, the properties available for visualization using color, contour lines, or z-
height are u, v, abs(u,v), and a user entry. For visualization using arrows or a deformed mesh, you
can choose (u,v) or a user entry. For applications in structural mechanics, u and v are the x- and y-
displacements, respectively.

The variables available in the local workspace for a user entered expression are the same for all
scalar and system modes (the solution is always referred to as u and, in the system case, v).

• User entry contains four edit fields where you can enter your own expression, if you select the
user entry property from the corresponding pop-up menu to the left of the edit fields. If the user
entry property is not selected, the corresponding edit field is disabled.

4 PDE Modeler App

4-32

• Plot style contains three pop-up menus from which you can control the plot style for the color,
arrow, and height plot types respectively. The available plot styles for color surface plots are

• Interpolated shading. A surface plot using the selected colormap and interpolated shading,
i.e., each triangular area is colored using a linear, interpolated shading (the default).

• Flat shading. A surface plot using the selected colormap and flat shading, i.e., each triangular
area is colored using a constant color.

You can use two different arrow plot styles:

• Proportional. The length of the arrow corresponds to the magnitude of the property that you
visualize (the default).

• Normalized. The lengths of all arrows are normalized, i.e., all arrows have the same length.
This is useful when you are interested in the direction of the vector field. The direction is
clearly visible even in areas where the magnitude of the field is very small.

For height (3-D plots), the available plot styles are:

• Continuous. Produces a “smooth” continuous plot by interpolating data from triangle
midpoints to the mesh nodes (the default).

• Discontinuous. Produces a discontinuous plot where data and z-height are constant on each
triangle.

A total of three properties of the solution—two scalar properties and one vector field—can be
visualized simultaneously. If the Height (3-D plot) option is turned off, the solution plot is a 2-D plot
and is plotted in the main axes of the PDE Modeler app. If the Height (3-D plot) option is used, the
solution plot is a 3-D plot in a separate figure window. If possible, the 3-D plot uses an existing figure
window. If you would like to plot in a new figure window, simply type figure at the MATLAB
command line.

Additional Plot Control Options
In the middle of the dialog box are a number of additional plot control options:

• Plot in x-y grid. If you select this option, the solution is converted from the original triangular
grid to a rectangular x-y grid. This is especially useful for animations since it speeds up the
process of recording the movie frames significantly.

• Show mesh. In the surface plots, the mesh is plotted using black color if you select this option. By
default, the mesh is hidden.

• Contour plot levels. For contour plots, the number of level curves, e.g., 15 or 20 can be entered.
Alternatively, you can enter a MATLAB vector of levels. The curves of the contour plot are then
drawn at those levels. The default is 20 contour level curves.

Examples: [0:100:1000], logspace(-1,1,30)
• Colormap. Using the Colormap pop-up menu, you can select from a number of different color

maps: cool, gray, bone, pink, copper, hot, jet, hsv, prism, and parula.
• Plot solution automatically. This option is normally selected. If turned off, there will not be a

display of a plot of the solution immediately upon solving the PDE. The new solution, however, can
be plotted using this dialog box.

For the parabolic and hyperbolic PDEs, the bottom right portion of the Plot Selection dialog box
contains the Time for plot parameter.

 Plot the Solution in the PDE Modeler App

4-33

Time for plot. A pop-up menu allows you to select which of the solutions to plot by selecting the
corresponding time. By default, the last solution is plotted.

Also, the Animation plot type is enabled. In its property field you find an Options button. If you
press it, an additional dialog box appears. It contains parameters that control the animation:

• Animation rate (fps). For the animation, this parameter controls the speed of the movie in
frames per second (fps).

• Number of repeats. The number of times the movie is played.
• Replay movie. If you select this option, the current movie is replayed without rerecording the

movie frames. If there is no current movie, this option is disabled.

For eigenvalue problems, the bottom right part of the dialog box contains a drop-down menu with all
eigenvalues. The plotted solution is the eigenvector associated with the selected eigenvalue. By
default, the smallest eigenvalue is selected.

You can rotate the 3-D plots by clicking the plot and, while keeping the mouse button down, moving
the mouse. For guidance, a surrounding box appears. When you release the mouse, the plot is
redrawn using the new viewpoint. Initially, the solution is plotted using -37.5 degrees horizontal
rotation and 30 degrees elevation.

4 PDE Modeler App

4-34

If you click the Plot button, the solution is plotted immediately using the current plot setup. If there
is no current solution available, the PDE is first solved. The new solution is then plotted. The dialog
box remains on the screen.

If you click the Done button, the dialog box is closed. The current setup is saved but no additional
plotting takes place.

If you click the Cancel button, the dialog box is closed. The setup remains unchanged since the last
plot.

Tooltip Displays for Mesh and Plots
In mesh mode, you can use the mouse to display the node number and the triangle number at the
position where you click. Press the left mouse button to display the node number on the information
line. Use the left mouse button and the Shift key to display the triangle number on the information
line.

In plot mode, you can use the mouse to display the numerical value of the plotted property at the
position where you click. Press the left mouse button to display the triangle number and the value of
the plotted property on the information line.

The information remains on the information line until you release the mouse button.

 Plot the Solution in the PDE Modeler App

4-35

Functions

5

adaptmesh
Package: pde

Create adaptive 2-D mesh and solve PDE

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow. In the recommended workflow, see generateMesh for mesh generation and solvepde for
PDE solution.

Syntax
[u,p,e,t] = adaptmesh(g,b,c,a,f)
[u,p,e,t] = adaptmesh(g,b,c,a,f,Name,Value)

Description
[u,p,e,t] = adaptmesh(g,b,c,a,f) generates an adaptive [p,e,t] mesh and returns the
solution u for an elliptic 2-D PDE problem

−∇ ⋅ c∇u + au = f

for (x,y) ∊ Ω, or the elliptic system PDE problem

−∇ ⋅ c⊗ ∇u + au = f

with the problem geometry and boundary conditions given by g and b. The mesh is described by the
p, e, and t matrices.

Upon termination, the function issues one of these messages:

• Adaption completed. (This means that the Tripick function returned zero triangles to refine.)
• Maximum number of triangles obtained.
• Maximum number of refinement passes obtained.

[u,p,e,t] = adaptmesh(g,b,c,a,f,Name,Value) performs adaptive mesh generation and PDE
solution for elliptic 2-D PDE problems using one or more Name,Value pair arguments.

Examples

Adaptive Mesh Generation and Mesh Refinement

Solve the Laplace equation over a circle sector, with Dirichlet boundary conditions u =
cos(2/3atan2(y,x)) along the arc and u = 0 along the straight lines, and compare the resulting solution
to the exact solution. Set the options so that adaptmesh refines the triangles using the worst error
criterion until it obtains a mesh with at least 500 triangles.

c45 = cos(pi/4);
L1 = [2 -c45 0 c45 0 1 0 0 0 0]';

5 Functions

5-2

L2 = [2 -c45 0 -c45 0 1 0 0 0 0]';
C1 = [1 -c45 c45 -c45 -c45 1 0 0 0 1]';
C2 = [1 c45 c45 -c45 c45 1 0 0 0 1]';
C3 = [1 c45 -c45 c45 c45 1 0 0 0 1]';
g = [L1 L2 C1 C2 C3];

[u,p,e,t] = adaptmesh(g,'cirsb',1,0,0,'Maxt',500,...
 'Tripick','pdeadworst','Ngen',Inf);

Number of triangles: 204
Number of triangles: 208
Number of triangles: 217
Number of triangles: 230
Number of triangles: 265
Number of triangles: 274
Number of triangles: 332
Number of triangles: 347
Number of triangles: 460
Number of triangles: 477
Number of triangles: 699

Maximum number of triangles obtained.

Find the maximal absolute error.

x = p(1,:); y = p(2,:);
exact = ((x.^2 + y.^2).^(1/3).*cos(2/3*atan2(y,x)))';
max(abs(u - exact))

ans = 0.0028

Find the number of triangles.

size(t,2)

ans = 699

Plot the mesh.

pdemesh(p,e,t)

 adaptmesh

5-3

Test how many refinements you need with a uniform triangle mesh.

[p,e,t] = initmesh(g);
[p,e,t] = refinemesh(g,p,e,t);
u = assempde('cirsb',p,e,t,1,0,0);
x = p(1,:);
y = p(2,:);
exact = ((x.^2 + y.^2).^(1/3).*cos(2/3*atan2(y,x)))';
max(abs(u - exact))

ans = 0.0116

Find the number of triangles in this case.

size(t,2)

ans = 816

Refine the mesh one more time. The maximal absolute error for uniform meshing is still greater than
for adaptive meshing.

[p,e,t] = refinemesh(g,p,e,t);
u = assempde('cirsb',p,e,t,1,0,0);
x = p(1,:);
y = p(2,:);
exact = ((x.^2 + y.^2).^(1/3).*cos(2/3*atan2(y,x)))';
max(abs(u - exact))

ans = 0.0075

5 Functions

5-4

Find the number of triangles in this case.

size(t,2)

ans = 3264

Plot the mesh.

pdemesh(p,e,t)

Uniform refinement with more triangles produces a larger error. Typically, a problem with regular
solution has an O(h2) error. However, this solution is singular since u ≈ r1/3 at the origin.

Input Arguments
g — Geometry description
decomposed geometry matrix | geometry function | handle to geometry function

Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle
to the geometry function. For details about a decomposed geometry matrix, see decsg. For details
about a geometry function, see “Parametrized Function for 2-D Geometry Creation” on page 2-10.

A geometry function must return the same result for the same input arguments in every function call.
Thus, it must not contain functions and expressions designed to return a variety of results, such as
random number generators.

 adaptmesh

5-5

Data Types: double | char | string | function_handle

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. Typically, you export a boundary matrix from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the
value of 'Nonlin' to 'on'. The coefficients cannot be functions of the time t.
Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the
value of 'Nonlin' to 'on'. The coefficients cannot be functions of the time t.
Example: 2*eye(3)
Data Types: double | char | string | function_handle

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

5 Functions

5-6

−∇ ⋅ c⊗ ∇u + au = f

The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the
value of 'Nonlin' to 'on'. The coefficients cannot be function of the time t.
Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [u,p,e,t] =
adaptmesh(g,'cirsb',1,0,0,'Maxt',500,'Tripick','pdeadworst','Ngen',Inf)

Maxt — Maximum number of new triangles
Inf (default) | positive integer

Maximum number of new triangles, specified as the comma-separated pair consisting of 'Maxt' and
a positive integer.
Data Types: double

Ngen — Maximum number of triangle generations
10 (default) | positive integer

Maximum number of triangle generations, specified as the comma-separated pair consisting of
'Ngen' and a positive integer.
Data Types: double

Mesh — Initial mesh
mesh generated by initmesh (default) | [p,e,t] mesh

Initial mesh, specified as the comma-separated pair consisting of 'Mesh' and a mesh specified by
[p,e,t] triples. By default, the function uses the mesh generated by the initmesh function.
Data Types: double

Tripick — Triangle selection method
indices of triangles returned by pdeadworst (default) | MATLAB function

Triangle selection method, specified as the comma-separated pair consisting of 'Tripick' and a
MATLAB function. By default, the function uses the indices of triangles returned by the pdeadworst
function.

Given the error estimate computed by the function pdejmps, the triangle selection method identifies
the triangles to be refined in the next triangle generation. The function is called using the arguments
p, t, cc, aa, ff, u, errf, and Par.

• p and t represent the current generation of triangles.
• cc, aa, and ff are the current coefficients for the PDE problem, expanded to the triangle

midpoints.

 adaptmesh

5-7

• u is the current solution.
• errf is the computed error estimate.
• Par is the optional argument of adaptmesh.

The matrices cc, aa, ff, and errf all have Nt columns, where Nt is the current number of triangles.
The numbers of rows in cc, aa, and ff are exactly the same as the input arguments c, a, and f. errf
has one row for each equation in the system. The two standard triangle selection methods are
pdeadworst and pdeadgsc.

• pdeadworst identifies triangles where errf exceeds a fraction of the worst value. The default
fraction value is 0.5. You can change it by specifying the Par argument value when calling
adaptmesh.

• pdeadgsc selects triangles using a relative tolerance criterion.

Data Types: double

Par — Function parameter for triangle selection method
0.5 (default) | number

Function parameter for the triangle selection method, specified as the comma-separated pair
consisting of 'Par' and a number between 0 and 1. The pdeadworst triangle selection method uses
it as its wlevel argument. The pdeadgsc triangle selection method uses it as its tol argument.
Data Types: double

Rmethod — Triangle refinement method
'longest' (default) | 'regular'

Triangle refinement method, specified as the comma-separated pair consisting of 'Rmethod' and
either 'longest' or 'regular'. For details on the refinement method, see refinemesh.
Data Types: char | string

Nonlin — Toggle to use a nonlinear solver
'off' (default) | 'on'

Toggle to use a nonlinear solver, specified as the comma-separated pair consisting of 'Nonlin' and
'on' or 'off'.
Data Types: char | string

Toln — Nonlinear tolerance
1e-4 (default) | positive number

Nonlinear tolerance, specified as the comma-separated pair consisting of 'Toln' and a positive
number. The function passes this argument to pdenonlin, which iterates until the magnitude of the
residual is less than Toln.
Data Types: double

Init — Nonlinear initial value
0 (default) | scalar | vector of characters | vector of numbers

Nonlinear initial value, specified as the comma-separated pair consisting of 'Init' and a scalar, a
vector of characters, or a vector of numbers. The function passes this argument to pdenonlin, which
uses it as an initial guess in its 'U0' argument.

5 Functions

5-8

Data Types: double

Jac — Nonlinear Jacobian calculation
'fixed' (default) | 'lumped' | 'full'

Nonlinear Jacobian calculation, specified as the comma-separated pair consisting of 'Jac' and either
'fixed', 'lumped', or 'full'. The function passes this argument to pdenonlin, which uses it as
an initial guess in its 'Jacobian' argument.
Data Types: char | string

Norm — Nonlinear solver residual norm
Inf (default) | p value for Lp norm

Nonlinear solver residual norm, specified as the comma-separated pair consisting of 'Norm' and p
value for Lp norm. p can be any positive real value, Inf, or -Inf. The p norm of a vector v is
sum(abs(v)^p)^(1/p). The function passes this argument to pdenonlin, which uses it as an
initial guess in its 'Norm' argument.
Data Types: double | char | string

MesherVersion — Algorithm for generating initial mesh
'preR2013a' (default) | 'R2013a'

Algorithm for generating initial mesh, specified as the comma-separated pair consisting of
'MesherVersion' and either 'R2013a' or 'preR2013a'. The 'R2013a' algorithm runs faster,
and can triangulate more geometries than the 'preR2013a' algorithm. Both algorithms use
Delaunay triangulation.
Data Types: char | string

Output Arguments
u — PDE solution
vector

PDE solution, returned as a vector.

• If the PDE is scalar, meaning that it has only one equation, then u is a column vector representing
the solution u at each node in the mesh.

• If the PDE is a system of N > 1 equations, then u is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u represent the solution of
equation 1, the next Np elements represent the solution of equation 2, and so on.

p — Mesh points
2-by-Np matrix

Mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k
of p consists of the x-coordinate of point k in p(1,k) and the y-coordinate of point k in p(2,k). For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

e — Mesh edges
7-by-Ne matrix

 adaptmesh

5-9

Mesh edges, returned as a 7-by-Ne matrix. Ne is the number of edges in the mesh. An edge is a pair of
points in p containing a boundary between subdomains, or containing an outer boundary. For details,
see “Mesh Data as [p,e,t] Triples” on page 2-150.

t — Mesh elements
4-by-Nt matrix

Mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.

The t(i,k), with i ranging from 1 through end-1, contain indices to the corner points of element k.
For details, see “Mesh Data as [p,e,t] Triples” on page 2-150. The last row, t(end,k), contains the
subdomain numbers of the elements.

Algorithms
Mesh Refinement for Improving Solution Accuracy

Partial Differential Equation Toolbox provides the refinemesh function for global, uniform mesh
refinement for 2-D geometries. It divides each triangle into four similar triangles by creating new
corners at the mid-sides, adjusting for curved boundaries. You can assess the accuracy of the
numerical solution by comparing results from a sequence of successively refined meshes. If the
solution is smooth enough, more accurate results can be obtained by extrapolation.

The solutions of equations often have geometric features such as localized strong gradients. An
example of engineering importance in elasticity is the stress concentration occurring at reentrant
corners, such as the MATLAB L-shaped membrane. In such cases, it is more efficient to refine the
mesh selectively. The selection that is based on estimates of errors in the computed solutions is called
adaptive mesh refinement.

The adaptive refinement generates a sequence of solutions on successively finer meshes, at each
stage selecting and refining those elements that are judged to contribute most to the error. The
process stops34 when the maximum number of elements is exceeded, when each triangle contributes
less than a preset tolerance, or when an iteration limit is reached. You can provide an initial mesh, or
let adaptmesh call initmesh automatically. You also choose selection and termination criteria
parameters. The three components of the algorithm are the error indicator function (computes an
estimate of the element error contribution), the mesh refiner (selects and subdivides elements), and
the termination criteria.

Error Estimate for FEM Solution

The adaptation is a feedback process. It is easily applied to a larger range of problems than those for
which its design was tailored. Estimates, selection criteria, and so on must be optimal for giving the
most accurate solution at fixed cost or lowest computational effort for a given accuracy. Such results
have been proven only for model problems, but generally, the equidistribution heuristic has been
found nearly optimal. Element sizes must be chosen so that each element contributes the same to the
error. The theory of adaptive schemes makes use of a priori bounds for solutions in terms of the
source function f. For nonelliptic problems, such bounds might not exist, while the refinement scheme
is still well defined and works.

The error indicator function used in the software is an elementwise estimate of the contribution,
based on [1] and [2]. For Poisson's equation –Δu = f on Ω, the following error estimate for the FEM-
solution uh holds in the L2-norm ⋅ :

∇(u− uh) ≤ α hf + βDh(uh)

5 Functions

5-10

where h = h(x) is the local mesh size, and

Dh(v) = ∑
τ ∈ E1

hτ
2 ∂v
∂nτ

2 1/2

The braced quantity is the jump in normal derivative of v across the edge τ, hτ is the length of the
edge τ, and the sum runs over Ei, the set of all interior edges of the triangulation. The coefficients α
and β are independent of the triangulation. This bound is turned into an elementwise error indicator
function E(K) for the element K by summing the contributions from its edges.

The general form of the error indicator function for the elliptic equation

–∇ · (c∇u) + au = f (5-1)

is

E K = α h f − au K + β 1
2 ∑

τ ∈ ∂K
hτ

2 nτ · c∇uh
2

1/2

where nτ is the unit normal of the edge τ and the braced term is the jump in flux across the element
edge. The L2 norm is computed over the element K. The pdejmps function computes this error
indicator.

Mesh Refinement Functions

Partial Differential Equation Toolbox mesh refinement is geared to elliptic problems. For reasons of
accuracy and ill-conditioning, such problems require the elements not to deviate too much from being
equilateral. Thus, even at essentially one-dimensional solution features, such as boundary layers, the
refinement technique must guarantee reasonably shaped triangles.

When an element is refined, new nodes appear on its midsides, and if the neighbor triangle is not
refined in a similar way, it is said to have hanging nodes. The final triangulation must have no
hanging nodes, and they are removed by splitting neighbor triangles. To avoid further deterioration of
triangle quality in successive generations, the "longest edge bisection" scheme is used in [3], in which
the longest side of a triangle is always split, whenever any of the sides have hanging nodes. This
guarantees that no angle is ever smaller than half the smallest angle of the original triangulation.

There are two selection criteria. One, pdeadworst, refines all elements with value of the error
indicator larger than half the worst of any element. The other, pdeadgsc, refines all elements with an
indicator value exceeding a specified dimensionless tolerance. The comparison with the tolerance is
properly scaled with respect to domain, solution size, and so on.

Mesh Refinement Termination Criteria

For smooth solutions, error equidistribution can be achieved by the pdeadgsc selection if the
maximum number of elements is large enough. The pdeadworst adaptation only terminates when
the maximum number of elements has been exceeded or when the iteration limit is reached. This
mode is natural when the solution exhibits singularities. The error indicator of the elements next to
the singularity might never vanish, regardless of element size, making equidistribution impossible.

 adaptmesh

5-11

References
[1] Johnson, C. Numerical Solution of Partial Differential Equations by the Finite Element Method.

Lund, Sweden: Studentlitteratur, 1987.

[2] Johnson, C., and K. Eriksson. Adaptive Finite Element Methods for Parabolic Problems I: A Linear
Model Problem. SIAM J. Numer. Anal, 28, (1991), pp. 43–77.

[3] Rosenberg, I.G., and F. Stenger. A lower bound on the angles of triangles constructed by bisecting
the longest side. Mathematics of Computation. Vol 29, Number 10, 1975, pp 390–395.

See Also
initmesh | refinemesh

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

5 Functions

5-12

addCell
Combine two geometries by adding one inside a cell of another

Syntax
g3 = addCell(g1,g2)

Description
g3 = addCell(g1,g2) creates nonempty cells inside g1 using all cells of g2. All cells of the
geometry g2 must be contained inside one cell of the geometry g1. Ensure that the geometries do not
have enclosed cavities and do not intersect one another.

The combined geometry contains cells from both geometries. The cells from g1 retain their original
IDs, while the cells from g2 are numbered starting with N+1, where N is the number of cells in g1.

Note Added cells modify a geometry, but they do not modify the corresponding mesh. After
modifying a geometry, always call generateMesh to ensure a proper mesh association with the new
geometry.

Examples

Combine Two Geometries

Create and plot a geometry.

g1 = multicuboid(2,2,2,'Zoffset',-1);
pdegplot(g1,'CellLabels','on','FaceAlpha',0.5)

 addCell

5-13

Import and plot another geometry.

g2 = importGeometry('DampingMounts.stl');
pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-14

Scale and move the second geometry to fit entirely within the cube g1.

g2 = scale(g2,[1/1500 1/1500 1/100]);
g2 = translate(g2,[-0.5 -0.5 -0.5]);

Plot the result.

pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)

 addCell

5-15

Combine the geometries and plot the result. The combined geometry g3 contains cells from both
geometries. The cell from g1 keeps its ID, and the cells from g2 are now C2, C3, C4, and C5.

g3 = addCell(g1,g2);
pdegplot(g3,'CellLabels','on','FaceAlpha',0.4)

5 Functions

5-16

Input Arguments
g1 — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

g2 — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

Output Arguments
g3 — Resulting 3-D geometry
DiscreteGeometry object

Resulting 3-D geometry, returned as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

See Also
addFace | addVertex | addVoid | DiscreteGeometry

 addCell

5-17

Introduced in R2021a

5 Functions

5-18

addFace
Package: pde

Fill void regions in 2-D and split cells in 3-D geometry

Syntax
h = addFace(g,edges)
[h,FaceID] = addFace(g,edges)

Description
h = addFace(g,edges) adds a new face to the geometry g. The specified edges must form a closed
contour. For a 2-D geometry, adding a new face lets you fill voids in the geometry. For a 3-D geometry,
adding a new face lets you split one cell into multiple cells.

You can add several new faces simultaneously by specifying their contours in a cell array. Each
contour in the cell array must be unique.

Note New faces modify a geometry, but they do not modify the mesh. After modifying a geometry,
always call generateMesh to ensure a proper mesh association with the new geometry.

[h,FaceID] = addFace(g,edges) also returns a row vector containing IDs of the added faces.

Examples

Fill Void Region in 2-D Geometry

Add a face to a 2-D geometry to fill an internal void.

Create a PDE model.

model = createpde();

Import the geometry. This geometry has one face.

gm = importGeometry(model,'PlateSquareHolePlanar.stl')

gm =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 1
 NumEdges: 8
 NumVertices: 8
 Vertices: [8x3 double]

Plot the geometry and display the face labels.

 addFace

5-19

pdegplot(gm,'FaceLabels','on')

Zoom in and display the edge labels of the small hole at the center.

figure
pdegplot(gm,'EdgeLabels','on')
axis([49 51 99 101])

5 Functions

5-20

Fill the hole by adding a face. The number of faces in the geometry changes to 2.

gm = addFace(gm,[1 8 4 5])

gm =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 2
 NumEdges: 8
 NumVertices: 8
 Vertices: [8x3 double]

Plot the modified geometry and display the face labels.

pdegplot(gm,'FaceLabels','on')

 addFace

5-21

Split Cells in 3-D Geometry

Add a face in a 3-D geometry to split a cell into two cells.

Create a PDE model.

model = createpde();

Import the geometry. The geometry consists of one cell.

gm = importGeometry(model,'MotherboardFragment1.stl')

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 26
 NumEdges: 46
 NumVertices: 34
 Vertices: [34x3 double]

Plot the geometry and display the edge labels. Zoom in on the corresponding part of the geometry to
see the edge labels there more clearly.

5 Functions

5-22

pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.5)

xlim([-0.05 0.05])
ylim([-0.05 0.05])
zlim([0 0.05])

Split the cuboid on the right side into a separate cell. For this, add a face bounded by edges 1, 3, 6,
and 12.

[gm,ID] = addFace(gm,[1 3 6 12])

gm =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 27
 NumEdges: 46
 NumVertices: 34
 Vertices: [34x3 double]

ID = 27

Plot the modified geometry and display the cell labels.

pdegplot(gm,'CellLabels','on','FaceAlpha',0.5)

 addFace

5-23

Now split the cuboid on the left side of the board and all cylinders into separate cells by adding a face
at the bottom of each shape. To see edge labels more clearly, zoom and rotate the plot. Use a cell
array to add several new faces simultaneously.

[gm,IDs] = addFace(gm,{[5 7 8 10], ...
 30, ...
 31, ...
 32, ...
 33, ...
 13})

gm =
 DiscreteGeometry with properties:

 NumCells: 8
 NumFaces: 33
 NumEdges: 46
 NumVertices: 34
 Vertices: [34x3 double]

IDs = 6×1

 28
 29
 30
 31
 32

5 Functions

5-24

 33

Plot the modified geometry and display the cell labels.

pdegplot(gm,'CellLabels','on','FaceAlpha',0.5)

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

edges — Edges forming unique closed flat contour
vector of positive integers | cell array of vectors of positive integers

Edges forming a unique closed flat contour, specified as a vector of positive integers or a cell array of
such vectors. You can specify edges within a vector in any order.

When you use a cell array to add several new faces, each contour in the cell array must be unique.
Example: addFace(g,[1 3 4 7])

 addFace

5-25

Output Arguments
h — Resulting geometry
handle

Resulting geometry, returned as a handle.

FaceID — Face ID
positive number | row vector of positive numbers

Face ID, returned as a positive number or a row vector of positive numbers. Each number represents
a face ID. When you add a new face to a geometry with N faces, the ID of the added face is N + 1.

Tips
• addFace errors when the specified contour defines an already existing face.
• addFace always modifies the original geometry g.

See Also
DiscreteGeometry Properties | AnalyticGeometry Properties | addVertex | pdegplot |
importGeometry | geometryFromMesh | generateMesh | structuralBoundaryLoad |
structuralBC

Introduced in R2020a

5 Functions

5-26

addVertex
Package: pde

Add a vertex on a geometry boundary

Syntax
VertexID = addVertex(g,'Coordinates',Coords)

Description
VertexID = addVertex(g,'Coordinates',Coords) adds a new isolated vertex at the point with
coordinates Coords to a boundary of the geometry g. To add several vertices simultaneously, specify
Coords as an N-by-2 matrix for a 2-D geometry or an N-by-3 matrix for a 3-D geometry. Here, N is the
number of new points.

If a point with the specified coordinates is slightly offset (within an internally specified tolerance)
from a geometry boundary, addVertex approximates it to a point on the boundary. If a vertex already
exists at the specified location, addVertex returns the ID of the existing vertex instead of creating
one.

Examples

Add Vertices on Edge of Block

Use addVertex to add a single vertex and multiple vertices on a side of a block geometry.

Create a PDE model.

model = createpde();

Import the geometry.

g = importGeometry(model,'Block.stl');

Plot the geometry and display the vertex labels.

pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)

 addVertex

5-27

Add a vertex on the edge of a block.

VertexID = addVertex(g,'Coordinates',[20 0 50])

VertexID = 9

Plot the geometry and display the vertex labels.

pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)

5 Functions

5-28

Add three more vertices on the same edge of the block.

V = ([40 0 50; 60 0 50; 80 0 50]);
VertexIDs = addVertex(g,'Coordinates',V)

VertexIDs = 3×1

 10
 11
 12

Plot the geometry and display the vertex labels.

pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)

 addVertex

5-29

Add a vertex at the corner of the block. Since there is already a vertex at the corner, addVertex does
not create a new vertex, but returns the ID of the existing vertex.

VertexID = addVertex(g,'Coordinates',[100 0 50])

VertexID = 5

Input Arguments
g — Geometry
DiscreteGeometry object

Geometry, specified as a DiscreteGeometry object.

Coords — Coordinates of new vertex
N-by-2 numeric matrix | N-by-3 numeric matrix

Coordinates of a new vertex, specified as an N-by-2 or N-by-3 numeric matrix for a 2-D or 3-D
geometry, respectively. Here, N is the number of new vertices.
Example: 'Coordinates',[0;0;1]
Data Types: double

5 Functions

5-30

Output Arguments
VertexID — Vertex ID
row vector

Vertex ID, returned as a row vector of positive numbers. Each number represents a vertex ID. When
you add a new vertex to a geometry with N vertices, the ID of the added vertex is N + 1. If a vertex
already exists at the specified location, addVertex returns the ID of the existing vertex.

Limitations
• addVertex does not work with AnalyticGeometry objects. See AnalyticGeometry.

See Also
DiscreteGeometry Properties | addFace | pdegplot | importGeometry | geometryFromMesh |
generateMesh | structuralBoundaryLoad | structuralBC

Introduced in R2019b

 addVertex

5-31

addVoid
Create void regions inside 3-D geometry

Syntax
g3 = addVoid(g1,g2)

Description
g3 = addVoid(g1,g2) creates void regions inside g1 using all cells of g2. All cells of the geometry
g2 must be contained inside one cell of the geometry g1. Ensure that the geometries do not have
enclosed cavities and do not intersect one another.

Note Added void regions modify a geometry, but they do not modify the corresponding mesh. After
modifying a geometry, always call generateMesh to ensure a proper mesh association with the new
geometry.

Examples

Add Void Regions Inside Cube

Create and plot a geometry.

g1 = multicuboid(2,2,2,'Zoffset',-1);
pdegplot(g1,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-32

Import and plot another geometry.

g2 = importGeometry('DampingMounts.stl');
pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)

 addVoid

5-33

Scale and move the second geometry to fit entirely within the cube g1.

g2 = scale(g2,[1/1500 1/1500 1/100]);
g2 = translate(g2,[-0.5 -0.5 -0.5]);

Plot the result.

pdegplot(g2,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-34

Create void regions inside the cube using the cells of the geometry g2. Plot the result.

g3 = addVoid(g1,g2);
pdegplot(g3,'CellLabels','on','FaceAlpha',0.4)

 addVoid

5-35

Input Arguments
g1 — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

g2 — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

Output Arguments
g3 — Resulting 3-D geometry
DiscreteGeometry object

Resulting 3-D geometry, returned as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

See Also
addCell | addFace | addVertex | DiscreteGeometry

5 Functions

5-36

Introduced in R2021a

 addVoid

5-37

AnalyticGeometry Properties
Analytic 2-D geometry description

Description
AnalyticGeometry describes a 2-D geometry in the form of an analytic geometry object. PDEModel,
StructuralModel, and ThermalModel objects have a Geometry property, which can be an
AnalyticGeometry or DiscreteGeometry object.

Add a 2-D analytic geometry to your model by using decsg to create the geometry and
geometryFromEdges to attach it to the model.

Properties
Properties

NumEdges — Number of geometry edges
positive integer

Number of geometry edges, returned as a positive integer.
Data Types: double

NumFaces — Number of geometry faces
positive integer

Number of geometry faces, returned as a positive integer. If your geometry is one connected region,
then NumFaces = 1.
Data Types: double

NumVertices — Number of geometry vertices
positive integer

Number of geometry vertices, returned as a positive integer.
Data Types: double

Vertices — Coordinates of geometry vertices
N-by-2 numeric matrix

Coordinates of geometry vertices, specified as an N-by-2 numeric matrix where N is the number of
vertices.
Data Types: double

See Also
geometryFromEdges | decsg | PDEModel | StructuralModel | ThermalModel |
DiscreteGeometry Properties

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

5 Functions

5-38

Introduced in R2015a

 AnalyticGeometry Properties

5-39

applyBoundaryCondition
Package: pde

Add boundary condition to PDEModel container

Syntax
applyBoundaryCondition(model,'dirichlet',RegionType,RegionID,Name,Value)
applyBoundaryCondition(model,'neumann',RegionType,RegionID,Name,Value)
applyBoundaryCondition(model,'mixed',RegionType,RegionID,Name,Value)
bc = applyBoundaryCondition(___)

Description
applyBoundaryCondition(model,'dirichlet',RegionType,RegionID,Name,Value) adds a
Dirichlet boundary condition to model. The boundary condition applies to boundary regions of type
RegionType with ID numbers in RegionID, and with arguments r, h, u, EquationIndex specified
in the Name,Value pairs. For Dirichlet boundary conditions, specify either both arguments r and h,
or the argument u. When specifying u, you can also use EquationIndex.

applyBoundaryCondition(model,'neumann',RegionType,RegionID,Name,Value) adds a
Neumann boundary condition to model. The boundary condition applies to boundary regions of type
RegionType with ID numbers in RegionID, and with values g and q specified in the Name,Value
pairs.

applyBoundaryCondition(model,'mixed',RegionType,RegionID,Name,Value) adds an
individual boundary condition for each equation in a system of PDEs. The boundary condition applies
to boundary regions of type RegionType with ID numbers in RegionID, and with values specified in
the Name,Value pairs. For mixed boundary conditions, you can use Name,Value pairs from both
Dirichlet and Neumann boundary conditions as needed.

bc = applyBoundaryCondition(___) returns the boundary condition object.

Examples

Dirichlet Boundary Conditions

Create a PDE model and geometry.

model = createpde(1);
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
g = decsg(R1);
geometryFromEdges(model,g);

View the edge labels.

pdegplot(model,'EdgeLabels','on')
xlim([-1.2,1.2])
axis equal

5 Functions

5-40

Apply zero Dirichlet condition on the edge 1.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1,'u',0);

On other edges, apply Dirichlet condition h*u = r, where h = 1 and r = 1.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',2:4, ...
 'r',1,'h',1);

Neumann Boundary Conditions

Create a PDE model and geometry.

model = createpde(2);
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
g = decsg(R1);
geometryFromEdges(model,g);

View the edge labels.

pdegplot(model,'EdgeLabels','on')
xlim([-1.2,1.2])
axis equal

 applyBoundaryCondition

5-41

Apply the following Neumann boundary conditions on the edge 4.

applyBoundaryCondition(model,'neumann', ...
 'Edge',4, ...
 'g',[0;.123], ...
 'q',[0;0;0;0]);

Dirichlet and Neumann Boundary Conditions for Different Boundaries

Apply both types of boundary conditions to a scalar problem. First, create a PDE model and import a
simple block geometry.

model = createpde;
importGeometry(model,'Block.stl');

View the face labels.

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-42

Set zero Dirichlet conditions on the narrow faces, which are labeled 1 through 4.

applyBoundaryCondition(model,'dirichlet', ...
 'Face',1:4,'u',0);

Set Neumann boundary conditions with opposite signs on faces 5 and 6.

applyBoundaryCondition(model,'neumann', ...
 'Face',5,'g',1);
applyBoundaryCondition(model,'neumann', ...
 'Face',6,'g',-1);

Solve an elliptic PDE with these boundary conditions, and plot the result.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',0);
generateMesh(model);
results = solvepde(model);
u = results.NodalSolution;
pdeplot3D(model,'ColorMapData',u)

 applyBoundaryCondition

5-43

Individual Boundary Conditions for Equations in a System

Create a PDE model and import a simple block geometry.

model = createpde(3);
importGeometry(model,'Block.stl');

View the face labels.

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-44

Set zero Dirichlet conditions on faces 1 and 2.

applyBoundaryCondition(model,'dirichlet', ...
 'Face',1:2,'u',[0,0,0]);

Set Neumann boundary conditions with opposite signs on faces 4, 5, and 6.

applyBoundaryCondition(model,'neumann', ...
 'Face',4:5,'g',[1;1;1]);
applyBoundaryCondition(model,'neumann', ...
 'Face',6,'g',[-1;-1;-1]);

For face 3, apply generalized Neumann boundary condition for the first equation and Dirichlet
boundary conditions for the second and third equations.

h = [0 0 0;0 1 0;0 0 1];
r = [0;3;3];
q = [1 0 0;0 0 0;0 0 0];
g = [10;0;0];
applyBoundaryCondition(model,'mixed','Face',3, ...
 'h',h,'r',r,'g',g,'q',q);

Solve an elliptic PDE with these boundary conditions, and plot the result.

specifyCoefficients(model,'m',0,'d',0,'c',1, ...
 'a',0,'f',[0;0;0]);
generateMesh(model);
results = solvepde(model);

 applyBoundaryCondition

5-45

u = results.NodalSolution;
pdeplot3D(model,'ColorMapData',u(:,1))

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot
with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.

5 Functions

5-46

Example: applyBoundaryCondition(model,'dirichlet','Face',3:6,'u',0)
Data Types: double

Name-Value Pair Arguments
Example: applyBoundaryCondition(model,'dirichlet','Face',1:4,'u',0)

r — Dirichlet condition h*u = r
zeros(N,1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, specified as a vector with N elements or a function handle. N is the
number of PDEs in the system. For the syntax of the function handle form of r, see “Nonconstant
Boundary Conditions” on page 2-116.
Example: 'r',[0;4;-1]
Data Types: double | function_handle
Complex Number Support: Yes

h — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Dirichlet condition h*u = r, specified as an N-by-N matrix, a vector with N^2 elements, or a
function handle. N is the number of PDEs in the system. For the syntax of the function handle form of
h, see “Nonconstant Boundary Conditions” on page 2-116.
Example: 'h',[2,1;1,2]
Data Types: double | function_handle
Complex Number Support: Yes

g — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,1) (default) | vector with N elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as a vector with N elements or a
function handle. N is the number of PDEs in the system. For scalar PDEs, the generalized Neumann
condition is n·(c∇u) + qu = g. For the syntax of the function handle form of g, see “Nonconstant
Boundary Conditions” on page 2-116.
Example: 'g',[3;2;-1]
Data Types: double | function_handle
Complex Number Support: Yes

q — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, specified as an N-by-N matrix, a vector with
N^2 elements, or a function handle. N is the number of PDEs in the system. For the syntax of the
function handle form of q, see “Nonconstant Boundary Conditions” on page 2-116.
Example: 'q',eye(3)
Data Types: double | function_handle
Complex Number Support: Yes

u — Dirichlet conditions
zeros(N,1) (default) | vector of up to N elements | function handle

 applyBoundaryCondition

5-47

Dirichlet conditions, specified as a vector of up to N elements or as a function handle. If u has less
than N elements, then you must also use EquationIndex. The u and EquationIndex arguments
must have the same length. If u has N elements, then specifying EquationIndex is optional.

For the syntax of the function handle form of u, see “Nonconstant Boundary Conditions” on page 2-
116.
Example: applyBoundaryCondition(model,'dirichlet','Face',[2,4,11],'u',0)
Data Types: double
Complex Number Support: Yes

EquationIndex — Index of the known u components
1:N (default) | vector of integers with entries from 1 to N

Index of the known u components, specified as a vector of integers with entries from 1 to N.
EquationIndex and u must have the same length.

When using EquationIndex to specify Dirichlet boundary conditions for a subset of components,
use the mixed argument instead of dirichlet. The remaining components satisfy the default
Neumann boundary condition with the zero values for 'g' and 'q'.
Example: applyBoundaryCondition(model,'mixed','Face',[2,4,11],'u',
[3,-1],'EquationIndex',[2,3])

Data Types: double

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, specified as 'on' or 'off'. This evaluation applies when you pass a
function handle as an argument. To save time in function handle evaluation, specify 'on', assuming
that your function handle computes in a vectorized fashion. See “Vectorization”. For details of this
evaluation, see “Nonconstant Boundary Conditions” on page 2-116.
Example: applyBoundaryCondition(model,'dirichlet','Face',
[2,4,11],'u',@ucalculator,'Vectorized','on')

Data Types: char | string

Output Arguments
bc — Boundary condition
BoundaryCondition object

Boundary condition, returned as a BoundaryCondition object. The model object contains a vector of
BoundaryCondition objects. bc is the last element of this vector.

Tips
• When there are multiple boundary condition assignments to the same geometric region, the

toolbox uses the last applied setting.
• To avoid assigning boundary conditions to a wrong region, ensure that you are using the correct

geometric region IDs by plotting and visually inspecting the geometry.

5 Functions

5-48

• If you do not specify a boundary condition for an edge or face, the default is the Neumann
boundary condition with the zero values for 'g' and 'q'.

See Also
findBoundaryConditions | BoundaryCondition | PDEModel

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

 applyBoundaryCondition

5-49

area
Package: pde

Area of 2-D mesh elements

Syntax
A = area(mesh)
[A,AE] = area(mesh)
A = area(mesh,elements)

Description
A = area(mesh) returns the area A of the entire mesh.

[A,AE] = area(mesh) also returns a row vector AE containing areas of each individual element of
the mesh.

A = area(mesh,elements) returns the combined area of the specified elements of the mesh.

Examples

Area of Entire 2-D Mesh

Generate a 2-D mesh and find its area.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function lshapeg. Plot the geometry.

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')

5 Functions

5-50

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh(model)

 area

5-51

Compute the area of the entire mesh.

ma = area(mesh)

ma = 3.0000

Area of Individual Elements of 2-D Mesh

Generate a 2-D mesh and find the area of each element.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function lshapeg. Plot the geometry.

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')

5 Functions

5-52

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh(model)

 area

5-53

Compute the area of the entire mesh and the area of each individual element of the mesh. Display the
areas of the first 5 elements.

[ma,mi] = area(mesh);
mi(1:5)

ans = 1×5

 0.0047 0.0054 0.0053 0.0048 0.0061

Total Area of Group of Elements

Find the combined area of the elements associated with a particular face of a 2-D mesh.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function lshapeg. Plot the geometry.

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')

5 Functions

5-54

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh(model)

 area

5-55

Find the elements associated with face 1 and compute the total area of these elements.

Ef1 = findElements(mesh,'region','Face',1);
maf1 = area(mesh,Ef1)

maf1 = 1.0000

Find how much of the total mesh area belongs to these elements. Return the result as a percentage.

maf1_percent = maf1/area(mesh)*100

maf1_percent = 33.3333

Input Arguments
mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

elements — Element IDs
positive integer | matrix of positive integers

Element IDs, specified as a positive integer or a matrix of positive integers.

5 Functions

5-56

Example: [10 68 81 97 113 130 136 164]

Output Arguments
A — Area
positive number

Area of the entire mesh or the combined area of the specified elements of the mesh, returned as a
positive number.

AE — Areas of individual elements
row vector of positive numbers

Areas of individual elements, returned as a row vector of positive numbers.

See Also
volume | findElements | findNodes | meshQuality | FEMesh Properties

Topics
“Finite Element Method Basics” on page 1-11

Introduced in R2018a

 area

5-57

assema
(Not recommended) Assemble area integral contributions

Note assema is not recommended. Use assembleFEMatrices instead.

Syntax
[K,M,F] = assema(model,c,a,f)
[K,M,F] = assema(p,t,c,a,f)

Description
[K,M,F] = assema(model,c,a,f) assembles the stiffness matrix K, the mass matrix M, and the
load vector F using the mesh contained in model, and the PDE coefficients c, a, and f.

[K,M,F] = assema(p,t,c,a,f) assembles the matrices from the mesh data in p and t.

Examples

Assemble Finite Element Matrices

Assemble finite element matrices for an elliptic problem on complicated geometry.

The PDE is Poisson's equation,

−∇ ⋅ ∇u = 1 .

Partial Differential Equation Toolbox™ solves equations of the form

−∇ ⋅ (c∇u) + au = f .

So, represent Poisson's equation in toolbox syntax by setting c = 1, a = 0, and f = 1.

c = 1;
a = 0;
f = 1;

Create a PDE model container. Import the ForearmLink.stl file into the model and examine the
geometry.

model = createpde;
importGeometry(model,'ForearmLink.stl');
pdegplot(model,'FaceAlpha',0.5)

5 Functions

5-58

Create a mesh for the model.

generateMesh(model);

Create the finite element matrices from the mesh and the coefficients.

[K,M,F] = assema(model,c,a,f);

The returned matrix K is quite sparse. M has no nonzero entries.

disp(['Fraction of nonzero entries in K is ',num2str(nnz(K)/numel(K))])

Fraction of nonzero entries in K is 0.001094

disp(['Number of nonzero entries in M is ',num2str(nnz(M))])

Number of nonzero entries in M is 0

Assemble Finite Element Matrices Using [p,e,t] Mesh

Assemble finite element matrices for the 2-D L-shaped region, using the [p,e,t] mesh representation.

Define the geometry using the lshapeg function included your software.

g = @lshapeg;

 assema

5-59

Use coefficients c = 1, a = 0, and f = 1.

c = 1;
a = 0;
f = 1;

Create a mesh and assemble the finite element matrices.

[p,e,t] = initmesh(g);
[K,M,F] = assema(p,t,c,a,f);

The returned matrix M has all zeros. The K matrix is quite sparse.

disp(['Fraction of nonzero entries in K is ',num2str(nnz(K)/numel(K))])

Fraction of nonzero entries in K is 0.042844

disp(['Number of nonzero entries in M is ',num2str(nnz(M))])

Number of nonzero entries in M is 0

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

5 Functions

5-60

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string | function_handle
Complex Number Support: Yes

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Output Arguments
K — Stiffness matrix
sparse matrix

Stiffness matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

Typically, you use K in a subsequent call to assempde.

 assema

5-61

M — Mass matrix
sparse matrix

Mass matrix. returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

Typically, you use M in a subsequent call to a solver such as assempde or hyperbolic.

F — Load vector
vector

Load vector, returned as a vector. See “Elliptic Equations” on page 5-93.

Typically, you use F in a subsequent call to assempde.

See Also
assembleFEMatrices

Introduced before R2006a

5 Functions

5-62

assemb
(Not recommended) Assemble boundary condition contributions

Note assemb is not recommended. Use assembleFEMatrices instead.

Syntax
[Q,G,H,R] = assemb(model)
[Q,G,H,R] = assemb(b,p,e)
[Q,G,H,R] = assemb(___ ,[],sdl)

Description
[Q,G,H,R] = assemb(model) assembles the matrices Q and H, and the vectors G and R. Q should
be added to the system matrix and contains contributions from mixed boundary conditions.

[Q,G,H,R] = assemb(b,p,e) assembles the matrices based on the boundary conditions specified
in b and the mesh data in p and e.

[Q,G,H,R] = assemb(___ ,[],sdl), for any of the previous input arguments, restricts the finite
element matrices to those that include the subdomain specified by the subdomain labels in sdl. The
empty argument is required in this syntax for historic and compatibility reasons.

Examples

Assemble Boundary Condition Matrices

Assemble the boundary condition matrices for an elliptic PDE.

The PDE is Poisson's equation,

−∇ ⋅ ∇u = 1 .

Partial Differential Equation Toolbox™ solves equations of the form

−∇ ⋅ (c∇u) + au = f .

So, represent Poisson's equation in toolbox syntax by setting c = 1, a = 0, and f = 1.

c = 1;
a = 0;
f = 1;

Create a PDE model container. Import the ForearmLink.stl file into the model and examine the
geometry.

model = createpde;
importGeometry(model,'Block.stl');

 assemb

5-63

h = pdegplot(model,'FaceLabels','on');
h(1).FaceAlpha = 0.5;

Set zero Dirichlet boundary conditions on the narrow faces (numbered 1 through 4).

applyBoundaryCondition(model,'Face',1:4,'u',0);

Set a Neumann condition with g = -1 on face 6, and g = 1 on face 5.

applyBoundaryCondition(model,'Face',6,'g',-1);
applyBoundaryCondition(model,'Face',5,'g',1);

Create a mesh for the model.

generateMesh(model);

Create the boundary condition matrices for the model.

[Q,G,H,R] = assemb(model);

The H matrix is quite sparse. The Q matrix has no nonzero entries.

disp(['Fraction of nonzero entries in H is ',num2str(nnz(H)/numel(H))])

Fraction of nonzero entries in H is 7.8796e-05

disp(['Number of nonzero entries in Q is ',num2str(nnz(Q))])

Number of nonzero entries in Q is 0

5 Functions

5-64

Assemble Boundary Matrices Using [p,e,t] Mesh

Assemble boundary condition matrices for the 2-D L-shaped region with Dirichlet boundary
conditions, using the [p,e,t] mesh representation.

Define the geometry and boundary conditions using functions included in your software.

g = @lshapeg;
b = @lshapeb;

Create a mesh for the geometry.

[p,e,t] = initmesh(g);

Create the boundary matrices.

[Q,G,H,R] = assemb(b,p,e);

Only one of the resulting matrices is nonzero, namely H. The H matrix is quite sparse.

disp(['Fraction of nonzero entries in H is ',num2str(nnz(H)/numel(H))])

Fraction of nonzero entries in H is 0.0066667

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler
app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)

 assemb

5-65

Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

sdl — Subdomain labels
vector of positive integers

Subdomain labels, specified as a vector of positive integers. For 2-D geometry only. View the
subdomain labels in your geometry using the command

pdegplot(g,'SubdomainLabels','on')

Example: sdl = [1,3:5];
Data Types: double

Output Arguments
Q — Neumann boundary condition matrix
sparse matrix

Neumann boundary condition matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-
93.

Typically, you use Q in a subsequent call to a solver such as assempde or hyperbolic.

G — Neumann boundary condition vector
sparse vector

Neumann boundary condition vector, returned as a sparse vector. See “Elliptic Equations” on page 5-
93.

Typically, you use G in a subsequent call to a solver such as assempde or hyperbolic.

H — Dirichlet matrix
sparse matrix

Dirichlet matrix, returned as a sparse matrix. See “Algorithms” on page 5-67.

Typically, you use H in a subsequent call to assempde.

R — Dirichlet vector
sparse vector

Dirichlet vector, returned as a sparse vector. See “Algorithms” on page 5-67.

5 Functions

5-66

Typically, you use R in a subsequent call to assempde.

Algorithms
As explained in “Elliptic Equations” on page 5-93, the finite element matrices and vectors
correspond to the reduced linear system and are the following.

• Q is the integral of the q boundary condition against the basis functions.
• G is the integral of the g boundary condition against the basis functions.
• H is the Dirichlet condition matrix representing hu = r.
• R is the Dirichlet condition vector for Hu = R.

For more information on the reduced linear system form of the finite element matrices, see the
assempde “More About” on page 5-93 section, and the linear algebra approach detailed in “Systems
of PDEs” on page 5-99.

See Also
assembleFEMatrices

Introduced before R2006a

 assemb

5-67

assembleFEMatrices
Assemble finite element matrices

Syntax
FEM = assembleFEMatrices(model)
FEM = assembleFEMatrices(model,matrices)
FEM = assembleFEMatrices(model,bcmethod)
FEM = assembleFEMatrices(___ ,state)

Description
FEM = assembleFEMatrices(model) returns a structural array containing all finite element
matrices for a PDE problem specified as a model.

FEM = assembleFEMatrices(model,matrices) returns a structural array containing only the
specified finite element matrices.

FEM = assembleFEMatrices(model,bcmethod) assembles finite element matrices and imposes
boundary conditions using the method specified by bcmethod.

FEM = assembleFEMatrices(___ ,state) assembles finite element matrices using the input
time or solution specified in the state structure array. The function uses the time field of the
structure for time-dependent models and the solution field u for nonlinear models. You can use this
argument with any of the previous syntaxes.

Examples

Finite Element Matrices for 2-D Problem

Create a PDE model for the Poisson equation on an L-shaped membrane with zero Dirichlet boundary
conditions.

model = createpde(1);
geometryFromEdges(model,@lshapeg);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Generate a mesh and obtain the default finite element matrices for the problem and mesh.

generateMesh(model,'Hmax',0.2);
FEM = assembleFEMatrices(model)

FEM = struct with fields:
 K: [401x401 double]
 A: [401x401 double]
 F: [401x1 double]
 Q: [401x401 double]
 G: [401x1 double]

5 Functions

5-68

 H: [80x401 double]
 R: [80x1 double]
 M: [401x401 double]

Specified Set of Finite Element Matrices

Make computations faster by specifying which finite element matrices to assemble.

Create a transient thermal model and include the geometry of the built-in function squareg.

thermalmodel = createpde('thermal','steadystate');
geometryFromEdges(thermalmodel,@squareg);

Plot the geometry with the edge labels.

pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.1 1.1])
ylim([-1.1 1.1])

Specify the thermal conductivity of the material and the internal heat source.

thermalProperties(thermalmodel,'ThermalConductivity',0.2);
internalHeatSource(thermalmodel,10);

Set the boundary conditions.

 assembleFEMatrices

5-69

thermalBC(thermalmodel,'Edge',[1,3],'Temperature',100);

Generate a mesh.

generateMesh(thermalmodel);

Assemble the stiffness and mass matrices.

FEM_KM = assembleFEMatrices(thermalmodel,'KM')

FEM_KM = struct with fields:
 K: [1541x1541 double]
 M: [1541x1541 double]

Now, assemble the finite element matrices M, K, A, and F.

FEM_MKAF = assembleFEMatrices(thermalmodel,'MKAF')

FEM_MKAF = struct with fields:
 M: [1541x1541 double]
 K: [1541x1541 double]
 A: [1541x1541 double]
 F: [1541x1 double]

The four matrices M, K, A, and F correspond to discretized versions of the PDE coefficients m, c, a,
and f. These four matrices also represent the domain of the finite-element model of the PDE. Instead
of specifying them explicitly, you can use the domain argument.

FEMd = assembleFEMatrices(thermalmodel,'domain')

FEMd = struct with fields:
 M: [1541x1541 double]
 K: [1541x1541 double]
 A: [1541x1541 double]
 F: [1541x1 double]

The four matrices Q, G, H, and R, correspond to discretized versions of q, g, h, and r in the Neumann
and Dirichlet boundary condition specification. These four matrices also represent the boundary of
the finite-element model of the PDE. Use the boundary argument to assemble only these matrices.

FEMb = assembleFEMatrices(thermalmodel,'boundary')

FEMb = struct with fields:
 H: [74x1541 double]
 R: [74x1 double]
 G: [1541x1 double]
 Q: [1541x1541 double]

Finite Element Matrices with nullspace and stiff-spring Methods

Create a PDE model for the Poisson equation on an L-shaped membrane with zero Dirichlet boundary
conditions.

5 Functions

5-70

model = createpde(1);
geometryFromEdges(model,@lshapeg);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Generate a mesh.

generateMesh(model,'Hmax',0.2);

Obtain the finite element matrices after imposing the boundary condition using the null-space
approach. This approach eliminates the Dirichlet degrees of freedom and provides a reduced system
of equations.

FEMn = assembleFEMatrices(model,'nullspace')

FEMn = struct with fields:
 Kc: [321x321 double]
 Fc: [321x1 double]
 B: [401x321 double]
 ud: [401x1 double]
 M: [321x321 double]

Obtain the solution to the PDE using the nullspace finite element matrices.

un = FEMn.B*(FEMn.Kc\FEMn.Fc) + FEMn.ud;

Compare this result to the solution given by solvepde. The two solutions are identical.

u1 = solvepde(model);
norm(un - u1.NodalSolution)

ans = 0

Obtain the finite element matrices after imposing the boundary condition using the stiff-spring
approach. This approach retains the Dirichlet degrees of freedom, but imposes a large penalty on
them.

FEMs = assembleFEMatrices(model,'stiff-spring')

FEMs = struct with fields:
 Ks: [401x401 double]
 Fs: [401x1 double]
 M: [401x401 double]

Obtain the solution to the PDE using the stiff-spring finite element matrices. This technique gives a
less accurate solution.

us = FEMs.Ks\FEMs.Fs;
norm(us - u1.NodalSolution)

ans = 0.0098

 assembleFEMatrices

5-71

Finite Element Matrices for Time-Dependent Problem

Assemble finite element matrices for the first and last time steps of a transient structural problem.

Create a transient structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder(0.01,0.05);
addVertex(gm,'Coordinates',[0,0,0.05]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',201E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Specify that the bottom of the cylinder is a fixed boundary.

structuralBC(structuralmodel,'Face',1,'Constraint','fixed');

Specify the harmonic pressure on the top of the cylinder.

5 Functions

5-72

structuralBoundaryLoad(structuralmodel,'Face',2,...
 'Pressure',5E7, ...
 'Frequency',50);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0], ...
 'Velocity',[0;0;0]);

Generate a linear mesh.

generateMesh(structuralmodel,'GeometricOrder','linear');
tlist = linspace(0,1,300);

Assemble the finite element matrices for the initial time step.

state.time = tlist(1);
FEM_domain = assembleFEMatrices(structuralmodel,state)

FEM_domain = struct with fields:
 K: [6633x6633 double]
 A: [6633x6633 double]
 F: [6633x1 double]
 Q: [6633x6633 double]
 G: [6633x1 double]
 H: [249x6633 double]
 R: [249x1 double]
 M: [6633x6633 double]

Pressure applied at the top of the cylinder is the only time-dependent quantity in the model. To model
the dynamics of the system, assemble the boundary-load finite element matrix G for the initial,
intermediate, and final time steps.

state.time = tlist(1);
FEM_boundary_init = assembleFEMatrices(structuralmodel,'G',state)

FEM_boundary_init = struct with fields:
 G: [6633x1 double]

state.time = tlist(floor(length(tlist)/2));
FEM_boundary_half = assembleFEMatrices(structuralmodel,'G',state)

FEM_boundary_half = struct with fields:
 G: [6633x1 double]

state.time = tlist(end);
FEM_boundary_final = assembleFEMatrices(structuralmodel,'G',state)

FEM_boundary_final = struct with fields:
 G: [6633x1 double]

 assembleFEMatrices

5-73

Finite Element Matrices for Nonlinear Problem

Assemble finite element matrices for a heat transfer problem with temperature-dependent thermal
conductivity.

Create a steady-state thermal model.

thermalmodelS = createpde('thermal','steadystate');

Create a 2-D geometry by drawing one rectangle the size of the block and a second rectangle the size
of the slot.

r1 = [3 4 -.5 .5 .5 -.5 -.8 -.8 .8 .8];
r2 = [3 4 -.05 .05 .05 -.05 -.4 -.4 .4 .4];
gdm = [r1; r2]';

Subtract the second rectangle from the first to create the block with a slot.

g = decsg(gdm,'R1-R2',['R1'; 'R2']');

Convert the decsg format into a geometry object. Include the geometry in the model and plot the
geometry.

geometryFromEdges(thermalmodelS,g);
figure
pdegplot(thermalmodelS,'EdgeLabels','on');
axis([-.9 .9 -.9 .9]);

5 Functions

5-74

Set the temperature on the left edge to 100 degrees. Set the heat flux out of the block on the right
edge to -10. The top and bottom edges and the edges inside the cavity are all insulated: there is no
heat transfer across these edges.

thermalBC(thermalmodelS,'Edge',6,'Temperature',100);
thermalBC(thermalmodelS,'Edge',1,'HeatFlux',-10);

Specify the thermal conductivity of the material as a simple linear function of temperature u.

k = @(~,state) 0.7+0.003*state.u;
thermalProperties(thermalmodelS,'ThermalConductivity',k);

Generate a mesh.

generateMesh(thermalmodelS);

Calculate the steady-state solution.

Rnonlin = solve(thermalmodelS);

Because the thermal conductivity is nonlinear (depends on the temperature), compute the system
matrices corresponding to the converged temperature. Assign the temperature distribution to the u
field of the state structure array. Because the u field must contain a row vector, transpose the
temperature distribution.

state.u = Rnonlin.Temperature.';

Assemble finite element matrices using the temperature distribution at the nodal points.

FEM = assembleFEMatrices(thermalmodelS,'nullspace',state)

FEM = struct with fields:
 Kc: [1277x1277 double]
 Fc: [1277x1 double]
 B: [1320x1277 double]
 ud: [1320x1 double]
 M: [1277x1277 double]

Compute the solution using the system matrices to verify that they yield the same temperature as
Rnonlin.

u = FEM.B*(FEM.Kc\FEM.Fc) + FEM.ud;

Compare this result to the solution given by solve.

norm(u - Rnonlin.Temperature)

ans = 5.9035e-05

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectroMagneticModel
object

 assembleFEMatrices

5-75

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectroMagneticModel object.

assembleFEMatrices does not support assembling FE matrices for 3-D magnetostatic analysis
models.
Example: model = createpde(1)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

bcmethod — Method for including boundary conditions
'none' (default) | 'nullspace' | 'stiff-spring'

Method for including boundary conditions, specified as 'none', 'nullspace', or 'stiff-
spring'. For more information, see “Algorithms” on page 5-77.
Example: FEM = assembleFEMatrices(model,'nullspace')
Data Types: char | string

matrices — Matrices to assemble
matrix identifiers | 'boundary' | 'domain'

Matrices to assemble, specified as:

• Matrix identifiers, such as 'F', 'MKF', 'K', and so on — Assemble the corresponding matrices.
Each uppercase letter represents one matrix: K, A, F, Q, G, H, R, M, and T. You can combine several
letters into one character vector or string, such as 'MKF'.

• 'boundary' — Assemble all matrices related to geometry boundaries.
• 'domain' — Assemble all domain-related matrices.

Example: FEM = assembleFEMatrices(model,'KAF')
Data Types: char | string

state — Time for time-dependent models and solution for nonlinear models
structure array

Time for time-dependent models and solution for nonlinear models, specified in a structure array. The
array fields represent the following values:

• state.time contains a nonnegative number specifying the time value for time-dependent
models.

• state.u contains a solution matrix of size N-by-Np that can be used to assemble matrices in a
nonlinear problem setup, where coefficients are functions of state.u. Here, N is the number of
equations in the system, and Np is the number of nodes in the mesh.

Example: state.time = tlist(end); FEM =
assembleFEMatrices(model,'boundary',state)

5 Functions

5-76

Output Arguments
FEM — Finite element matrices
structural array

Finite element matrices, returned as a structural array. Use the bcmethod and matrices arguments
to specify which finite element matrices you want to assemble.

The fields in the structural array depend on bcmethod:

• If the value is 'none', then the fields are K, A, F, Q, G, H, R, and M.
• If the value is 'nullspace', then the fields are Kc, Fc, B, ud, and M.
• If the value is 'stiff-spring', then the fields are Ks, Fs, and M.

The fields in the structural array also depend on matrices:

• If the value is boundary, then the fields are all matrices related to geometry boundaries.
• If the value is domain, then the fields are all domain-related matrices.
• If the value is a matrix identifier or identifiers, such as 'F', 'MKF', 'K', and so on, then the fields

are the corresponding matrices.

For more information, see “Algorithms” on page 5-77.

Algorithms
Partial Differential Equation Toolbox solves equations of the form

m∂2u
∂t2 + d∂u∂t − ∇ · c⊗ ∇u + au = f

and eigenvalue equations of the form

−∇ · c⊗ ∇u + au = λdu
or

−∇ · c⊗ ∇u + au = λ2mu

with the Dirichlet boundary conditions, hu = r, and Neumann boundary conditions,
n · c⊗ ∇u + qu = g.

assembleFEMatrices returns the following full finite element matrices and vectors that represent
the corresponding PDE problem:

• K is the stiffness matrix, the integral of the discretized version of the c coefficient.
• M is the mass matrix, the integral of the discretized version of the m or d coefficients. M is nonzero

for time-dependent and eigenvalue problems.
• A is the integral of the discretized version of the a coefficient.
• F is the integral of the discretized version of the f coefficient. For thermal, electromagnetic, and

structural problems, F is a source or body load vector.
• Q is the integral of the discretized version of the q term in a Neumann boundary condition.

 assembleFEMatrices

5-77

• G is the integral of the discretized version of the g term in a Neumann boundary condition. For
structural problems, G is a boundary load vector.

• The H and R matrices come directly from the Dirichlet conditions and the mesh.

Imposing Dirichlet Boundary Conditions

The 'nullspace' technique eliminates Dirichlet conditions from the problem using a linear algebra
approach. It generates the combined finite-element matrices Kc, Fc, B, and vector ud corresponding
to the reduced system Kc*u = Fc, where Kc = B'*(K + A + Q)*B, and Fc = B'*(F + G). The
B matrix spans the null space of the columns of H (the Dirichlet condition matrix representing h*ud =
r). The R vector represents the Dirichlet conditions in H*ud = R. The ud vector has the size of the
solution vector. Its elements are zeros everywhere except at Dirichlet degrees-of-freedom (DoFs)
locations where they contain the prescribed values.

From the 'nullspace' matrices, you can compute the solution u as

u = B*(Kc\Fc) + ud.

If you assembled a particular set of matrices, for example G and M, you can impose the boundary
conditions on G and M as follows. First, compute the nullspace of columns of H.

[B,Or] = pdenullorth(H);
ud = Or*((H*Or\R)); % Vector with known value of the constraint DoF.

Then use the B matrix as follows. To eliminate Dirichlet degrees of freedom from the load vector G,
use:

GwithBC = B'*G

To eliminate Dirichlet degrees of freedom from mass matrix, use:

M = B'*M*B

You can eliminate Dirichlet degrees of freedom from other vectors and matrices using the same
technique.

The 'stiff-spring' technique converts Dirichlet boundary conditions to Neumann boundary
conditions using a stiff-spring approximation. It returns a matrix Ks and a vector Fs that together
represent a different type of combined finite element matrices. The approximate solution is u = Ks
\Fs. Compared to the 'nullspace' technique, the 'stiff-spring' technique generates matrices
more quickly, but generally gives less accurate solutions.

Note Internally, the toolbox uses the 'nullspace' approach to impose Dirichlet boundary
conditions while computing the solution using solvepde and solve.

Degrees of Freedom (DoFs)

If the number of nodes in a model is NumNodes, and the number of equations is N, then the length of
column vectors u and ud is N*NumNodes. The toolbox assigns the IDs to the degrees of freedom in u
and ud:

• Entries from 1 to NumNodes correspond to the first equation.
• Entries from NumNodes+1 to 2*NumNodes correspond to the second equation.

5 Functions

5-78

• Entries from 2*NumNodes+1 to 3*NumNodes correspond to the third equation.

The same approach applies to all other entries, up to N*NumNodes.

For example, in a 3-D structural model, the length of a solution vector u is 3*NumNodes. The first
NumNodes entries correspond to the x-displacement at each node, the next NumNodes entries
correspond to the y-displacement, and the next NumNodes entries correspond to the z-displacement.

Thermal, Structural, and Electromagnetic Analysis

In thermal analysis, the m and a coefficients are zeros. The thermal conductivity maps to the c
coefficient. The product of the mass density and the specific heat maps to the d coefficient. The
internal heat source maps to the f coefficient. The temperature on a boundary corresponds to the
Dirichlet boundary condition term r with h = 1. Various forms of boundary heat flux, such as the
heat flux itself, emissivity, and convection coefficient, map to the Neumann boundary condition terms
q and g.

In structural analysis, the a coefficient is zero. The Young's modulus and Poisson's ratio map to the c
coefficient. The mass density maps to the m coefficient. The body loads map to the f coefficient.
Displacements, constraints, and components of displacement along the axes, map to the Dirichlet
boundary condition terms h and r. Boundary loads, such as pressure, surface tractions, and
translational stiffnesses, correspond to the Neumann boundary condition terms q and g. When you
specify the damping model by using the Rayleigh damping parameters Alpha and Beta, the
discretized damping matrix C is computed by using the mass matrix M and the stiffness matrix K as C
= Alpha*M + Beta*K.

In electrostatic and magnetostatic analyses, the m, a, and d coefficients are zeros. The relative
permittivity and relative permeability map to the c coefficient. The charge density and current
density map to the f coefficient. The voltage and magnetic potential on a boundary correspond to the
Dirichlet boundary condition term r with h = 1.

Note Assembling FE matrices does not work for 3-D magnetostatic analysis.

See Also
PDEModel | ThermalModel | StructuralModel | ElectromagneticModel | solvepde | solve

Topics
“Finite Element Method Basics” on page 1-11
“Equations You Can Solve Using PDE Toolbox” on page 1-3

Introduced in R2016a

 assembleFEMatrices

5-79

assempde
(Not recommended) Assemble finite element matrices and solve elliptic PDE

Note assempde is not recommended. Use solvepde instead.

Syntax
u = assempde(model,c,a,f)
u = assempde(b,p,e,t,c,a,f)

[Kc,Fc,B,ud] = assempde(___)
[Ks,Fs] = assempde(___)

[K,M,F,Q,G,H,R] = assempde(___)
[K,M,F,Q,G,H,R] = assempde(___ ,[],sdl)

u = assempde(K,M,F,Q,G,H,R)
[Ks,Fs] = assempde(K,M,F,Q,G,H,R)
[Kc,Fc,B,ud] = assempde(K,M,F,Q,G,H,R)

Description
u = assempde(model,c,a,f) solves the PDE

−∇ ⋅ c∇u + au = f

with geometry, boundary conditions, and finite element mesh in model, and coefficients c, a, and f. If
the PDE is a system of equations (model.PDESystemSize > 1), then assempde solves the system of
equations

−∇ ⋅ c⊗ ∇u + au = f

u = assempde(b,p,e,t,c,a,f) solves the PDE with boundary conditions b, and finite element
mesh (p,e,t).

[Kc,Fc,B,ud] = assempde(___), for any of the previous input syntaxes, assembles finite
element matrices using the reduced linear system form, which eliminates any Dirichlet boundary
conditions from the system of linear equations. You can calculate the solution u at node points by the
command u = B*(Kc\Fc) + ud. See “Reduced Linear System” on page 5-93.

[Ks,Fs] = assempde(___) assembles finite element matrices that represent any Dirichlet
boundary conditions using a stiff-spring approximation. You can calculate the solution u at node
points by the command u = Ks\Fs. See “Stiff-Spring Approximation” on page 5-93.

[K,M,F,Q,G,H,R] = assempde(___) assembles finite element matrices that represent the PDE
problem. This syntax returns all the matrices involved in converting the problem to finite element
form. See “Algorithms” on page 5-93.

5 Functions

5-80

[K,M,F,Q,G,H,R] = assempde(___ ,[],sdl) restricts the finite element matrices to those that
include the subdomain specified by the subdomain labels in sdl. The empty argument is required in
this syntax for historic and compatibility reasons.

u = assempde(K,M,F,Q,G,H,R) returns the solution u based on the full collection of finite
element matrices.

[Ks,Fs] = assempde(K,M,F,Q,G,H,R) returns finite element matrices that approximate
Dirichlet boundary conditions using the stiff-spring approximation. See “Algorithms” on page 5-93.

[Kc,Fc,B,ud] = assempde(K,M,F,Q,G,H,R) returns finite element matrices that eliminate any
Dirichlet boundary conditions from the system of linear equations. See “Algorithms” on page 5-93.

Examples

Solve a Scalar PDE

Solve an elliptic PDE on an L-shaped region.

Create a scalar PDE model. Incorporate the geometry of an L-shaped region.

model = createpde;
geometryFromEdges(model,@lshapeg);

Apply zero Dirichlet boundary conditions to all edges.

applyBoundaryCondition(model,'Edge',1:model.Geometry.NumEdges,'u',0);

Generate a finite element mesh.

generateMesh(model,'GeometricOrder','linear');

Solve the PDE −∇ ⋅ c∇u + au = f with parameters c = 1, a = 0, and f = 5.

c = 1;
a = 0;
f = 5;
u = assempde(model,c,a,f);

Plot the solution.

pdeplot(model,'XYData',u)

 assempde

5-81

3-D Elliptic Problem

Solve a 3-D elliptic PDE using a PDE model.

Create a PDE model container, import a 3-D geometry description, and view the geometry.

model = createpde;
importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on', ...
 'FaceAlpha',0.5)

5 Functions

5-82

Set zero Dirichlet conditions on faces 1 through 4 (the edges). Set Neumann conditions with g = -1
on face 6 and g = 1 on face 5.

applyBoundaryCondition(model,'Face',1:4, ...
 'u',0);
applyBoundaryCondition(model,'Face',6, ...
 'g',-1);
applyBoundaryCondition(model,'Face',5, ...
 'g',1);

Set coefficients c = 1, a = 0, and f = 0.1.

c = 1;
a = 0;
f = 0.1;

Create a mesh and solve the problem.

generateMesh(model);
u = assempde(model,c,a,f);

Plot the solution on the surface.

pdeplot3D(model,'ColorMapData',u)

 assempde

5-83

2-D PDE Using [p,e,t] Mesh

Solve a 2-D PDE using the older syntax for mesh.

Create a circle geometry.

g = @circleg;

Set zero Dirichlet boundary conditions.

b = @circleb1;

Create a mesh for the geometry.

[p,e,t] = initmesh(g);

Solve the PDE −∇ ⋅ c∇u + au = f with parameters c = 1, a = 0, and f = sin(x).

c = 1;
a = 0;
f = 'sin(x)';
u = assempde(b,p,e,t,c,a,f);

Plot the solution.

pdeplot(p,e,t,'XYData',u)

5 Functions

5-84

Finite Element Matrices

Obtain the finite-element matrices that represent the problem using a reduced linear algebra
representation of Dirichlet boundary conditions.

Create a scalar PDE model. Import a simple 3-D geometry.

model = createpde;
importGeometry(model,'Block.stl');

Set zero Dirichlet boundary conditions on all the geometry faces.

applyBoundaryCondition(model,'dirichlet', ...
 'Face',1:model.Geometry.NumFaces, ...
 'u',0);

Generate a mesh for the geometry.

generateMesh(model);

Obtain finite element matrices K, F, B, and ud that represent the equation −∇ ⋅ c∇u + au = f with
parameters c = 1, a = 0, and f = log 1 + x + y

1 + z .

c = 1;
a = 0;

 assempde

5-85

f = 'log(1+x+y./(1+z))';
[K,F,B,ud] = assempde(model,c,a,f);

You can obtain the solution u of the PDE at mesh nodes by executing the command

u = B*(K\F) + ud;

Generally, this solution is slightly more accurate than the stiff-spring solution, as calculated in the
next example.

Stiff-Spring Finite Element Solution

Obtain the stiff-spring approximation of finite element matrices.

Create a scalar PDE model. Import a simple 3-D geometry.

model = createpde;
importGeometry(model,'Block.stl');

Set zero Dirichlet boundary conditions on all the geometry faces.

applyBoundaryCondition(model,'Face',1:model.Geometry.NumFaces,'u',0);

Generate a mesh for the geometry.

generateMesh(model);

Obtain finite element matrices Ks and Fs that represent the equation −∇ ⋅ c∇u + au = f with
parameters c = 1, a = 0, and f = log 1 + x + y

1 + z .

c = 1;
a = 0;
f = 'log(1+x+y./(1+z))';
[Ks,Fs] = assempde(model,c,a,f);

You can obtain the solution u of the PDE at mesh nodes by executing the command

u = Ks\Fs;

Generally, this solution is slightly less accurate than the reduced linear algebra solution, as calculated
in the previous example.

Full Collection of Finite Element Matrices

Obtain the full collection of finite element matrices for an elliptic problem.

Import geometry and set up an elliptic problem with Dirichlet boundary conditions. The Torus.stl
geometry has only one face, so you need set only one boundary condition.

model = createpde();
importGeometry(model,'Torus.stl');
applyBoundaryCondition(model,'Face',1,'u',0);

5 Functions

5-86

c = 1;
a = 0;
f = 1;
generateMesh(model);

Create the finite element matrices that represent this problem.

[K,M,F,Q,G,H,R] = ...
assempde(model,c,a,f);

Most of the resulting matrices are quite sparse. G, M, Q, and R are all zero sparse matrices.

howsparse = @(x)nnz(x)/numel(x);
disp(['Maximum fraction of nonzero' ...
 ' entries in K or H is ',...
 num2str(max(howsparse(K),howsparse(H)))])

Maximum fraction of nonzero entries in K or H is 0.002006

To find the solution to the PDE, call assempde again.

u = assempde(K,M,F,Q,G,H,R);

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

 assempde

5-87

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string | function_handle
Complex Number Support: Yes

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler
app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

5 Functions

5-88

Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

K — Stiffness matrix
sparse matrix | full matrix

Stiffness matrix, specified as a sparse matrix or full matrix. Generally, you obtain K from a previous
call to assema or assempde. For the meaning of stiffness matrix, see “Elliptic Equations” on page 5-
93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)
Data Types: double
Complex Number Support: Yes

M — Mass matrix
sparse matrix | full matrix

Mass matrix, specified as a sparse matrix or full matrix. Generally, you obtain M from a previous call
to assema or assempde. For the meaning of mass matrix, see “Elliptic Equations” on page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)
Data Types: double
Complex Number Support: Yes

F — Finite element f representation
vector

Finite element f representation, specified as a vector. Generally, you obtain F from a previous call to
assema or assempde. For the meaning of this representation, see “Elliptic Equations” on page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)
Data Types: double
Complex Number Support: Yes

Q — Neumann boundary condition matrix
sparse matrix | full matrix

Neumann boundary condition matrix, specified as a sparse matrix or full matrix. Generally, you obtain
Q from a previous call to assemb or assempde. For the meaning of this matrix, see “Elliptic
Equations” on page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)

 assempde

5-89

Data Types: double
Complex Number Support: Yes

G — Neumann boundary condition vector
sparse vector | full vector

Neumann boundary condition vector, specified as a sparse vector or full vector. Generally, you obtain
G from a previous call to assemb or assempde. For the meaning of this vector, see “Elliptic
Equations” on page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)
Data Types: double
Complex Number Support: Yes

H — Dirichlet boundary condition matrix
sparse matrix | full matrix

Dirichlet boundary condition matrix, specified as a sparse matrix or full matrix. Generally, you obtain
H from a previous call to assemb or assempde. For the meaning of this matrix, see “Algorithms” on
page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)
Data Types: double
Complex Number Support: Yes

R — Dirichlet boundary condition vector
sparse vector | full vector

Dirichlet boundary condition vector, specified as a sparse vector or full vector. Generally, you obtain R
from a previous call to assemb or assempde. For the meaning of this vector, see “Algorithms” on
page 5-93.
Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)
Data Types: double
Complex Number Support: Yes

sdl — Subdomain labels
vector of positive integers

Subdomain labels, specified as a vector of positive integers. For 2-D geometry only. View the
subdomain labels in your geometry using the command

pdegplot(g,'SubdomainLabels','on')

Example: sdl = [1,3:5];
Data Types: double

Output Arguments
u — PDE solution
vector

PDE solution, returned as a vector.

5 Functions

5-90

• If the PDE is scalar, meaning only one equation, then u is a column vector representing the
solution u at each node in the mesh. u(i) is the solution at the ith column of
model.Mesh.Nodes or the ith column of p.

• If the PDE is a system of N > 1 equations, then u is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u represent the solution of
equation 1, then next Np elements represent the solution of equation 2, etc.

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.

To plot the solution, use pdeplot for 2-D geometry, or see “3-D Solution and Gradient Plots with
MATLAB® Functions” on page 3-317.

Kc — Stiffness matrix
sparse matrix

Stiffness matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

u1 = Kc\Fc returns the solution on the non-Dirichlet points. To obtain the solution u at the nodes of
the mesh,

u = B*(Kc\Fc) + ud

Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

Fc — Load vector
vector

Load vector, returned as a vector. See “Elliptic Equations” on page 5-93.

u = B*(Kc\Fc) + ud

Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

B — Dirichlet nullspace
sparse matrix

Dirichlet nullspace, returned as a sparse matrix. See “Algorithms” on page 5-93.

u = B*(Kc\Fc) + ud

Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

ud — Dirichlet vector
vector

Dirichlet vector, returned as a vector. See “Algorithms” on page 5-93.

u = B*(Kc\Fc) + ud

Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

Ks — Stiffness matrix corresponding to the stiff-spring approximation for Dirichlet
boundary condition
sparse matrix

 assempde

5-91

Finite element matrix for stiff-spring approximation, returned as a sparse matrix. See “Algorithms” on
page 5-93.

To obtain the solution u at the nodes of the mesh,

u = Ks\Fs.

Generally, Ks and Fs make a quicker but less accurate solution than Kc, Fc, B, and ud.

Fs — Load vector corresponding to the stiff-spring approximation for Dirichlet boundary
condition
vector

Load vector corresponding to the stiff-spring approximation for Dirichlet boundary condition,
returned as a vector. See “Algorithms” on page 5-93.

To obtain the solution u at the nodes of the mesh,

u = Ks\Fs.

Generally, Ks and Fs make a quicker but less accurate solution than Kc, Fc, B, and ud.

K — Stiffness matrix
sparse matrix

Stiffness matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

K represents the stiffness matrix alone, unlike Kc or Ks, which are stiffness matrices combined with
other terms to enable immediate solution of a PDE.

Typically, you use K in a subsequent call to a solver such as assempde or hyperbolic.

M — Mass matrix
sparse matrix

Mass matrix. returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

Typically, you use M in a subsequent call to a solver such as assempde or hyperbolic.

F — Load vector
vector

Load vector, returned as a vector. See “Elliptic Equations” on page 5-93.

F represents the load vector alone, unlike Fc or Fs, which are load vectors combined with other
terms to enable immediate solution of a PDE.

Typically, you use F in a subsequent call to a solver such as assempde or hyperbolic.

Q — Neumann boundary condition matrix
sparse matrix

Neumann boundary condition matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-
93.

Typically, you use Q in a subsequent call to a solver such as assempde or hyperbolic.

5 Functions

5-92

G — Neumann boundary condition vector
sparse vector

Neumann boundary condition vector, returned as a sparse vector. See “Elliptic Equations” on page 5-
93.

Typically, you use G in a subsequent call to a solver such as assempde or hyperbolic.

H — Dirichlet matrix
sparse matrix

Dirichlet matrix, returned as a sparse matrix. See “Algorithms” on page 5-93.

Typically, you use H in a subsequent call to a solver such as assempde or hyperbolic.

R — Dirichlet vector
sparse vector

Dirichlet vector, returned as a sparse vector. See “Algorithms” on page 5-93.

Typically, you use R in a subsequent call to a solver such as assempde or hyperbolic.

More About
Reduced Linear System

This form of the finite element matrices eliminates Dirichlet conditions from the problem using a
linear algebra approach. The finite element matrices reduce to the solution u = B*(Kc\Fc) + ud,
where B spans the null space of the columns of H (the Dirichlet condition matrix representing hu = r).
R is the Dirichlet condition vector for Hu = R. ud is the vector of boundary condition solutions for the
Dirichlet conditions. u1 = Kc\Fc returns the solution on the non-Dirichlet points.

See “Systems of PDEs” on page 5-99 for details on the approach used to eliminate Dirichlet
conditions.

Stiff-Spring Approximation

This form of the finite element matrices converts Dirichlet boundary conditions to Neumann boundary
conditions using a stiff-spring approximation. Using this approximation, assempde returns a matrix
Ks and a vector Fs that represent the combined finite element matrices. The approximate solution u
is u = Ks\Fs.

See “Elliptic Equations” on page 5-93. For details of the stiff-spring approximation, see “Systems of
PDEs” on page 5-99.

Algorithms
Elliptic Equations

Partial Differential Equation Toolbox solves equations of the form

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

 assempde

5-93

When the m and d coefficients are 0, this reduces to

−∇ ⋅ c∇u + au = f

which the documentation calls an elliptic equation, whether or not the equation is elliptic in the
mathematical sense. The equation holds in Ω, where Ω is a bounded domain in two or three
dimensions. c, a, f, and the unknown solution u are complex functions defined on Ω. c can also be a 2-
by-2 matrix function on Ω. The boundary conditions specify a combination of u and its normal
derivative on the boundary:

• Dirichlet: hu = r on the boundary ∂Ω.
• Generalized Neumann: n · (c∇u) + qu = g on ∂Ω.
• Mixed: Only applicable to systems. A combination of Dirichlet and generalized Neumann.

n is the outward unit normal. g, q, h, and r are functions defined on ∂Ω.

Our nomenclature deviates slightly from the tradition for potential theory, where a Neumann
condition usually refers to the case q = 0 and our Neumann would be called a mixed condition. In
some contexts, the generalized Neumann boundary conditions is also referred to as the Robin
boundary conditions. In variational calculus, Dirichlet conditions are also called essential boundary
conditions and restrict the trial space. Neumann conditions are also called natural conditions and
arise as necessary conditions for a solution. The variational form of the Partial Differential Equation
Toolbox equation with Neumann conditions is given below.

The approximate solution to the elliptic PDE is found in three steps:

1 Describe the geometry of the domain Ω and the boundary conditions. For 2-D geometry, create
geometry using the PDE Modeler app or through MATLAB files. For 3-D geometry, import the
geometry in STL file format.

2 Build a triangular mesh on the domain Ω. The software has mesh generating and mesh refining
facilities. A mesh is described by three matrices of fixed format that contain information about
the mesh points, the boundary segments, and the elements.

3 Discretize the PDE and the boundary conditions to obtain a linear system Ku = F. The unknown
vector u contains the values of the approximate solution at the mesh points, the matrix K is
assembled from the coefficients c, a, h, and q and the right-hand side F contains, essentially,
averages of f around each mesh point and contributions from g. Once the matrices K and F are
assembled, you have the entire MATLAB environment at your disposal to solve the linear system
and further process the solution.

More elaborate applications make use of the Finite Element Method (FEM) specific information
returned by the different functions of the software. Therefore we quickly summarize the theory and
technique of FEM solvers to enable advanced applications to make full use of the computed
quantities.

FEM can be summarized in the following sentence: Project the weak form of the differential equation
onto a finite-dimensional function space. The rest of this section deals with explaining the preceding
statement.

We start with the weak form of the differential equation. Without restricting the generality, we
assume generalized Neumann conditions on the whole boundary, since Dirichlet conditions can be
approximated by generalized Neumann conditions. In the simple case of a unit matrix h, setting
g = qr and then letting q → ∞ yields the Dirichlet condition because division with a very large q

5 Functions

5-94

cancels the normal derivative terms. The actual implementation is different, since the preceding
procedure may create conditioning problems. The mixed boundary condition of the system case
requires a more complicated treatment, described in “Systems of PDEs” on page 5-99.

Assume that u is a solution of the differential equation. Multiply the equation with an arbitrary test
function v and integrate on Ω:

∫
Ω

− ∇ · c∇u v + auv dx = ∫
Ω

f v dx

Integrate by parts (i.e., use Green's formula) to obtain

∫
Ω

c∇u · ∇v + auv dx− ∫
∂Ω

n · c∇u v ds = ∫
Ω

f v dx

The boundary integral can be replaced by the boundary condition:

∫
Ω

c∇u · ∇v + auv dx− ∫
∂Ω

−qu + g v ds = ∫
Ω

f v dx

Replace the original problem with Find u such that

∫
Ω

c∇u · ∇v + auv− f v dx− ∫
∂Ω

−qu + g v ds = 0 ∀v

This equation is called the variational, or weak, form of the differential equation. Obviously, any
solution of the differential equation is also a solution of the variational problem. The reverse is true
under some restrictions on the domain and on the coefficient functions. The solution of the variational
problem is also called the weak solution of the differential equation.

The solution u and the test functions v belong to some function space V. The next step is to choose an
Np-dimensional subspace VNp ⊂ V. Project the weak form of the differential equation onto a finite-
dimensional function space simply means requesting u and v to lie in VNp rather than V. The solution
of the finite dimensional problem turns out to be the element of VNp that lies closest to the weak
solution when measured in the energy norm. Convergence is guaranteed if the space VNp tends to V
as Np→∞. Since the differential operator is linear, we demand that the variational equation is satisfied
for Np test-functions Φi ∊VNp that form a basis, i.e.,

∫
Ω

c∇u · ∇ϕi + auϕi− fϕi dx− ∫
∂Ω

−qu + g ϕi ds = 0, i = 1, ..., Np

Expand u in the same basis of VNp elements

u(x) = ∑
j = 1

Np
U jϕ j(x)

and obtain the system of equations

∑
j = 1

Np ∫
Ω

c∇ϕ j · ∇ϕi + aϕ jϕi dx + ∫
∂Ω

qϕ jϕi ds U j = ∫
Ω

fϕi dx + ∫
∂Ω

gϕi ds, i = 1, ... , Np

 assempde

5-95

Use the following notations:

Ki, j = ∫
Ω

c∇ϕ j ⋅ ∇ϕi dx (stiffness matrix)

Mi, j = ∫
Ω

aϕ jϕi dx (mass matrix)

Qi, j = ∫
∂Ω

qϕ jϕi ds

Fi = ∫
Ω

fϕi dx

Gi = ∫
∂Ω

gϕi ds

and rewrite the system in the form

(K + M + Q)U = F + G. (5-2)

K, M, and Q are Np-by-Np matrices, and F and G are Np-vectors. K, M, and F are produced by assema,
while Q, G are produced by assemb. When it is not necessary to distinguish K, M, and Q or F and G,
we collapse the notations to KU = F, which form the output of assempde.

When the problem is self-adjoint and elliptic in the usual mathematical sense, the matrix K + M + Q
becomes symmetric and positive definite. Many common problems have these characteristics, most
notably those that can also be formulated as minimization problems. For the case of a scalar
equation, K, M, and Q are obviously symmetric. If c(x) ≥ δ > 0, a(x) ≥ 0 and q(x) ≥ 0 with q(x) > 0 on
some part of ∂Ω, then, if U ≠ 0.

UT K + M + Q U = ∫
Ω

c u 2 + au2 dx + ∫
∂Ω

qu2 ds > 0, if U ≠ 0

UT(K + M + Q)U is the energy norm. There are many choices of the test-function spaces. The
software uses continuous functions that are linear on each element of a 2-D mesh, and are linear or
quadratic on elements of a 3-D mesh. Piecewise linearity guarantees that the integrals defining the
stiffness matrix K exist. Projection onto VNp is nothing more than linear interpolation, and the
evaluation of the solution inside an element is done just in terms of the nodal values. If the mesh is
uniformly refined, VNp approximates the set of smooth functions on Ω.

A suitable basis for VNp in 2-D is the set of “tent” or “hat” functions ϕi. These are linear on each
element and take the value 0 at all nodes xj except for xi. For the definition of basis functions for 3-D
geometry, see “Finite Element Basis for 3-D” on page 5-101. Requesting ϕi(xi) = 1 yields the very
pleasant property

u xi = ∑
j = 1

Np
U jϕ j xi = Ui

That is, by solving the FEM system we obtain the nodal values of the approximate solution. The basis
function ϕi vanishes on all the elements that do not contain the node xi. The immediate consequence

5 Functions

5-96

is that the integrals appearing in Ki,j, Mi,j, Qi,j, Fi and Gi only need to be computed on the elements
that contain the node xi. Secondly, it means that Ki,j andMi,j are zero unless xi and xj are vertices of the
same element and thus K and M are very sparse matrices. Their sparse structure depends on the
ordering of the indices of the mesh points.

The integrals in the FEM matrices are computed by adding the contributions from each element to
the corresponding entries (i.e., only if the corresponding mesh point is a vertex of the element). This
process is commonly called assembling, hence the name of the function assempde.

The assembling routines scan the elements of the mesh. For each element they compute the so-called
local matrices and add their components to the correct positions in the sparse matrices or vectors.

The discussion now specializes to triangular meshes in 2-D. The local 3-by-3 matrices contain the
integrals evaluated only on the current triangle. The coefficients are assumed constant on the
triangle and they are evaluated only in the triangle barycenter. The integrals are computed using the
midpoint rule. This approximation is optimal since it has the same order of accuracy as the piecewise
linear interpolation.

Consider a triangle given by the nodes P1, P2, and P3 as in the following figure.

The Local Triangle P1P2P3

Note The local 3-by-3 matrices contain the integrals evaluated only on the current triangle. The
coefficients are assumed constant on the triangle and they are evaluated only in the triangle
barycenter.

The simplest computations are for the local mass matrix m:

 assempde

5-97

mi, j = ∫
ΔP1P2P3

a Pc ϕi x ϕ j x dx = a Pc
area ΔP1P2P3

12 1 + δi, j

where Pc is the center of mass of Δ P1P2P3, i.e.,

Pc =
P1 + P2 + P3

3

The contribution to the right side F is just

f i = f Pc
area ΔP1P2P3

3

For the local stiffness matrix we have to evaluate the gradients of the basis functions that do not
vanish on P1P2P3. Since the basis functions are linear on the triangle P1P2P3, the gradients are
constants. Denote the basis functions ϕ1, ϕ2, and ϕ3 such that ϕ(Pi) = 1. If P2 – P3 = [x1,y1]T then we
have that

∇ϕ1 = 1
2 area ΔP1P2P3

y1
−x1

and after integration (taking c as a constant matrix on the triangle)

ki, j = 1
4 area ΔP1P2P3

y j, − x j c Pc
y1
−x1

If two vertices of the triangle lie on the boundary ∂Ω, they contribute to the line integrals associated
to the boundary conditions. If the two boundary points are P1 and P2, then we have

Qi, j = q Pb
P1− P2

6 1 + δi, j , i, j = 1, 2

and

Gi = g Pb
P1− P2

2 , i = 1, 2

where Pb is the midpoint of P1P2.

For each triangle the vertices Pm of the local triangle correspond to the indices im of the mesh points.
The contributions of the individual triangle are added to the matrices such that, e.g.,

Kim, int Kim, in + km, n, m, n = 1, 2, 3

This is done by the function assempde. The gradients and the areas of the triangles are computed by
the function pdetrg.

The Dirichlet boundary conditions are treated in a slightly different manner. They are eliminated from
the linear system by a procedure that yields a symmetric, reduced system. The function assempde
can return matrices K, F, B, and ud such that the solution is u = Bv + ud where Kv = F. u is an Np-
vector, and if the rank of the Dirichlet conditions is rD, then v has Np – rD components.

To summarize, assempde performs the following steps to obtain a solution u to an elliptic PDE:

5 Functions

5-98

1 Generate the finite element matrices [K,M,F,Q,G,H,R]. This step is equivalent to calling assema to
generate the matrices K, M, and F, and also calling assemb to generate the matrices Q, G, H, and
R.

2 Generate the combined finite element matrices [Kc,Fc,B,ud]. The combined stiffness matrix is for
the reduced linear system, Kc = K + M + Q. The corresponding combined load vector is Fc =
F + G. The B matrix spans the null space of the columns of H (the Dirichlet condition matrix
representing hu = r). The R vector represents the Dirichlet conditions in Hu = R. The ud vector
represents boundary condition solutions for the Dirichlet conditions.

3 Calculate the solution u via

u = B*(Kc\Fc) + ud.

assempde uses one of two algorithms for assembling a problem into combined finite element matrix
form. A reduced linear system form leads to immediate solution via linear algebra. You choose the
algorithm by the number of outputs. For the reduced linear system form, request four outputs:

[Kc,Fc,B,ud] = assempde(_)

For the stiff-spring approximation, request two outputs:

[Ks,Fs] = assempde(_)

For details, see “Reduced Linear System” on page 5-93 and “Stiff-Spring Approximation” on page 5-
93.

Systems of PDEs

Partial Differential Equation Toolbox software can also handle systems of N partial differential
equations over the domain Ω. We have the elliptic system

−∇ ⋅ c⊗ ∇u + au = f

the parabolic system

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

the hyperbolic system

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

and the eigenvalue system

−∇ ⋅ c⊗ ∇u + au = λdu

where c is an N-by-N-by-D-by-D tensor, and D is the geometry dimensions, 2 or 3.

For 2-D systems, the notation ∇ ⋅ (c⊗ ∇u) represents an N-by-1 matrix with an (i,1)-component

∑
j = 1

N ∂
∂x ci, j, 1, 1

∂
∂x + ∂

∂x ci, j, 1, 2
∂
∂y + ∂

∂y ci, j, 2, 1
∂
∂x + ∂

∂y ci, j, 2, 2
∂
∂y u j

For 3-D systems, the notation ∇ ⋅ (c⊗ ∇u) represents an N-by-1 matrix with an (i,1)-component

 assempde

5-99

∑
j = 1

N ∂
∂x ci, j, 1, 1

∂
∂x + ∂

∂x ci, j, 1, 2
∂
∂y + ∂

∂x ci, j, 1, 3
∂
∂z u j

+ ∑
j = 1

N ∂
∂y ci, j, 2, 1

∂
∂x + ∂

∂y ci, j, 2, 2
∂
∂y + ∂

∂y ci, j, 2, 3
∂
∂z u j

+ ∑
j = 1

N ∂
∂z ci, j, 3, 1

∂
∂x + ∂

∂z ci, j, 3, 2
∂
∂y + ∂

∂z ci, j, 3, 3
∂
∂z u j

The symbols a and d denote N-by-N matrices, and f denotes a column vector of length N.

The elements cijkl, aij, dij, and fi of c, a, d, and f are stored row-wise in the MATLAB matrices c, a, d,
and f. The case of identity, diagonal, and symmetric matrices are handled as special cases. For the
tensor cijkl this applies both to the indices i and j, and to the indices k and l.

Partial Differential Equation Toolbox software does not check the ellipticity of the problem, and it is
quite possible to define a system that is not elliptic in the mathematical sense. The preceding
procedure that describes the scalar case is applied to each component of the system, yielding a
symmetric positive definite system of equations whenever the differential system possesses these
characteristics.

The boundary conditions now in general are mixed, i.e., for each point on the boundary a combination
of Dirichlet and generalized Neumann conditions,

hu = r
n · c⊗ ∇u + qu = g + h′μ

For 2-D systems, the notation n · c⊗ ∇u represents an N-by-1 matrix with (i,1)-component

∑
j = 1

N
cos(α)ci, j, 1, 1

∂
∂x + cos(α)ci, j, 1, 2

∂
∂y + sin(α)ci, j, 2, 1

∂
∂x + sin(α)ci, j, 2, 2

∂
∂y u j

where the outward normal vector of the boundary is n = cos(α), sin(α) .

For 3-D systems, the notation n · c⊗ ∇u represents an N-by-1 matrix with (i,1)-component

∑
j = 1

N
cos(α)ci, j, 1, 1

∂
∂x + cos(α)ci, j, 1, 2

∂
∂y + cos(α)ci, j, 1, 3

∂
∂z u j

+ ∑
j = 1

N
cos(β)ci, j, 2, 1

∂
∂x + cos(β)ci, j, 2, 2

∂
∂y + cos(β)ci, j, 2, 3

∂
∂z u j

+ ∑
j = 1

N
cos(γ)ci, j, 3, 1

∂
∂x + cos(γ)ci, j, 3, 2

∂
∂y + cos(γ)ci, j, 3, 3

∂
∂z u j

where the outward normal to the boundary is

n = cos α , cos β , cos γ

There are M Dirichlet conditions and the h-matrix is M-by-N, M ≥ 0. The generalized Neumann
condition contains a source h′μ, where the Lagrange multipliers μ are computed such that the
Dirichlet conditions become satisfied. In a structural mechanics problem, this term is exactly the
reaction force necessary to satisfy the kinematic constraints described by the Dirichlet conditions.

5 Functions

5-100

The rest of this section details the treatment of the Dirichlet conditions and may be skipped on a first
reading.

Partial Differential Equation Toolbox software supports two implementations of Dirichlet conditions.
The simplest is the “Stiff Spring” model, so named for its interpretation in solid mechanics. See
“Elliptic Equations” on page 5-93 for the scalar case, which is equivalent to a diagonal h-matrix. For
the general case, Dirichlet conditions

hu = r

are approximated by adding a term

L(h′hu− h′r)

to the equations KU = F, where L is a large number such as 104 times a representative size of the
elements of K.

When this number is increased, hu = r will be more accurately satisfied, but the potential ill-
conditioning of the modified equations will become more serious.

The second method is also applicable to general mixed conditions with nondiagonal h, and is free of
the ill-conditioning, but is more involved computationally. Assume that there are Np nodes in the
mesh. Then the number of unknowns is NpN = Nu. When Dirichlet boundary conditions fix some of
the unknowns, the linear system can be correspondingly reduced. This is easily done by removing
rows and columns when u values are given, but here we must treat the case when some linear
combinations of the components of u are given, hu = r. These are collected into HU = R where H is
an M-by-Nu matrix and R is an M-vector.

With the reaction force term the system becomes

KU +H´ µ = F

HU = R.

The constraints can be solved for M of the U-variables, the remaining called V, an Nu – M vector. The
null space of H is spanned by the columns of B, and U = BV + ud makes U satisfy the Dirichlet
conditions. A permutation to block-diagonal form exploits the sparsity of H to speed up the following
computation to find B in a numerically stable way. µ can be eliminated by pre-multiplying by B´ since,
by the construction, HB = 0 or B´H´ = 0. The reduced system becomes

B´ KBV = B´ F – B´Kud

which is symmetric and positive definite if K is.

Finite Element Basis for 3-D

The finite element method for 3-D geometry is similar to the 2-D method described in “Elliptic
Equations” on page 5-93. The main difference is that the elements in 3-D geometry are tetrahedra,
which means that the basis functions are different from those in 2-D geometry.

It is convenient to map a tetrahedron to a canonical tetrahedron with a local coordinate system (r,s,t).

 assempde

5-101

In local coordinates, the point p1 is at (0,0,0), p2 is at (1,0,0), p3 is at (0,1,0), and p4 is at (0,0,1).

For a linear tetrahedron, the basis functions are

ϕ1 = 1 − r − s− t
ϕ2 = r
ϕ3 = s
ϕ4 = t

For a quadratic tetrahedron, there are additional nodes at the edge midpoints.

5 Functions

5-102

The corresponding basis functions are

ϕ1 = 2 1 − r − s− t 2− 1 − r − s− t

ϕ2 = 2r2− r

ϕ3 = 2s2− s

ϕ4 = 2t2− t
ϕ5 = 4r 1 − r − s− t

ϕ6 = 4rs
ϕ7 = 4s 1 − r − s− t
ϕ8 = 4t 1 − r − s− t

ϕ9 = 4rt
ϕ10 = 4st

As in the 2-D case, a 3-D basis function ϕi takes the value 0 at all nodes j, except for node i, where it
takes the value 1.

See Also
assembleFEMatrices | solvepde

Introduced before R2006a

 assempde

5-103

cellEdges
Find edges attached to specified cells

Syntax
EdgeID = cellEdges(g,RegionID)
EdgeID = cellEdges(g,RegionID,FilterType)

Description
EdgeID = cellEdges(g,RegionID) finds edges attached to the cells with ID numbers listed in
RegionID.

EdgeID = cellEdges(g,RegionID,FilterType) returns internal, external, or all edges attached
to the cells with ID numbers listed in RegionID.

Examples

Edges Attached to Specified Cells

Find edges attached to two middle cylinders in a geometry consisting of four stacked cylinders.

Create a geometry that consists of four stacked cylinders.

gm = multicylinder(5,[1 2 3 4],'ZOffset',[0 1 3 6])

gm =
 DiscreteGeometry with properties:

 NumCells: 4
 NumFaces: 9
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Plot the geometry with the cell and edge labels.

pdegplot(gm,'CellLabels','on','EdgeLabels','on','FaceAlpha',0.2)

5 Functions

5-104

Find edges attached to cells 2 and 3.

edgeIDs = cellEdges(gm,[2 3])

edgeIDs = 1×3

 2 3 4

Cell Edges Attached to Internal and External Faces

Find edges attached to the outer cuboid in a geometry consisting of two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.

gm = multicuboid([2 5],[4 10],3)

gm =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 12
 NumEdges: 24
 NumVertices: 16
 Vertices: [16x3 double]

 cellEdges

5-105

Plot the geometry with the cell labels.

pdegplot(gm,'CellLabels','on','FaceAlpha',0.2)

Find all edges attached to the outer cell. Show the first 10 edges.

edgeIDs = cellEdges(gm,2);
edgeIDs(1:10)

ans = 1×10

 1 2 3 4 5 6 7 8 9 10

From all edges attached to the outer cell, return the edges attached to only the internal faces.
Internal faces are faces shared between multiple cells.

edgeIDs_int = cellEdges(gm,2,'internal')

edgeIDs_int = 1×4

 9 10 11 12

From all edges attached to the outer cell, return the edges attached to the external faces. Show the
first 10 edges.

edgeIDs_ext = cellEdges(gm,2,'external');
edgeIDs_ext(1:10)

5 Functions

5-106

ans = 1×10

 1 2 3 4 5 6 7 8 13 14

Input Arguments
g — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object.

RegionID — Cell ID
positive number | vector of positive numbers

Cell ID, specified as a positive number or a vector of positive numbers. Each number represents a cell
ID.

FilterType — Type of edges to return
'all' (default) | 'internal' | 'external'

Type of edges to return, specified as 'internal', 'external', or 'all'. Depending on this
argument, cellEdges returns these types of faces:

• 'internal' — Edges attached to only internal faces. Internal faces are faces shared between
multiple cells.

• 'external' — Edges attached to only external faces. External faces are faces not shared
between multiple cells.

• 'all' — All edges attached to the specified cells.

Output Arguments
EdgeID — IDs of edges attached to specified cells
positive number | vector of positive numbers

IDs of edges attached to the specified cells, returned as a positive number or a vector of positive
numbers.

See Also
cellFaces | faceEdges | facesAttachedToEdges | nearestEdge | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

 cellEdges

5-107

cellFaces
Find faces attached to specified cells

Syntax
FaceID = cellFaces(g,RegionID)
FaceID = cellFaces(g,RegionID,FilterType)

Description
FaceID = cellFaces(g,RegionID) finds faces attached to the cells with ID numbers listed in
RegionID.

FaceID = cellFaces(g,RegionID,FilterType) returns internal, external, or all faces attached
to the cells with ID numbers listed in RegionID.

Examples

Faces Attached to Specified Cells

Find faces attached to two cuboids in a geometry consisting of four stacked cuboids.

Create a geometry that consists of four stacked cuboids.

gm = multicuboid(5,10,[1 2 3 4],'ZOffset',[0 1 3 6])

gm =
 DiscreteGeometry with properties:

 NumCells: 4
 NumFaces: 21
 NumEdges: 36
 NumVertices: 20
 Vertices: [20x3 double]

Plot the geometry with the cell labels.

pdegplot(gm,'CellLabels','on','FaceAlpha',0.2)

5 Functions

5-108

Find faces attached to cells 1 and 3.

faceIDs = cellFaces(gm,[1 3])

faceIDs = 1×12

 1 2 3 4 5 6 7 12 13 14 15 16

Plot the geometry with the face labels.

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)

 cellFaces

5-109

Internal and External Faces Attached to Specified Cells

Find faces attached to the outer cuboid in a geometry consisting of two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.

gm = multicuboid([2 5],[4 10],3)

gm =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 12
 NumEdges: 24
 NumVertices: 16
 Vertices: [16x3 double]

Plot the geometry with the cell labels.

pdegplot(gm,'CellLabels','on','FaceAlpha',0.2)

5 Functions

5-110

Find all faces attached to the outer cell.

faceIDs = cellFaces(gm,2)

faceIDs = 1×10

 3 4 5 6 7 8 9 10 11 12

Find only the internal faces attached to the outer cell. Internal faces are faces shared between
multiple cells.

faceIDs_int = cellFaces(gm,2,'internal')

faceIDs_int = 1×4

 3 4 5 6

Find only the external faces attached to the outer cell.

faceIDs_ext = cellFaces(gm,2,'external')

faceIDs_ext = 1×6

 7 8 9 10 11 12

Plot the geometry with the face labels.

 cellFaces

5-111

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)

Input Arguments
g — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object.

RegionID — Cell ID
positive number | vector of positive numbers

Cell ID, specified as a positive number or a vector of positive numbers. Each number represents a cell
ID.

FilterType — Type of faces to return
'all' (default) | 'internal' | 'external'

Type of faces to return, specified as 'internal', 'external', or 'all'. Depending on this
argument, cellFaces returns these types of faces:

• 'internal' — Internal faces, that is, faces shared between multiple cells.
• 'external' — External faces, that is, faces not shared between multiple cells.
• 'all' — All faces attached to the specified cells.

5 Functions

5-112

Output Arguments
FaceID — IDs of faces attached to specified cells
positive number | vector of positive numbers

IDs of faces attached to the specified cells, returned as a positive number or a vector of positive
numbers.

See Also
cellEdges | faceEdges | facesAttachedToEdges | nearestEdge | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

 cellFaces

5-113

BodyLoadAssignment Properties
Body load assignments

Description
A BodyLoadAssignment object contains a description of the body loads for a structural analysis
model. A StructuralModel container has a vector of BodyLoadAssignment objects in its
BodyLoads.BodyLoadAssignments property.

To create body load assignments for your structural analysis model, use the structuralBodyLoad
function.

Properties
Properties of BodyLoadAssignment

RegionType — Region type
'Face' | 'Cell'

Region type, returned as 'Face' for a 2-D region or 'Cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function, setting 'FaceLabels' to 'on'.
Data Types: double

GravitationalAcceleration — Acceleration due to gravity
numeric vector

Acceleration due to gravity, returned as a numeric vector. This property must be specified in units
consistent with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,'GravitationalAcceleration',
[0,0,-9.8])

Data Types: double

AngularVelocity — Angular velocity for axisymmetric model
positive number

Angular velocity for an axisymmetric model, returned as a positive number. This property must be
specified in units consistent with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,'AngularVelocity',2.3)
Data Types: double

5 Functions

5-114

Temperature — Thermal load
real number | StaticThermalResults object | TransientThermalResults object

Thermal load, returned as a real number, a StaticThermalResults object, or a
TransientThermalResults object. This property must be specified in units consistent with those
of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,'Temperature',300)
Data Types: double

TimeStep — Time index for thermal load
positive integer

Time index for thermal load, returned as a positive integer.
Example:
structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',21)

Data Types: double

Label — Label for use with linearizeInput
character vector | string

Label for use with linearizeInput, returned as a character vector or a string.
Data Types: char | string

See Also
findBodyLoad | structuralBodyLoad

Introduced in R2017b

 BodyLoadAssignment Properties

5-115

BoundaryCondition Properties
Boundary condition for PDE model

Description
A BoundaryCondition object specifies the type of PDE boundary condition on a set of geometry
boundaries. A PDEModel object contains a vector of BoundaryCondition objects in its
BoundaryConditions property.

Specify boundary conditions for your model using the applyBoundaryCondition function.

Properties
Properties

BCType — Type of boundary condition
'dirichlet' | 'neumann' | 'mixed'

Boundary type, returned as 'dirichlet', 'neumann', or 'mixed'.
Example: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)
Data Types: char

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, returned as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, returned as a vector of positive integers. Find the region IDs by using
pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: applyBoundaryCondition(model,'dirichlet','Face',3:6,'u',0)
Data Types: double

r — Dirichlet condition h*u = r
zeros(N,1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, returned as a vector with N elements or a function handle. N is the
number of PDEs in the system. For the syntax of the function handle form of r, see “Nonconstant
Boundary Conditions” on page 2-116.
Example: 'r',[0;4;-1]
Data Types: double | function_handle
Complex Number Support: Yes

5 Functions

5-116

h — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Dirichlet condition h*u = r, returned as an N-by-N matrix, a vector with N^2 elements, or a
function handle. N is the number of PDEs in the system. For the syntax of the function handle form of
h, see “Nonconstant Boundary Conditions” on page 2-116.
Example: 'h',[2,1;1,2]
Data Types: double | function_handle
Complex Number Support: Yes

g — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N,1) (default) | vector with N elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, returned as a vector with N elements or a
function handle. N is the number of PDEs in the system. For scalar PDEs, the generalized Neumann
condition is n·(c∇u) + qu = g. For the syntax of the function handle form of g, see “Nonconstant
Boundary Conditions” on page 2-116.
Example: 'g',[3;2;-1]
Data Types: double | function_handle
Complex Number Support: Yes

q — Generalized Neumann condition n·(c×∇u) + qu = g
zeros(N) (default) | N-by-N matrix | vector with N^2 elements | function handle

Generalized Neumann condition n·(c×∇u) + qu = g, returned as an N-by-N matrix, a vector with
N^2 elements, or a function handle. N is the number of PDEs in the system. For the syntax of the
function handle form of q, see “Nonconstant Boundary Conditions” on page 2-116.
Example: 'q',eye(3)
Data Types: double | function_handle
Complex Number Support: Yes

u — Dirichlet conditions
zeros(N,1) (default) | vector of up to N elements | function handle

Dirichlet conditions, returned as a vector of up to N elements or as a function handle. If u has less
than N elements, then you must also use EquationIndex. The u and EquationIndex arguments
must have the same length. If u has N elements, then specifying EquationIndex is optional.

For the syntax of the function handle form of u, see “Nonconstant Boundary Conditions” on page 2-
116.
Example: applyBoundaryCondition(model,'dirichlet','Face',[2,4,11],'u',0)
Data Types: double
Complex Number Support: Yes

EquationIndex — Index of the known u components
1:N (default) | vector of integers with entries from 1 to N

Index of the known u components, returned as a vector of integers with entries from 1 to N.
EquationIndex and u must have the same length.

 BoundaryCondition Properties

5-117

Example: applyBoundaryCondition(model,'mixed','Face',[2,4,11],'u',
[3,-1],'EquationIndex',[2,3])

Data Types: double

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, returned as 'on' or 'off'. This evaluation applies when you pass a
function handle as an argument. To save time in function handle evaluation, specify 'on', assuming
that your function handle computes in a vectorized fashion. See “Vectorization”. For details of this
evaluation, see “Nonconstant Boundary Conditions” on page 2-116.
Example: applyBoundaryCondition(model,'dirichlet','Face',
[2,4,11],'u',@ucalculator,'Vectorized','on')

Data Types: char

See Also
applyBoundaryCondition | findBoundaryConditions | PDEModel

Topics
“Specify Boundary Conditions” on page 2-113
“View, Edit, and Delete Boundary Conditions” on page 2-128
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

5 Functions

5-118

CoefficientAssignment Properties
Coefficient assignments

Description
A CoefficientAssignment object contains a description of the PDE coefficients. A PDEModel
container has a vector of CoefficientAssignment objects in its
EquationCoefficients.CoefficientAssignments property.

Coefficients are the m, d, c, a, and f variables in the PDE

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

or the eigenvalue problem

−∇ · c∇u + au = λdu
or

−∇ · c∇u + au = λ2mu

Create coefficients for your model using the specifyCoefficients function.

Properties
Properties

RegionType — Region type
'face' | 'cell'

Region type, returned as 'face' for a 2-D region, or 'cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function. Set the 'FaceLabels' name-value pair to
'on'.
Data Types: double

m — Second-order time derivative coefficient
scalar | column vector | function handle

Second-order time derivative coefficient, returned as a scalar, column vector, or function handle. For
details of the m coefficient specification, see “m, d, or a Coefficient for specifyCoefficients” on page 2-
91.
Data Types: double | function_handle

 CoefficientAssignment Properties

5-119

Complex Number Support: Yes

d — First-order time derivative coefficient
scalar | column vector | function handle

First-order time derivative coefficient, returned as a scalar, column vector, or function handle. For
details of the d coefficient specification, see “m, d, or a Coefficient for specifyCoefficients” on page 2-
91.
Data Types: double | function_handle
Complex Number Support: Yes

c — Second-order space derivative coefficient
scalar | column vector | function handle

Second-order space derivative coefficient, returned as a scalar, column vector, or function handle. For
details of the c coefficient specification, see “c Coefficient for specifyCoefficients” on page 2-76.
Data Types: double | function_handle
Complex Number Support: Yes

a — Solution multiplier coefficient
scalar | column vector | function handle

Solution multiplier coefficient, returned as a scalar, column vector, or function handle. For details of
the a coefficient specification, see “m, d, or a Coefficient for specifyCoefficients” on page 2-91.
Data Types: double | function_handle
Complex Number Support: Yes

f — Source coefficient
scalar | column vector | function handle

Source coefficient, returned as a scalar, column vector, or function handle. For details of the f
coefficient specification, see “f Coefficient for specifyCoefficients” on page 2-74.
Data Types: double | function_handle
Complex Number Support: Yes

See Also
findCoefficients | specifyCoefficients

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

5 Functions

5-120

createpde
Create model

Syntax
structuralmodel = createpde('structural',StructuralAnalysisType)
thermalmodel = createpde('thermal',ThermalAnalysisType)
emagmodel = createpde('electromagnetic',ElectromagneticAnalysisType)
model = createpde(N)

Description
structuralmodel = createpde('structural',StructuralAnalysisType) returns a
structural analysis model for the specified analysis type. This model lets you solve small-strain linear
elasticity problems.

thermalmodel = createpde('thermal',ThermalAnalysisType) returns a thermal analysis
model for the specified analysis type.

emagmodel = createpde('electromagnetic',ElectromagneticAnalysisType) returns an
electromagnetic analysis model for the specified analysis type.

model = createpde(N) returns a PDE model object for a system of N equations. A complete PDE
model object contains a description of the problem you want to solve, including the geometry, mesh,
and boundary conditions.

Examples

Create Structural Model

Create a static structural model for solving a solid (3-D) problem.

staticStructural = createpde('structural','static-solid')

staticStructural =
 StructuralModel with properties:

 AnalysisType: 'static-solid'
 Geometry: []
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 ReferenceTemperature: []
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create a transient structural model for solving a plane-stress (2-D) problem.

transientStructural = createpde('structural','transient-planestress')

 createpde

5-121

transientStructural =
 StructuralModel with properties:

 AnalysisType: 'transient-planestress'
 Geometry: []
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 DampingModels: []
 InitialConditions: []
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create a modal analysis structural model for solving a plane-strain (2-D) problem.

modalStructural = createpde('structural','modal-planestrain')

modalStructural =
 StructuralModel with properties:

 AnalysisType: 'modal-planestrain'
 Geometry: []
 MaterialProperties: []
 BoundaryConditions: []
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create a frequency response analysis structural model for solving an axisymmetric problem. An
axisymmetric model simplifies a 3-D problem to a 2-D problem using symmetry around the axis of
rotation.

frStructural = createpde('structural','frequency-axisymmetric')

frStructural =
 StructuralModel with properties:

 AnalysisType: 'frequency-axisymmetric'
 Geometry: []
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 DampingModels: []
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create Thermal Model

Create a model for a steady-state thermal problem.

thermalmodel = createpde('thermal','steadystate')

5 Functions

5-122

thermalmodel =
 ThermalModel with properties:

 AnalysisType: "steadystate"
 Geometry: []
 MaterialProperties: []
 HeatSources: []
 StefanBoltzmannConstant: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create a model for a transient thermal problem.

thermalmodel = createpde('thermal','transient')

thermalmodel =
 ThermalModel with properties:

 AnalysisType: "transient"
 Geometry: []
 MaterialProperties: []
 HeatSources: []
 StefanBoltzmannConstant: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create a transient thermal model for solving an axisymmetric problem. An axisymmetric model
simplifies a 3-D problem to a 2-D problem using symmetry around the axis of rotation.

thermalmodel = createpde('thermal','transient-axisymmetric')

thermalmodel =
 ThermalModel with properties:

 AnalysisType: "transient-axisymmetric"
 Geometry: []
 MaterialProperties: []
 HeatSources: []
 StefanBoltzmannConstant: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create Electromagnetic Model

Create a model for electrostatic analysis.

emagE = createpde('electromagnetic','electrostatic')

 createpde

5-123

emagE =
 ElectromagneticModel with properties:

 AnalysisType: 'electrostatic'
 Geometry: []
 MaterialProperties: []
 Sources: []
 BoundaryConditions: []
 VacuumPermittivity: []
 Mesh: []

Create an axisymmetric model for magnetostatic analysis. An axisymmetric model simplifies a 3-D
problem to a 2-D problem using symmetry around the axis of rotation.

emagMA = createpde('electromagnetic','magnetostatic-axisymmetric')

emagMA =
 ElectromagneticModel with properties:

 AnalysisType: 'magnetostatic-axisymmetric'
 Geometry: []
 MaterialProperties: []
 Sources: []
 BoundaryConditions: []
 VacuumPermeability: []
 Mesh: []

Create General PDE Model

Create a model for a general linear or nonlinear single (scalar) PDE.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create a PDE model for a system of three equations.

model = createpde(3)

model =
 PDEModel with properties:

 PDESystemSize: 3

5 Functions

5-124

 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Input Arguments
StructuralAnalysisType — Type of structural analysis
'static-solid' | 'static-planestress' | 'static-planestrain' | 'static-
axisymmetric' | 'transient-solid' | 'transient-planestress' | 'transient-
planestrain' | 'transient-axisymmetric' | 'modal-solid' | 'modal-planestress' |
'modal-planestrain' | 'modal-axisymmetric' | 'frequency-solid' | 'frequency-
planestress' | 'frequency-planestrain' | 'frequency-axisymmetric'

Type of analysis, specified as one of the following values.

For static analysis, use these values:

• 'static-solid' to create a structural model for static analysis of a solid (3-D) problem.
• 'static-planestress' to create a structural model for static analysis of a plane-stress

problem.
• 'static-planestrain' to create a structural model for static analysis of a plane-strain

problem.
• 'static-axisymmetric' to create an axisymmetric (2-D) structural model for static analysis.

For transient analysis, use these values:

• 'transient-solid' to create a structural model for transient analysis of a solid (3-D) problem.
• 'transient-planestress' to create a structural model for transient analysis of a plane-stress

problem.
• 'transient-planestrain' to create a structural model for transient analysis of a plane-strain

problem.
• 'transient-axisymmetric' to create an axisymmetric (2-D) structural model for transient

analysis.

For modal analysis, use these values:

• 'modal-solid' to create a structural model for modal analysis of a solid (3-D) problem.
• 'modal-planestress' to create a structural model for modal analysis of a plane-stress problem.
• 'modal-planestrain' to create a structural model for modal analysis of a plane-strain problem.
• 'modal-axisymmetric' to create an axisymmetric (2-D) structural model for modal analysis.

For frequency response analysis, use these values:

• 'frequency-solid' to create a structural model for frequency response analysis of a solid (3-D)
problem.

 createpde

5-125

• 'frequency-planestress' to create a structural model for frequency response analysis of a
plane-stress problem.

• 'frequency-planestrain' to create a structural model for frequency response analysis of a
plane-strain problem.

• 'frequency-axisymmetric' to create an axisymmetric (2-D) structural model for frequency
response analysis.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing
through r = 0.
Example: model = createpde('structural','static-solid')
Data Types: char | string

ThermalAnalysisType — Type of thermal analysis
'steadystate' | 'transient' | 'steadystate-axisymmetric' | 'transient-
axisymmetric'

Type of thermal analysis, specified as one of the following values:

• 'steadystate' creates a steady-state thermal model. If you do not specify
ThermalAnalysisType for a thermal model, createpde creates a steady-state model.

• 'transient' creates a transient thermal model.
• 'steadystate-axisymmetric' creates an axisymmetric (2-D) thermal model for steady-state

analysis.
• 'transient-axisymmetric' creates an axisymmetric (2-D) thermal model for transient

analysis.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing
through r = 0.
Example: model = createpde('thermal','transient')
Data Types: char | string

ElectromagneticAnalysisType — Type of electromagnetic analysis
'electrostatic' | 'magnetostatic' | 'electrostatic-axisymmetric' | 'magnetostatic-
axisymmetric'

Type of electromagnetic analysis, specified as one of the following values:

• 'electrostatic' creates a model for electrostatic analysis.
• 'magnetostatic' creates a model for magnetostatic analysis.
• 'electrostatic-axisymmetric' creates an axisymmetric (2-D) model for electrostatic

analysis.
• 'magnetostatic-axisymmetric' creates an axisymmetric (2-D) model for magnetostatic

analysis.

Example: model = createpde('electromagnetic','electrostatic')
Data Types: char | string

N — Number of equations
1 (default) | positive integer

5 Functions

5-126

Number of equations, specified as a positive integer. You do not need to specify N for a model where
N = 1.
Example: model = createpde
Example: model = createpde(3);
Data Types: double

Output Arguments
structuralmodel — Structural model
StructuralModel object

Structural model, returned as a StructuralModel object.
Example: structuralmodel = createpde('structural','static-solid')

thermalmodel — Thermal model
ThermalModel object

Thermal model, returned as a ThermalModel object.
Example: thermalmodel = createpde('thermal','transient')

emagmodel — Electromagnetic model
ElectromagneticModel object

Electromagnetic model, returned as an ElectromagneticModel object.
Example: thermalmodel = createpde('electromagnetic','magnetostatic')

model — PDE model
PDEModel object

PDE model, returned as a PDEModel object.
Example: model = createpde(2)

See Also
PDEModel | ThermalModel | StructuralModel | ElectromagneticModel

Topics
“Structural Mechanics”
“Heat Transfer”
“Electromagnetics”
“Solve Problems Using PDEModel Objects” on page 2-2
“Equations You Can Solve Using PDE Toolbox” on page 1-3

Introduced in R2015a

 createpde

5-127

createPDEResults
Create solution object

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow. For the corresponding step in the recommended workflow, see solvepde and
solvepdeeig.

The original (R2015b) version of createPDEResults had only one syntax, and created a
PDEResults object. Beginning with R2016a, you generally do not need to use createPDEResults,
because the solvepde and solvepdeeig functions return solution objects. Furthermore,
createPDEResults returns an object of a newer type than PDEResults. If you open an existing
PDEResults object, it is converted to a StationaryResults object.

If you use one of the older solvers such as adaptmesh, then you can use createPDEResults to
obtain a solution object. Stationary and time-dependent solution objects have gradients available,
whereas PDEResults did not include gradients.

Syntax
results = createPDEResults(model,u)
results = createPDEResults(model,u,'stationary')
results = createPDEResults(model,u,utimes,'time-dependent')
results = createPDEResults(model,eigenvectors,eigenvalues,'eigen')

Description
results = createPDEResults(model,u) creates a StationaryResults solution object from
model and its solution u.

This syntax is equivalent to results = createPDEResults(model,u,'stationary').

results = createPDEResults(model,u,utimes,'time-dependent') creates a
TimeDependentResults solution object from model, its solution u, and the times utimes.

results = createPDEResults(model,eigenvectors,eigenvalues,'eigen') creates an
EigenResults solution object from model, its eigenvector solution eigenvectors, and its
eigenvalues eigenvalues.

Examples

Results From an Elliptic Problem

Create a StationaryResults object from the solution to an elliptic system.

Create a PDE model for a system of three equations. Import the geometry of a bracket and plot the
face labels.

model = createpde(3);
importGeometry(model,'BracketWithHole.stl');

5 Functions

5-128

figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

 createPDEResults

5-129

Set boundary conditions: face 3 is immobile, and there is a force in the negative z direction on face 6.

applyBoundaryCondition(model,'dirichlet','face',4,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','face',8,'g',[0,0,-1e4]);

Set coefficients that represent the equations of linear elasticity.

E = 200e9;
nu = 0.3;
c = elasticityC3D(E,nu);
a = 0;
f = [0;0;0];

Create a mesh and solve the problem.

generateMesh(model,'Hmax',1e-2);
u = assempde(model,c,a,f);

Create a StationaryResults object from the solution.

results = createPDEResults(model,u)

results =
 StationaryResults with properties:

 NodalSolution: [14002x3 double]
 XGradients: [14002x3 double]
 YGradients: [14002x3 double]

5 Functions

5-130

 ZGradients: [14002x3 double]
 Mesh: [1x1 FEMesh]

Plot the solution for the z-component, which is component 3.

pdeplot3D(model,'ColorMapData',results.NodalSolution(:,3))

Results from a Time-Dependent Problem

Obtain a solution from a parabolic problem.

The problem models heat flow in a solid.

model = createpde();
importGeometry(model,'Tetrahedron.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(45,45)

 createPDEResults

5-131

Set the temperature on face 2 to 100. Leave the other boundary conditions at their default values
(insulating).

applyBoundaryCondition(model,'dirichlet','face',2,'u',100);

Set the coefficients to model a parabolic problem with 0 initial temperature.

d = 1;
c = 1;
a = 0;
f = 0;
u0 = 0;

Create a mesh and solve the PDE for times from 0 through 200 in steps of 10.

tlist = 0:10:200;
generateMesh(model);
u = parabolic(u0,tlist,model,c,a,f,d);

168 successful steps
0 failed attempts
329 function evaluations
1 partial derivatives
28 LU decompositions
328 solutions of linear systems

Create a TimeDependentResults object from the solution.

5 Functions

5-132

results = createPDEResults(model,u,tlist,'time-dependent');

Plot the solution on the surface of the geometry at time 100.

pdeplot3D(model,'ColorMapData',results.NodalSolution(:,11))

Results from an Eigenvalue Problem

Create an EigenResults object from the solution to an eigenvalue problem.

Create the geometry and mesh for the L-shaped membrane. Apply Dirichlet boundary conditions to all
edges.

model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model,'Hmax',0.05,'GeometricOrder','linear');
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Solve the eigenvalue problem for coefficients c = 1, a = 0, and d = 1. Obtain solutions for
eigenvalues from 0 through 100.

c = 1;
a = 0;

 createPDEResults

5-133

d = 1;
r = [0,100];
[eigenvectors,eigenvalues] = pdeeig(model,c,a,d,r);

 Basis= 10, Time= 0.02, New conv eig= 0
 Basis= 14, Time= 0.02, New conv eig= 0
 Basis= 18, Time= 0.02, New conv eig= 1
 Basis= 22, Time= 0.02, New conv eig= 2
 Basis= 26, Time= 0.03, New conv eig= 3
 Basis= 30, Time= 0.03, New conv eig= 5
 Basis= 34, Time= 0.03, New conv eig= 5
 Basis= 38, Time= 0.03, New conv eig= 7
 Basis= 42, Time= 0.06, New conv eig= 8
 Basis= 46, Time= 0.33, New conv eig= 11
 Basis= 50, Time= 0.33, New conv eig= 12
 Basis= 54, Time= 0.36, New conv eig= 14
 Basis= 58, Time= 0.36, New conv eig= 14
 Basis= 62, Time= 0.67, New conv eig= 16
 Basis= 66, Time= 0.67, New conv eig= 18
End of sweep: Basis= 66, Time= 0.67, New conv eig= 17
 Basis= 27, Time= 0.69, New conv eig= 0
 Basis= 31, Time= 0.69, New conv eig= 0
 Basis= 35, Time= 0.69, New conv eig= 0
End of sweep: Basis= 35, Time= 0.70, New conv eig= 0

Create an EigenResults object from the solution.

results = createPDEResults(model,eigenvectors,eigenvalues,'eigen')

results =
 EigenResults with properties:

 Eigenvectors: [1440x17 double]
 Eigenvalues: [17x1 double]
 Mesh: [1x1 FEMesh]

Plot the solution for mode 10.

pdeplot(model,'XYData',results.Eigenvectors(:,10))

5 Functions

5-134

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

u — PDE solution
vector | matrix

PDE solution, specified as a vector or matrix.
Example: u = assempde(model,c,a,f);

utimes — Times for a PDE solution
monotone vector

Times for a PDE solution, specified as a monotone vector. These times should be the same as the
tlist times that you specified for the solution by the hyperbolic or parabolic solvers.
Example: utimes = 0:0.2:5;

eigenvectors — Eigenvector solution
matrix

 createPDEResults

5-135

Eigenvector solution, specified as a matrix. Suppose

• Np is the number of mesh nodes
• N is the number of equations
• ev is the number of eigenvalues specified in eigenvalues

Then eigenvectors has size Np-by-N-by-ev. Each column of eigenvectors corresponds to the
eigenvectors of one eigenvalue. In each column, the first Np elements correspond to the eigenvector
of equation 1 evaluated at the mesh nodes, the next Np elements correspond to equation 2, and so on.

eigenvalues — Eigenvalue solution
vector

Eigenvalue solution, specified as a vector.

Output Arguments
results — PDE solution
StationaryResults object (default) | TimeDependentResults object | EigenResults object

PDE solution, specified as a StationaryResults object, a TimeDependentResults object, or an
EigenResults object. Create results using solvepde, solvepdeeig, or createPDEResults.
Example: results = solvepde(model)

Tips
• Dimensions of the returned solutions and gradients are the same as those returned by solvepde

and solvepdeeig. For details, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-
329.

Algorithms
The procedure for evaluating gradients at nodal locations is as follows:

1 Calculate the gradients at the Gauss points located inside each element.
2 Extrapolate the gradients at the nodal locations.
3 Average the value of the gradient from all elements that meet at the nodal point. This step is

needed because of the inter-element discontinuity of gradients. The elements that connect at the
same nodal point give different extrapolated values of the gradient for the point.
createPDEResults performs area-weighted averaging for 2-D meshes and volume-weighted
averaging for 3-D meshes.

5 Functions

5-136

See Also
interpolateSolution | evaluateGradient | StationaryResults | TimeDependentResults |
EigenResults

Topics
“Linear Elasticity Equations” on page 3-146

Introduced in R2015b

 createPDEResults

5-137

csgdel
Delete boundaries between subdomains

Syntax
[dl1,bt1] = csgdel(dl,bt,bl)
[dl1,bt1] = csgdel(dl,bt)

Description
[dl1,bt1] = csgdel(dl,bt,bl) deletes the boundaries between subdomains specified in bl. If
deleting the boundaries in bl makes the decomposed geometry matrix inconsistent, then csgdel
deletes additional border segments (edge segments between subdomains) to preserve consistency.

Deleting boundaries typically changes the edge IDs of the remaining boundaries.

csgdel does not delete boundary segments (outer boundaries).

[dl1,bt1] = csgdel(dl,bt) deletes all boundaries between subdomains.

Examples

Delete Edges to Merge Faces of 2-D Geometry

Delete edges in a 2-D geometry created in the PDE Modeler app and exported to the MATLAB
workspace.

Create a geometry in the PDE Modeler app by entering the following commands in the MATLAB
Command Window:

pdecirc(0,0,1,'C1')
pdecirc(0,0,0.5,'C2')
pderect([-0.2 0.2 0.2 0.9],'R1')
pderect([0 1 0 1],'SQ1')

Reduce the geometry to the first quadrant by intersecting it with a square. To do this, enter
(C1+C2+R1)*SQ1 in the Set formula field.

From the PDE Modeler app, export the geometry description matrix, set formula, and name-space
matrix to the MATLAB workspace by selecting Export Geometry Description, Set Formula,
Labels from the Draw menu.

In the MATLAB Command Window, use the decsg function to decompose the exported geometry into
minimal regions. This creates an AnalyticGeometry object dl. Plot dl.

[dl,bt] = decsg(gd,sf,ns);
pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
xlim([-0.1 1.1])
ylim([-0.1 1.1])

5 Functions

5-138

Remove edges 1, 2, and 13 using the csgdel function. Specify the edges to delete as a vector of edge
IDs. Plot the resulting geometry.

[dl1,bt1] = csgdel(dl,bt,[1 2 13]);
pdegplot(dl1,'EdgeLabels','on','FaceLabels','on')
xlim([-0.1 1.1])
ylim([-0.1 1.1])

 csgdel

5-139

Now remove all boundaries between subdomains and plot the resulting geometry.

[dl1,bt1] = csgdel(dl,bt);
pdegplot(dl1,'EdgeLabels','on','FaceLabels','on')
xlim([-0.1 1.1])
ylim([-0.1 1.1])

5 Functions

5-140

Input Arguments
dl — Decomposed geometry matrix
matrix of double-precision numbers

Decomposed geometry matrix, returned as a matrix of double-precision numbers. It contains a
representation of the decomposed geometry in terms of disjointed minimal regions constructed by the
decsg algorithm. Each edge segment of the minimal regions corresponds to a column in dl. Edge
segments between minimal regions (subdomains) are border segments. Outer boundaries are
boundary segments. In each column, the second and third rows contain the starting and ending x-
coordinates. The fourth and fifth rows contain the corresponding y-coordinates. The sixth and seventh
rows contain left and right minimal region labels with respect to the direction induced by the start
and end points (counterclockwise direction on circle and ellipse segments). There are three types of
possible edge segments in a minimal region:

• For circle edge segments, the first row is 1. The eighth and ninth rows contain the coordinates of
the center of the circle. The 10th row contains the radius.

• For line edge segments, the first row is 2.
• For ellipse edge segments, the first row is 4. The eighth and ninth rows contain the coordinates of

the center of the ellipse. The 10th and 11th rows contain the semiaxes of the ellipse. The 12th row
contains the rotational angle of the ellipse.

All columns in a decomposed geometry matrix have the same number of rows. Rows that are not
required for a particular shape are filled with zeros.

 csgdel

5-141

Row number Circle edge segment Line edge segment Ellipse edge segment
1 1 2 4
2 starting x-coordinate starting x-coordinate starting x-coordinate
3 ending x-coordinate ending x-coordinate ending x-coordinate
4 starting y-coordinate starting y-coordinate starting y-coordinate
5 ending y-coordinate ending y-coordinate ending y-coordinate
6 left minimal region label left minimal region label left minimal region label
7 right minimal region

label
right minimal region
label

right minimal region
label

8 x-coordinate of the
center

 x-coordinate of the
center

9 y-coordinate of the
center

 y-coordinate of the
center

10 radius of the circle x-semiaxis before
rotation

11 y-semiaxis before
rotation

12 Angle in radians
between x-axis and first
semiaxis

Data Types: double

bt — Boolean table relating original shapes to minimal regions
matrix of 1s and 0s

Boolean table relating the original shapes to the minimal regions, returned as a matrix of 1s and 0s.
Data Types: double

bl — Boundaries to delete
positive integer | vector of positive integers

Boundaries to delete, specified as a positive integer or a vector of positive integers. Each integer
represents a boundary ID.
Data Types: double

Output Arguments
dl1 — Modified decomposed geometry matrix
matrix of double-precision numbers

Modified decomposed geometry matrix, returned as a matrix of double-precision numbers.
Data Types: double

bt1 — Boolean table relating remaining original shapes to minimal regions
matrix of 1s and 0s

5 Functions

5-142

Boolean table relating the remaining original shapes to the minimal regions, returned as a matrix of
1s and 0s.
Data Types: double

See Also
decsg

Introduced before R2006a

 csgdel

5-143

decsg
Decompose constructive solid 2-D geometry into minimal regions

Syntax
dl = decsg(gd,sf,ns)
dl = decsg(gd)
[dl,bt] = decsg(___)

Description
dl = decsg(gd,sf,ns) decomposes the geometry description matrix gd into the geometry matrix
dl and returns the minimal regions that satisfy the set formula sf. The name-space matrix ns is a
text matrix that relates the columns in gd to variable names in sf.

Typically, you draw a geometry in the PDE Modeler app, then export it to the MATLAB Command
Window by selecting Export Geometry Description, Set Formula, Labels from the Draw menu in
the app. The resulting geometry description matrix gd represents the CSG model. decsg analyzes the
model and constructs a set of disjointed minimal regions bounded by boundary segments and border
segments. This set of minimal regions constitutes the decomposed geometry and allows other Partial
Differential Equation Toolbox functions to work with the geometry.

Alternatively, you can use the decsg function when creating a geometry without using the app. See
“2-D Geometry Creation at Command Line” on page 2-4 for details.

To return all minimal regions (sf corresponds to the union of all shapes in gd), use the shorter syntax
dl = decsg(gd).

[dl,bt] = decsg(___) returns a Boolean table (matrix) that relates the original shapes to the
minimal regions. A column in bt corresponds to the column with the same index in gd. A row in bt
corresponds to the index of a minimal region. You can use bt to remove boundaries between
subdomains.

Examples

Decompose Geometry Created in PDE Modeler App

Create a 2-D geometry in the PDE Modeler app, then export it to the MATLAB workspace and
decompose it to minimal regions by using decsg.

Start the PDE Modeler app and draw a unit circle and a unit square.

pdecirc(0,0,1)
pderect([0 1 0 1])

Enter C1-SQ1 in the Set formula field.

Export the geometry description matrix, set formula, and name-space matrix to the MATLAB
workspace by selecting the Export Geometry Description option from the Draw menu.

5 Functions

5-144

Decompose the exported geometry into minimal regions. The result is one minimal region with five
edge segments: three circle edge segments and two line edge segments.

dl = decsg(gd,sf,ns)

dl =
 2.0000 2.0000 1.0000 1.0000 1.0000
 0 0 -1.0000 0.0000 0.0000
 1.0000 0 0.0000 1.0000 -1.0000
 0 1.0000 -0.0000 -1.0000 1.0000
 0 0 -1.0000 0 -0.0000
 0 0 1.0000 1.0000 1.0000
 1.0000 1.0000 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 1.0000 1.0000 1.0000

View the geometry. Display the edge labels and the face labels.

pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
axis equal

For comparison, decompose the same geometry without specifying the set formula sf and the name-
space matrix ns. This syntax returns the union of all shapes in the geometry gd.

dl_all = decsg(gd)

dl_all =
 2.0000 2.0000 2.0000 2.0000 1.0000 1.0000 1.0000 1.0000
 0 1.0000 1.0000 0 -1.0000 0.0000 1.0000 0.0000
 1.0000 1.0000 0 0 0.0000 1.0000 0.0000 -1.0000

 decsg

5-145

 0 0 1.0000 1.0000 -0.0000 -1.0000 0 1.0000
 0 1.0000 1.0000 0 -1.0000 0 1.0000 -0.0000
 3.0000 2.0000 2.0000 3.0000 1.0000 1.0000 3.0000 1.0000
 1.0000 0 0 1.0000 0 0 2.0000 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 1.0000 1.0000 1.0000 1.0000

View the resulting geometry.

pdegplot(dl_all,'EdgeLabels','on','FaceLabels','on')
axis equal

Remove Boundaries Between Subdomains

Start the PDE Modeler app and draw a unit circle and a unit square.

pdecirc(0,0,1)
pderect([0 1 0 1])

Enter C1+SQ1 in the Set formula field.

Export the Geometry Description matrix, set formula, and Name Space matrix to the MATLAB
workspace by selecting the Export Geometry Description option from the Draw menu.

Decompose the exported geometry into minimal regions. Because the geometry is a union of all
regions, C1+SQ1, you can omit the arguments specifying the set formula and name-space matrix
when using decsg.

[dl,bt] = decsg(gd)

5 Functions

5-146

dl =
 2.0000 2.0000 2.0000 2.0000 1.0000 1.0000 1.0000 1.0000
 0 1.0000 1.0000 0 -1.0000 0.0000 1.0000 0.0000
 1.0000 1.0000 0 0 0.0000 1.0000 0.0000 -1.0000
 0 0 1.0000 1.0000 -0.0000 -1.0000 0 1.0000
 0 1.0000 1.0000 0 -1.0000 0 1.0000 -0.0000
 3.0000 2.0000 2.0000 3.0000 1.0000 1.0000 3.0000 1.0000
 1.0000 0 0 1.0000 0 0 2.0000 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 1.0000 1.0000 1.0000 1.0000

bt =
 1 0
 0 1
 1 1

View the geometry. Display the edge labels and the face labels.

pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
axis equal

Remove the subdomain boundaries by using the csgdel function.

[dl2,bt2] = csgdel(dl,bt);

View the resulting geometry.

figure
pdegplot(dl2,'EdgeLabels','on','FaceLabels','on')
axis equal

 decsg

5-147

Input Arguments
gd — Geometry description matrix
matrix of double-precision numbers

Geometry description matrix, specified as a matrix of double-precision numbers. The number of
columns corresponds to the number of shapes used to construct the geometry. Each column in the
geometry description matrix corresponds to a shape in the CSG model. The model supports four types
of shapes:

• For a circle, the first row contains 1. The second and third rows contain the x- and y-coordinates of
the center. The fourth row contains the radius of the circle.

• For a polygon, the first row contains 2. The second row contains n, which is the number of line
segments in the boundary of the polygon. The next n rows contain the x-coordinates of the starting
points of the edges, and the n rows after that contain the y-coordinates of the starting points of
the edges.

• For a rectangle, the first row contains 3, and the second row contains 4. The next four rows
contain the x-coordinates of the starting points of the edges, and the four rows after that contain
the y-coordinates of the starting points of the edges.

• For an ellipse, the first row contains 4. The second and third rows contain the x- and y-coordinates
of the center. The fourth and fifth rows contain the semiaxes of the ellipse. The sixth row contains
the rotational angle of the ellipse, measured in radians.

All shapes in a geometry description matrix have the same number of rows. Rows that are not
required for a particular shape are filled with zeros.

5 Functions

5-148

When you export geometry from the PDE Modeler app by selecting Export Geometry Description,
Set Formula, Labels from the Draw menu in the app, you can use any variable name for the
exported geometry description matrix in the MATLAB workspace. The default name is gd.
Data Types: double

sf — Set formula
character vector | string scalar

Set formula, specified as a character vector or a string including the names of shapes, such as C1,
SQ2, E3, and the operators +, *, and - corresponding to the set operations union, intersection, and
set difference, respectively. The operators + and * have the same precedence. The operator - has a
higher precedence. You can control the precedence by using parentheses.

When you export geometry from the PDE Modeler app by selecting Export Geometry Description,
Set Formula, Labels from the Draw menu in the app, you can use any variable name for the formula
in the MATLAB workspace. The default name is sf.
Example: '(SQ1+C1)-C2'
Data Types: char | string

ns — Name-space matrix
matrix of double-precision numbers

Name-space matrix, specified as a matrix of double-precision numbers. The number of columns
corresponds to the number of shapes used to construct the geometry. Each column in ns contains a
sequence of characters padded with spaces. Each character column assigns a name to the
corresponding geometric object in gd, so you can refer to a specific object in gd in the set formula
sf.

When you export geometry from the PDE Modeler app by selecting Export Geometry Description,
Set Formula, Labels from the Draw menu in the app, you can use any variable name for the name-
space matrix in the MATLAB workspace. The default name is ns.
Data Types: double

Output Arguments
dl — Decomposed geometry matrix
matrix of double-precision numbers

Decomposed geometry matrix, returned as a matrix of double-precision numbers. It contains a
representation of the decomposed geometry in terms of disjointed minimal regions constructed by the
decsg algorithm. Each edge segment of the minimal regions corresponds to a column in dl. Edge
segments between minimal regions are border segments. Outer boundaries are boundary segments.
In each column, the second and third rows contain the starting and ending x-coordinates. The fourth
and fifth rows contain the corresponding y-coordinates. The sixth and seventh rows contain left and
right minimal region labels with respect to the direction induced by the start and end points
(counterclockwise direction on circle and ellipse segments). There are three types of possible edge
segments in a minimal region:

• For circle edge segments, the first row is 1. The eighth and ninth rows contain the coordinates of
the center of the circle. The 10th row contains the radius.

 decsg

5-149

• For line edge segments, the first row is 2.
• For ellipse edge segments, the first row is 4. The eighth and ninth rows contain the coordinates of

the center of the ellipse. The 10th and 11th rows contain the semiaxes of the ellipse. The 12th row
contains the rotational angle of the ellipse.

All shapes in a decomposed geometry matrix have the same number of rows. Rows that are not
required for a particular shape are filled with zeros.

Row number Circle edge segment Line edge segment Ellipse edge segment
1 1 2 4
2 starting x-coordinate starting x-coordinate starting x-coordinate
3 ending x-coordinate ending x-coordinate ending x-coordinate
4 starting y-coordinate starting y-coordinate starting y-coordinate
5 ending y-coordinate ending y-coordinate ending y-coordinate
6 left minimal region label left minimal region label left minimal region label
7 right minimal region

label
right minimal region
label

right minimal region
label

8 x-coordinate of the
center

 x-coordinate of the
center

9 y-coordinate of the
center

 y-coordinate of the
center

10 radius of the circle x-semiaxis before
rotation

11 y-semiaxis before
rotation

12 Angle in radians
between x-axis and first
semiaxis

Data Types: double

bt — Boolean table relating original shapes to minimal regions
matrix of 1s and 0s

Boolean table relating the original shapes to the minimal regions, returned as a matrix of 1s and 0s.
Data Types: double

Limitations
• In rare cases decsg can error or create an invalid geometry because of the limitations of its

algorithm. Such issues can occur when two or more edges of a geometry partially overlap, almost
coincide, or are almost tangent.

5 Functions

5-150

Tips
• decsg does not check the input CSG model for correctness. It assumes that no circles or ellipses

are identical or degenerated and that no lines have zero length. Polygons must not be self-
intersecting.

• decsg returns NaN if it cannot evaluate the set formula sf.

See Also
geometryFromEdges | csgdel | wgeom | pdecirc | pdeellip | pdepoly | pderect | PDE
Modeler

Topics
“2-D Geometry Creation at Command Line” on page 2-4

Introduced before R2006a

 decsg

5-151

DiscreteGeometry Properties
Discrete 2-D or 3-D geometry description

Description
DiscreteGeometry describes a 2-D or 3-D geometry in the form of a discrete geometry object.
PDEModel, StructuralModel, and ThermalModel objects have a Geometry property, which can be
an AnalyticGeometry or DiscreteGeometry object.

Create a discrete geometry for your model by using one of the following approaches:

• Use importGeometry to import a 2-D or 3-D geometry from an STL file and attach it to the
model.

• Use geometryFromMesh to reconstruct a 2-D or 3-D geometry from mesh and attach it to the
model.

• Use multicuboid, multicylinder, or multisphere to create a 3-D geometry. Then assign the
resulting geometry to the Geometry property of the model. For example, create a PDE model and
add the following geometry formed by three spheres to the model.

model = createpde;
gm = multisphere([1,2,3]);
model.Geometry = gm;

• Use extrude to create a 3-D geometry by vertically extruding a 2-D geometry.

Properties
Properties

NumCells — Number of geometry cells
nonnegative integer

Number of geometry cells, returned as a nonnegative integer.
Data Types: double

NumEdges — Number of geometry edges
nonnegative integer

Number of geometry edges, returned as a nonnegative integer.
Data Types: double

NumFaces — Number of geometry faces
positive integer

Number of geometry faces, returned as a positive integer.
Data Types: double

NumVertices — Number of geometry vertices
nonnegative integer

5 Functions

5-152

Number of geometry vertices, returned as a nonnegative integer.
Data Types: double

Vertices — Coordinates of geometry vertices
N-by-2 numeric matrix | N-by-3 numeric matrix

Coordinates of geometry vertices, specified as an N-by-2 or N-by-3 numeric matrix for a 2-D or 3-D
geometry, respectively. Here, N is the number of vertices.
Data Types: double

See Also
addFace | addVertex | geometryFromMesh | importGeometry | multicuboid | multicylinder
| multisphere | PDEModel | StructuralModel | ThermalModel | AnalyticGeometry Properties

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

 DiscreteGeometry Properties

5-153

dst
(Not recommended) Discrete sine transform

Note dst is not recommended.

Syntax
y = dst(x)
y = dst(x,n)

Description
y = dst(x) computes the discrete sine transform of x according to the equation

y(k) = ∑
n = 1

N
x(n)sin π kn

N + 1 , k = 1, ..., N

If x is a matrix, then dst applies to each column. For best performance, the number of rows in x must
be 2m – 1, where m is an integer.

y = dst(x,n) truncates the vector x or pads it with trailing zeros to length n before computing the
transform. If x is a matrix, then dst truncates or pads each column.

Examples

Discrete Sine Transform

Find the discrete sine transform of the exponential by using dst, and then invert the result by using
idst.

Create a time vector sampled in increments of 0.1 second over a period of 10 seconds.

Ts = 0.1;
t = 0:Ts:10;

Compute and plot the exponential signal.

x = exp(t);
plot(t,x)
xlabel('Time (seconds)')
ylabel('Amplitude')

5 Functions

5-154

Compute the discrete sign transform of the signal, and create the vector f that corresponds to the
sampling of the signal in frequency space.

y = dst(x);
fs = 1/Ts;
f = (0:length(y)-1)*fs/length(y);
plot(f,y)
xlabel('Frequency (Hz)')
ylabel('Magnitude')

 dst

5-155

Compute the inverse discrete sine transform of y, and plot the result.

z = idst(y);
figure
plot(t,z)
xlabel('Time (seconds)')
ylabel('Amplitude')

5 Functions

5-156

Input Arguments
x — Input array
vector | matrix

Input array, specified as a vector or a matrix. If x is a matrix, then dst applies to each column.
Data Types: double

n — Transform length
nonnegative integer

Transform length, specified as a nonnegative integer. If x is a vector, then dst truncates it or pads it
with trailing zeros, so that the resulting vector has n elements. If x is a matrix, then dst truncates or
pads each column.
Data Types: double

Output Arguments
y — Discrete sine transform coefficients
row vector | matrix

Discrete sine transform coefficients, returned as a vector or matrix of the same size as x.

 dst

5-157

See Also
idst

Introduced before R2006a

5 Functions

5-158

idst
(Not recommended) Invert discrete sine transform

Note idst is not recommended.

Syntax
x = idst(y)
x = idst(y,n)

Description
x = idst(y) computes the inverse discrete sine transform of y according to the equation

x(k) = 2
N + 1 ∑n = 1

N
y(n)sin π kn

N + 1 , k = 1, ..., N

If y is a matrix, idst applies to each column. For best performance, the number of rows in y must be
2m – 1, where m is an integer.

x = idst(y,n) truncates the vector y or pads it with zeros to length n before computing the
transform.

Examples

Discrete Sine Transform

Find the discrete sine transform of the exponential by using dst, and then invert the result by using
idst.

Create a time vector sampled in increments of 0.1 second over a period of 10 seconds.

Ts = 0.1;
t = 0:Ts:10;

Compute and plot the exponential signal.

x = exp(t);
plot(t,x)
xlabel('Time (seconds)')
ylabel('Amplitude')

 idst

5-159

Compute the discrete sign transform of the signal, and create the vector f that corresponds to the
sampling of the signal in frequency space.

y = dst(x);
fs = 1/Ts;
f = (0:length(y)-1)*fs/length(y);
plot(f,y)
xlabel('Frequency (Hz)')
ylabel('Magnitude')

5 Functions

5-160

Compute the inverse discrete sine transform of y, and plot the result.

z = idst(y);
figure
plot(t,z)
xlabel('Time (seconds)')
ylabel('Amplitude')

 idst

5-161

Input Arguments
y — Input array
vector | matrix

Input array, specified as a vector or a matrix. If y is a matrix, then idst applies to each column.
Data Types: double

n — Transform length
nonnegative integer

Transform length, specified as a nonnegative integer. If y is a vector, then idst truncates it or pads it
with trailing zeros, so that the resulting vector has n elements. If y is a matrix, then idst truncates
or pads each column.
Data Types: double

Output Arguments
x — Inverse discrete sine transform coefficients
vector | matrix

Inverse discrete sine transform coefficients, returned as a vector or matrix of the same size as y.

5 Functions

5-162

See Also
dst

Introduced before R2006a

 idst

5-163

EigenResults
PDE eigenvalue solution and derived quantities

Description
An EigenResults object contains the solution of a PDE eigenvalue problem in a form convenient for
plotting and postprocessing.

• Eigenvector values at the nodes appear in the Eigenvectors property.
• The eigenvalues appear in the Eigenvalues property.

Creation
There are several ways to create an EigenResults object:

• Solve an eigenvalue problem using the solvepdeeig function. This function returns a PDE
eigenvalue solution as an EigenResults object. This is the recommended approach.

• Solve an eigenvalue problem using the pdeeig function. Then use the createPDEResults
function to obtain an EigenResults object from a PDE eigenvalue solution returned by pdeeig.
Note that pdeeig is a legacy function. It is not recommended for solving eigenvalue problems.

Properties
Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object.

Eigenvectors — Solution eigenvectors
matrix | 3-D array

Solution eigenvectors, returned as a matrix or 3-D array. The solution is a matrix for scalar
eigenvalue problems, and a 3-D array for eigenvalue systems. For details, see “Dimensions of
Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double

Eigenvalues — Solution eigenvalues
vector

Solution eigenvalues, returned as a vector. The vector is in order by the real part of the eigenvalues
from smallest to largest.
Data Types: double

Object Functions
interpolateSolution Interpolate PDE solution to arbitrary points

5 Functions

5-164

Examples

Results from an Eigenvalue Problem

Obtain an EigenResults object from solvepdeeig.

Create the geometry for the L-shaped membrane. Apply zero Dirichlet boundary conditions to all
edges.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Specify coefficients c = 1, a = 0, and d = 1.

specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);

Create the mesh and solve the eigenvalue problem for eigenvalues from 0 through 100.

generateMesh(model,'Hmax',0.05);
ev = [0,100];
results = solvepdeeig(model,ev)

 Basis= 10, Time= 0.11, New conv eig= 0
 Basis= 11, Time= 0.12, New conv eig= 0
 Basis= 12, Time= 0.12, New conv eig= 0
 Basis= 13, Time= 0.12, New conv eig= 0
 Basis= 14, Time= 0.12, New conv eig= 0
 Basis= 15, Time= 0.44, New conv eig= 0
 Basis= 16, Time= 0.44, New conv eig= 0
 Basis= 17, Time= 0.44, New conv eig= 0
 Basis= 18, Time= 0.44, New conv eig= 1
 Basis= 19, Time= 0.44, New conv eig= 1
 Basis= 20, Time= 0.44, New conv eig= 1
 Basis= 21, Time= 0.48, New conv eig= 1
 Basis= 22, Time= 0.48, New conv eig= 3
 Basis= 23, Time= 0.48, New conv eig= 3
 Basis= 24, Time= 0.48, New conv eig= 4
 Basis= 25, Time= 0.48, New conv eig= 5
 Basis= 26, Time= 0.50, New conv eig= 6
 Basis= 27, Time= 0.50, New conv eig= 6
 Basis= 28, Time= 0.50, New conv eig= 6
 Basis= 29, Time= 0.50, New conv eig= 7
 Basis= 30, Time= 0.53, New conv eig= 7
 Basis= 31, Time= 0.53, New conv eig= 10
 Basis= 32, Time= 0.53, New conv eig= 10
 Basis= 33, Time= 0.53, New conv eig= 11
 Basis= 34, Time= 0.53, New conv eig= 11
 Basis= 35, Time= 0.84, New conv eig= 14
 Basis= 36, Time= 0.84, New conv eig= 14
 Basis= 37, Time= 0.84, New conv eig= 14
 Basis= 38, Time= 0.84, New conv eig= 14
 Basis= 39, Time= 0.86, New conv eig= 14
 Basis= 40, Time= 0.86, New conv eig= 14
 Basis= 41, Time= 0.86, New conv eig= 15

 EigenResults

5-165

 Basis= 42, Time= 0.86, New conv eig= 15
 Basis= 43, Time= 0.95, New conv eig= 15
 Basis= 44, Time= 0.95, New conv eig= 16
 Basis= 45, Time= 0.98, New conv eig= 16
 Basis= 46, Time= 0.98, New conv eig= 16
 Basis= 47, Time= 0.98, New conv eig= 16
 Basis= 48, Time= 1.02, New conv eig= 17
 Basis= 49, Time= 1.02, New conv eig= 18
 Basis= 50, Time= 1.02, New conv eig= 18
 Basis= 51, Time= 1.05, New conv eig= 18
 Basis= 52, Time= 1.05, New conv eig= 18
 Basis= 53, Time= 1.19, New conv eig= 18
 Basis= 54, Time= 1.19, New conv eig= 21
End of sweep: Basis= 54, Time= 1.19, New conv eig= 21
 Basis= 31, Time= 1.80, New conv eig= 0
 Basis= 32, Time= 1.80, New conv eig= 0
 Basis= 33, Time= 1.80, New conv eig= 0
End of sweep: Basis= 33, Time= 2.09, New conv eig= 0

results =
 EigenResults with properties:

 Eigenvectors: [5597x19 double]
 Eigenvalues: [19x1 double]
 Mesh: [1x1 FEMesh]

Plot the solution for mode 10.

pdeplot(model,'XYData',results.Eigenvectors(:,10))

5 Functions

5-166

See Also
solvepdeeig | StationaryResults | TimeDependentResults

Topics
“Eigenvalues and Eigenmodes of L-Shaped Membrane” on page 3-278
“Eigenvalues and Eigenmodes of Square” on page 3-290
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

 EigenResults

5-167

ElectromagneticModel
Electromagnetic model object

Description
An ElectromagneticModel object contains information about an electromagnetic analysis problem:
the geometry, material properties, electromagnetic sources, boundary conditions, and mesh.

Creation
To create a ElectromagneticModel object, use the createpde function and specify
'electromagnetic' as its first argument .

Properties
AnalysisType — Type of electromagnetic analysis
'electrostatic' | 'magnetostatic' | 'electrostatic-axisymmetric' | 'magnetostatic-
axisymmetric'

Type of electromagnetic analysis, returned as 'electrostatic', 'magnetostatic',
'electrostatic-axisymmetric', or 'magnetostatic-axisymmetric'.

Geometry — Geometry description
AnalyticGeometry | DiscreteGeometry

Geometry description, returned as an AnalyticGeometry or DiscreteGeometry object.

MaterialProperties — Material properties within domain
object containing material property assignments

Material properties within the domain, returned as an object containing the material property
assignments.

Sources — Electromagnetic sources within the domain or subdomain
object containing heat source assignments

Electromagnetic source within the domain or subdomain, returned as an object containing
electromagnetic source assignments.

BoundaryConditions — Boundary conditions applied to geometry
object containing boundary condition assignments

Boundary conditions applied to the geometry, returned as an object containing the boundary
condition assignments.

VacuumPermittivity — Permittivity of vacuum for entire model
number

5 Functions

5-168

Permittivity of vacuum for the entire model, returned as a number. This value must be consistent with
the units of the model. If the model parameters are in the SI system of units, then the permittivity of
vacuum must be 8.8541878128E-12.

VacuumPermeability — Permeability of vacuum for entire model
number

Permeability of vacuum for the entire model, returned as a number. This value must be consistent
with the units of the model. If the model parameters are in the SI system of units, then the
permeability of vacuum must be 1.2566370614E-6.

Mesh — Mesh for solution
FEMesh object

Mesh for the solution, returned as a FEMesh object. See FEMesh. You create the mesh using the
generateMesh function. For a 3-D magnetostatic model, the mesh must be linear.

SolverOptions — Algorithm options for PDE solvers
PDESolverOptions object

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of a
PDESolverOptions object include absolute and relative tolerances for internal ODE solvers,
maximum solver iterations, and so on. For details, see PDESolverOptions.

Object Functions
geometryFromEdges Create 2-D geometry from decomposed geometry matrix
geometryFromMesh Create 2-D or 3-D geometry from mesh
importGeometry Import 2-D or 3-D geometry from STL data
generateMesh Create triangular or tetrahedral mesh
electromagneticProperties Assign properties of material for electromagnetic model
electromagneticSource Specify current density or charge density for electromagnetic model
electromagneticBC Apply boundary conditions to electromagnetic model
solve Solve heat transfer, structural analysis, or electromagnetic analysis

problem

Examples

Create Electromagnetic Model

Create a model for electrostatic analysis.

emagE = createpde('electromagnetic','electrostatic')

emagE =
 ElectromagneticModel with properties:

 AnalysisType: 'electrostatic'
 Geometry: []
 MaterialProperties: []
 Sources: []
 BoundaryConditions: []
 VacuumPermittivity: []

 ElectromagneticModel

5-169

 Mesh: []

Create an axisymmetric model for magnetostatic analysis. An axisymmetric model simplifies a 3-D
problem to a 2-D problem using symmetry around the axis of rotation.

emagMA = createpde('electromagnetic','magnetostatic-axisymmetric')

emagMA =
 ElectromagneticModel with properties:

 AnalysisType: 'magnetostatic-axisymmetric'
 Geometry: []
 MaterialProperties: []
 Sources: []
 BoundaryConditions: []
 VacuumPermeability: []
 Mesh: []

See Also
electromagneticProperties | electromagneticSource | electromagneticBC | solve

Introduced in R2021a

5 Functions

5-170

electromagneticBC
Package: pde

Apply boundary conditions to electromagnetic model

Syntax
electromagneticBC(emagmodel,RegionType,RegionID,'Voltage',V)
electromagneticBC(emagmodel,RegionType,RegionID,'MagneticPotential',A)
electromagneticBC(___ ,'Vectorized','on')
emagBC = electromagneticBC(___)

Description
electromagneticBC(emagmodel,RegionType,RegionID,'Voltage',V) adds a voltage
boundary condition to emagmodel. The boundary condition applies to regions of type RegionType
with ID numbers in RegionID.

electromagneticBC(emagmodel,RegionType,RegionID,'MagneticPotential',A) adds a
magnetic potential boundary condition to emagmodel. The boundary condition applies to regions of
type RegionType with ID numbers in RegionID.

electromagneticBC(___ ,'Vectorized','on') uses vectorized function evaluation when you
pass a function handle as an argument. If your function handle computes in a vectorized fashion, then
using this argument saves time. See “Vectorization”. For details on this evaluation, see “More About”
on page 5-174.

Use this syntax with any of the input arguments from previous syntaxes.

emagBC = electromagneticBC(___) returns the electromagnetic boundary condition object.

Examples

Specify Voltage on Boundaries

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

gm = importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.3)

 electromagneticBC

5-171

Apply the voltage boundary condition on the side faces of the geometry.

bc1 = electromagneticBC(emagmodel,'Voltage',0,'Face',3:6)

bc1 =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Face'
 RegionID: [3 4 5 6]
 Voltage: 0
 MagneticPotential: []
 Vectorized: 'off'

Apply the voltage boundary condition on the face bordering the hole.

bc2 = electromagneticBC(emagmodel,'Voltage',1000,'Face',7)

bc2 =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Face'
 RegionID: 7
 Voltage: 1000
 MagneticPotential: []
 Vectorized: 'off'

5 Functions

5-172

Specify Magnetic Potential on Boundary

Apply a magnetic potential boundary condition on the boundary of a circle.

emagmodel = createpde('electromagnetic','magnetostatic');
geometryFromEdges(emagmodel,@circleg);
electromagneticBC(emagmodel,'Edge',1,'MagneticPotential',0)

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Edge'
 RegionID: 1
 Voltage: []
 MagneticPotential: 0
 Vectorized: 'off'

Specify Nonconstant Voltage on Boundary

Use a function handle to specify a boundary condition that depends on the coordinates.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create the geometry and include it in the model.

geometryFromEdges(emagmodel,@circleg);

Specify the electrostatic potential at the boundary using the function V x, y = x2.

bc = @(location,~)location.x.^2;
electromagneticBC(emagmodel,'Edge',1:emagmodel.Geometry.NumEdges, ...
 'Voltage',bc)

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Edge'
 RegionID: [1 2 3 4]
 Voltage: @(location,~)location.x.^2
 MagneticPotential: []
 Vectorized: 'off'

Input Arguments
emagmodel — Electromagnetic model
ElectromagneticModel object

 electromagneticBC

5-173

Electromagnetic model, specified as an ElectromagneticModel object. The model contains a
geometry, a mesh, electromagnetic properties of the materials, the electromagnetic sources, and the
boundary conditions.
Example: emagmodel = createpde('electromagnetic','electrostatic')

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: electromagneticBC(emagmodel,'Edge',1,'Voltage',100)
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the edge or face IDs by using pdegplot
with the 'EdgeLabels' or 'FaceLabels' name-value argument set to 'on'.
Data Types: double

V — Voltage
real number | function handle

Voltage, specified as a real number or a function handle. Use a function handle to specify a voltage
that depends on the coordinates. For details, see “More About” on page 5-174.
Data Types: double | function_handle

A — Magnetic potential
real number | column vector of 3 elements | function handle

Magnetic potential, specified as a real number, a column vector of 3 elements for a 3-D model, or a
function handle. Use a function handle to specify the magnetic potential that depends on the
coordinates. For details, see “More About” on page 5-174.
Data Types: double | function_handle

Output Arguments
emagBC — Handle to electromagnetic boundary condition
ElectromagneticBCAssignment object

Handle to the electromagnetic boundary condition, returned as an
ElectromagneticBCAssignment object. For more information, see ElectromagneticBCAssignment
Properties.

More About
Specifying Nonconstant Parameters of Electromagnetic Model

In Partial Differential Equation Toolbox, use a function handle to specify these electromagnetic
parameters when they depend on the coordinates:

5 Functions

5-174

• Relative permittivity of the material
• Relative permeability of the material
• Charge density as source
• Current density as source
• Voltage at the boundary
• Magnetic potential at the boundary

For example, use function handles to specify the relative permittivity, charge density, and voltage at
the boundary for this model.

electromagneticProperties(emagmodel, ...
 'RelativePermittivity', ...
 @myfunPermittivity)
electromagneticSource(emagmodel, ...
 'ChargeDensity',@myfunCharge, ...
 'Face',2)
electromagneticBC(emagmodel, ...
 'Voltage',@myfunBC, ...
 'Edge',2)

The function must be of the form:

function emagVal = myfun(location,~)

The solver computes and populates the data in the location structure array and passes this data to
your function. You can define your function so that its output depends on this data. You can use any
name instead of location. To use additional arguments in your function, wrap your function (that
takes additional arguments) with an anonymous function that takes only the location argument. For
example:

emagVal = @(location,~) myfunWithAdditionalArgs(location,arg1,arg2...)
electromagneticBC(model,'Edge',3,'Voltage',emagVal)

If you call electromagneticBC with Vectorized set to 'on', then location can contain several
evaluation points. If you do not set Vectorized or use Vectorized,'off', then solvers pass just
one evaluation point in each call.

The location data is a structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Electromagnetic material properties (relative permittivity or relative permeability) and
electromagnetic source (charge density or current density) get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

Boundary conditions (voltage or magnetic potential on the boundary) get these data from the solver:

• location.x, location.y, location.z, location.r

 electromagneticBC

5-175

• location.nx, location.ny, location.nz, location.nr

For the nonconstant relative permittivity, relative permeability, and charge density, the output
returned by the function handle must be of size 1-by-Np, where Np = numel(location.x) is the
number of points.

For the nonconstant current density and magnetic potential on the boundary, the output returned by
the function handle must be of size 1-by-Np for a 2-D problem and 3-by-Np for a 3-D problem.

See Also
ElectromagneticModel | ElectromagneticBCAssignment Properties | createpde |
electromagneticSource | solve | assembleFEMatrices | electromagneticProperties

Introduced in R2021a

5 Functions

5-176

ElectromagneticBCAssignment Properties
Boundary condition for electromagnetic model

Description
An ElectromagneticBCAssignment object specifies the type of PDE boundary condition on a set of
geometry boundaries. An ElectromagneticModel object contains an array of
ElectromagneticBCAssignment objects in its BoundaryConditions.BCAssignments property.

Specify boundary conditions for your model using the electromagneticBC function.

Properties
Properties

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, returned as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. Find the edge or face IDs by using pdegplot
with the 'EdgeLabels' or 'FaceLabels' name-value argument set to 'on'.
Data Types: double

Voltage — Voltage boundary condition
real number | function handle

Voltage boundary condition, returned as a real number or a function handle. Use a function handle to
specify a voltage that depends on the coordinates.
Data Types: double | function_handle

MagneticPotential — Magnetic potential boundary condition
real number | function handle

Magnetic potential boundary condition, returned as a real number or a function handle. Use a
function handle to specify a magnetic potential that depends on the coordinates.
Data Types: double | function_handle

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, returned as 'off' or 'on'. This property applies when you pass a
function handle as an argument. To save time in the function handle evaluation, specify 'on' if your

 ElectromagneticBCAssignment Properties

5-177

function handle computes in a vectorized fashion. See “Vectorization”. For details on vectorized
function evaluation, see “Nonconstant Boundary Conditions” on page 2-116.
Data Types: char | string

See Also
ElectromagneticModel | electromagneticBC

Introduced in R2021a

5 Functions

5-178

electromagneticProperties
Package: pde

Assign properties of material for electromagnetic model

Syntax
electromagneticProperties(emagmodel,'RelativePermittivity',epsilon)
electromagneticProperties(emagmodel,'RelativePermeability',mu)
electromagneticProperties(___ ,RegionType,RegionID)
mtl = electromagneticProperties(___)

Description
electromagneticProperties(emagmodel,'RelativePermittivity',epsilon) assigns
relative permittivity epsilon to the entire geometry for an electrostatic model. Specify the
permittivity of vacuum using the electromagnetic model properties.

For a nonconstant material, specify epsilon as a function handle.

electromagneticProperties(emagmodel,'RelativePermeability',mu) assigns relative
permeability to the entire geometry for a magnetostatic model. Specify the permeability of vacuum
using the electromagnetic model properties.

For a nonconstant material, specify mu as a function handle.

electromagneticProperties(___ ,RegionType,RegionID) assigns the material properties to
specified faces of a 2-D geometry or cells of a 3-D geometry. Use this syntax with any of the input
arguments from previous syntaxes.

mtl = electromagneticProperties(___) returns the material properties object.

Examples

Specify Relative Permittivity

Specify relative permittivity for an electrostatic analysis.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot a geometry of a plate with a hole in its center.

gm = importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(gm)

 electromagneticProperties

5-179

Specify the vacuum permittivity value in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

mtl = electromagneticProperties(emagmodel,'RelativePermittivity',2.25)

mtl =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 RelativePermittivity: 2.2500
 RelativePermeability: []

Specify Relative Permeability

Specify relative permeability for a magnetostatic analysis.

Create an electromagnetic model for a magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot a 2-D geometry.

5 Functions

5-180

gm = importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

mtl = electromagneticProperties(emagmodel,'RelativePermeability',5000)

mtl =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 RelativePermittivity: []
 RelativePermeability: 5000

Specify Relative Permittivity for Each Face

Specify relative permittivity for individual faces in an electrostatic model.

Create an electromagnetic model for an electrostatic analysis.

 electromagneticProperties

5-181

emagmodel = createpde('electromagnetic','electrostatic');

Create a 2-D geometry with two faces. First, import and plot a 2-D geometry representing a plate
with a hole.

gm = importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Then, fill the hole by adding a face and plot the resulting geometry.

gm = addFace(gm,5);
pdegplot(gm,'FaceLabels','on')

5 Functions

5-182

Specify the vacuum permittivity value in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify relative permittivities separately for faces 1 and 2.

electromagneticProperties(emagmodel,'RelativePermittivity',2.25, ...
 'Face',1)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 RelativePermittivity: 2.2500
 RelativePermeability: []

electromagneticProperties(emagmodel,'RelativePermittivity',1, ...
 'Face',2)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 2
 RelativePermittivity: 1
 RelativePermeability: []

 electromagneticProperties

5-183

Specify Nonconstant Relative Permittivity

Use a function handle to specify a relative permittivity that depends on the spatial coordinates.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create a square geometry and include it in the model.

geometryFromEdges(emagmodel,@squareg);

Specify the vacuum permittivity value in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material as a function of the x-coordinate, ε = 1 + x2.

perm = @(location,~)sqrt(1 + location.x.^2);
electromagneticProperties(emagmodel,'RelativePermittivity',perm)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 RelativePermittivity: @(location,~)sqrt(1+location.x.^2)
 RelativePermeability: []

Input Arguments
emagmodel — Electromagnetic model
ElectromagneticModel object

Electromagnetic model, specified as an ElectromagneticModel object. The model contains a
geometry, a mesh, the electromagnetic properties of the material, the electromagnetic sources, and
the boundary conditions.
Example: electromagneticmodel = createpde('electromagnetic','electrostatic')

epsilon — Relative permittivity
positive number | function handle

Relative permittivity, specified as a positive number or a function handle. Use a function handle to
specify a relative permittivity that depends on the coordinates. For details, see “More About” on page
5-185.
Data Types: double | function_handle

mu — Relative permeability
positive number | function handle

5 Functions

5-184

Relative permeability, specified as a positive number or a function handle. Use a function handle to
specify a relative permeability that depends on the coordinates. For details, see “More About” on
page 5-185.
Data Types: double | function_handle

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D geometry or 'Cell' for a 3-D geometry.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the face or cell IDs by using pdegplot with
the 'FaceLabels' or 'CellLabels' name-value argument set to 'on'.
Example:
electromagneticProperties(emagmodel,'RelativePermeability',5000,'Face',1:3)

Data Types: double

Output Arguments
mtl — Handle to material properties
ElectromagneticMaterialAssignment object

Handle to material properties, returned as an ElectromagneticMaterialAssignment object. For
more information, see ElectromagneticMaterialAssignment Properties.

mtl associates material properties with the geometric faces.

More About
Specifying Nonconstant Parameters of Electromagnetic Model

In Partial Differential Equation Toolbox, use a function handle to specify these electromagnetic
parameters when they depend on the coordinates:

• Relative permittivity of the material
• Relative permeability of the material
• Charge density as source
• Current density as source
• Voltage at the boundary
• Magnetic potential at the boundary

For example, use function handles to specify the relative permittivity, charge density, and voltage at
the boundary for this model.

electromagneticProperties(emagmodel, ...
 'RelativePermittivity', ...
 @myfunPermittivity)

 electromagneticProperties

5-185

electromagneticSource(emagmodel, ...
 'ChargeDensity',@myfunCharge, ...
 'Face',2)
electromagneticBC(emagmodel, ...
 'Voltage',@myfunBC, ...
 'Edge',2)

The function must be of the form:

function emagVal = myfun(location,~)

The solver computes and populates the data in the location structure array and passes this data to
your function. You can define your function so that its output depends on this data. You can use any
name instead of location. To use additional arguments in your function, wrap your function (that
takes additional arguments) with an anonymous function that takes only the location argument. For
example:

emagVal = @(location,~) myfunWithAdditionalArgs(location,arg1,arg2...)
electromagneticBC(model,'Edge',3,'Voltage',emagVal)

If you call electromagneticBC with Vectorized set to 'on', then location can contain several
evaluation points. If you do not set Vectorized or use Vectorized,'off', then solvers pass just
one evaluation point in each call.

The location data is a structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Electromagnetic material properties (relative permittivity or relative permeability) and
electromagnetic source (charge density or current density) get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

Boundary conditions (voltage or magnetic potential on the boundary) get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr

For the nonconstant relative permittivity, relative permeability, and charge density, the output
returned by the function handle must be of size 1-by-Np, where Np = numel(location.x) is the
number of points.

For the nonconstant current density and magnetic potential on the boundary, the output returned by
the function handle must be of size 1-by-Np for a 2-D problem and 3-by-Np for a 3-D problem.

See Also
ElectromagneticModel | ElectromagneticMaterialAssignment Properties | createpde |
electromagneticSource | electromagneticBC | solve | assembleFEMatrices

5 Functions

5-186

Introduced in R2021a

 electromagneticProperties

5-187

ElectromagneticMaterialAssignment Properties
Electromagnetic material properties assignments

Description
An ElectromagneticMaterialAssignment object describes the material properties of an
electromagnetic model. An ElectromagneticModel container has a vector of
ElectromagneticMaterialAssignment objects in its
MaterialProperties.MaterialAssignments property.

Create material property assignments for your electromagnetic model using the
electromagneticProperties function.

Properties
Properties

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, returned as 'Face' for a 2-D geometry or 'Cell' for a 3-D geometry.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. Find the face or cell IDs by using pdegplot with
the 'FaceLabels' or 'CellLabels' name-value argument set to 'on'.
Data Types: double

RelativePermittivity — Relative permittivity of the material
positive number | function handle

Relative permittivity of the material, returned as a positive number for constant material properties
or a function handle for a nonconstant material.
Data Types: double | function_handle

RelativePermeability — Relative permeability of the material
positive number | function handle

Relative permeability of the material, returned as a positive number for constant material properties
or a function handle for a nonconstant material.
Data Types: double | function_handle

Tips
• When there are multiple assignments to the same face, the toolbox uses the last applied setting.

5 Functions

5-188

• To avoid assigning material properties to the wrong region, ensure that you are using the correct
face IDs by plotting and visually inspecting the geometry.

See Also
ElectromagneticModel | electromagneticProperties

Introduced in R2021a

 ElectromagneticMaterialAssignment Properties

5-189

electromagneticSource
Package: pde

Specify current density or charge density for electromagnetic model

Syntax
electromagneticSource(emagmodel,'CurrentDensity',J)
electromagneticSource(emagmodel,'ChargeDensity',rho)
electromagneticSource(___ ,RegionType,RegionID)
emagSource = electromagneticSource(___)

Description
electromagneticSource(emagmodel,'CurrentDensity',J) specifies current density for a
magnetostatic model.

electromagneticSource(emagmodel,'ChargeDensity',rho) specifies charge density for an
electrostatic model.

electromagneticSource(___ ,RegionType,RegionID) specifies the current or charge density
for the specified geometry region. Use this syntax with any of the input arguments from previous
syntaxes.

emagSource = electromagneticSource(___) returns the electromagnetic source object.

Examples

Specify Current Density on Entire Geometry

Specify current density on the entire geometry for a magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');
importGeometry(emagmodel,'PlateHoleSolid.stl');
electromagneticSource(emagmodel,'CurrentDensity',[0;0;10])

ans =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 ChargeDensity: []
 CurrentDensity: [3x1 double]

Specify Charge Density on Each Face

Specify charge density on individual faces in an electrostatic analysis.

5 Functions

5-190

Create an electromagnetic model for an electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create a 2-D geometry with two faces. First, import and plot a 2-D geometry representing a plate
with a hole.

gm = importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(gm,'EdgeLabels','on','FaceLabels','on')

Then, fill the hole by adding a face and plot the resulting geometry.

gm = addFace(gm,5);
pdegplot(gm,'FaceLabels','on')

 electromagneticSource

5-191

Specify charge density values separately for faces 1 and 2.

sc1 = electromagneticSource(emagmodel,'Face',1,'ChargeDensity',0.3)

sc1 =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 ChargeDensity: 0.3000
 CurrentDensity: []

sc2 = electromagneticSource(emagmodel,'Face',2,'ChargeDensity',0.28)

sc2 =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Face'
 RegionID: 2
 ChargeDensity: 0.2800
 CurrentDensity: []

5 Functions

5-192

Specify Nonconstant Charge Density

Use a function handle to specify a charge density that depends on the coordinates.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create a unit circle geometry and include it in the model.

geometryFromEdges(emagmodel,@circleg);

Specify the charge density as a function of the x- and y-coordinates, ρ = 0 . 3 x2 + y2.

rho = @(location,~)0.3.*sqrt(location.x.^2 + location.y.^2);
electromagneticSource(emagmodel,'ChargeDensity',rho)

ans =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 ChargeDensity: @(location,~)0.3.*sqrt(location.x.^2+location.y.^2)
 CurrentDensity: []

Input Arguments
emagmodel — Electromagnetic model
ElectromagneticModel object

Electromagnetic model, specified as an ElectromagneticModel object. The model contains a
geometry, a mesh, the electromagnetic properties of the material, the electromagnetic sources, and
the boundary conditions.
Example: emagmodel = createpde('electromagnetic','electrostatic')

J — Current density
real number | column vector of 3 elements | function handle

Current density, specified as a real number, a column vector of 3 elements for a 3-D model, or a
function handle. Use a function handle to specify a current density that depends on the coordinates.

The output returned by the function handle must be 1-by-NumPoints vector for a 2-D problem and 3-
by-NumPoints for a 3-D problem. Here NumPoints is the number of points.

For details, see “More About” on page 5-194.
Data Types: double | function_handle

rho — Charge density
real number | function handle

Charge density, specified as a real number or a function handle. Use a function handle to specify a
charge density that depends on the coordinates. For details, see “More About” on page 5-194.

 electromagneticSource

5-193

Data Types: double | function_handle

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the face or cell IDs by using pdegplot with
the 'FaceLabels' or 'CellLabels' name-value argument set to 'on'.
Example: electromagneticSource(emagmodel,'CurrentDensity',10,'Face',1:3)
Data Types: double

Output Arguments
emagSource — Handle to electromagnetic source
ElectromagneticSourceAssignment object

Handle to the electromagnetic source, returned as an ElectromagneticSourceAssignment
object. For more information, see ElectromagneticSourceAssignment Properties.

More About
Specifying Nonconstant Parameters of Electromagnetic Model

In Partial Differential Equation Toolbox, use a function handle to specify these electromagnetic
parameters when they depend on the coordinates:

• Relative permittivity of the material
• Relative permeability of the material
• Charge density as source
• Current density as source
• Voltage at the boundary
• Magnetic potential at the boundary

For example, use function handles to specify the relative permittivity, charge density, and voltage at
the boundary for this model.

electromagneticProperties(emagmodel, ...
 'RelativePermittivity', ...
 @myfunPermittivity)
electromagneticSource(emagmodel, ...
 'ChargeDensity',@myfunCharge, ...
 'Face',2)
electromagneticBC(emagmodel, ...
 'Voltage',@myfunBC, ...
 'Edge',2)

5 Functions

5-194

The function must be of the form:

function emagVal = myfun(location,~)

The solver computes and populates the data in the location structure array and passes this data to
your function. You can define your function so that its output depends on this data. You can use any
name instead of location. To use additional arguments in your function, wrap your function (that
takes additional arguments) with an anonymous function that takes only the location argument. For
example:

emagVal = @(location,~) myfunWithAdditionalArgs(location,arg1,arg2...)
electromagneticBC(model,'Edge',3,'Voltage',emagVal)

If you call electromagneticBC with Vectorized set to 'on', then location can contain several
evaluation points. If you do not set Vectorized or use Vectorized,'off', then solvers pass just
one evaluation point in each call.

The location data is a structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Electromagnetic material properties (relative permittivity or relative permeability) and
electromagnetic source (charge density or current density) get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

Boundary conditions (voltage or magnetic potential on the boundary) get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr

For the nonconstant relative permittivity, relative permeability, and charge density, the output
returned by the function handle must be of size 1-by-Np, where Np = numel(location.x) is the
number of points.

For the nonconstant current density and magnetic potential on the boundary, the output returned by
the function handle must be of size 1-by-Np for a 2-D problem and 3-by-Np for a 3-D problem.

See Also
ElectromagneticModel | ElectromagneticSourceAssignment Properties | createpde |
electromagneticProperties | electromagneticBC | solve | assembleFEMatrices

Introduced in R2021a

 electromagneticSource

5-195

ElectromagneticSourceAssignment Properties
Electromagnetic source assignments

Description
An ElectromagneticSourceAssignment object describes the material properties of an
electromagnetic model. An ElectromagneticModel container has a vector of
ElectromagneticSourceAssignment objects in its Sources.SourceAssignments property.

Create material property assignments for your electromagnetic model using the
electromagneticSource function.

Properties
Properties

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, returned as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the face or cell IDs by using pdegplot with
the 'FaceLabels' or 'CellLabels' name-value argument set to 'on'.
Data Types: double

ChargeDensity — Charge density
real number | function handle

Charge density, returned as a real number for a constant charge density or a function handle for a
charge density that depends on the coordinates.
Data Types: double | function_handle

CurrentDensity — Current density
real number | function handle

Current density, returned as a real number for a constant current density or a function handle for a
current density that depends on the coordinates.
Data Types: double | function_handle

See Also
electromagneticSource | ElectromagneticModel

5 Functions

5-196

Introduced in R2021a

 ElectromagneticSourceAssignment Properties

5-197

ElectrostaticResults
Electrostatic solution and derived quantities

Description
An ElectrostaticResults object contains the electric potential, electric field, and electric flux
density values in a form convenient for plotting and postprocessing.

The electric potential, electric field, and electric flux density are calculated at the nodes of the
triangular or tetrahedral mesh generated by generateMesh. Electric potential values at the nodes
appear in the ElectricPotential property. Electric field values at the nodes appear in the
ElectricField property. Electric flux density at the nodes appear in the ElectricFluxDensity
property.

To interpolate the electric potential, electric field, and electric flux density to a custom grid, such as
the one specified by meshgrid, use the interpolateElectricPotential,
interpolateElectricField, and interpolateElectricFlux functions.

Creation
Solve an electrostatic problem using the solve function. This function returns a solution as an
ElectrostaticResults object.

Properties
ElectricPotential — Electric potential values at nodes
vector

Electric potential values at nodes, returned as a vector.
Data Types: double

ElectricField — Electric field values at nodes
FEStruct object

Electric field values at nodes, returned as an FEStruct object. The properties of this object contain
the components of the electric field at nodes.

ElectricFluxDensity — Electric flux density values at nodes
FEStruct object

Electric flux density values at nodes, returned as an FEStruct object. The properties of this object
contain the components of electric flux density at nodes.

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as an FEMesh object. For details, see FEMesh.

5 Functions

5-198

Object Functions
interpolateElectricPotential Interpolate electric potential in electrostatic result at arbitrary spatial

locations
interpolateElectricField Interpolate electric field in electrostatic result at arbitrary spatial

locations
interpolateElectricFlux Interpolate electric flux density in electrostatic result at arbitrary

spatial locations

Examples

Solution to 2-D Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 2-D
geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(emagmodel,'EdgeLabels','on')

Specify the vacuum permittivity in the SI system of units.

 ElectrostaticResults

5-199

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Apply the voltage boundary conditions on the edges framing the rectangle and the circle.

electromagneticBC(emagmodel,'Voltage',0,'Edge',1:4);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',5);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

 ElectricPotential: [1218x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric potential and field.

pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
 'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey])
axis equal

5 Functions

5-200

Solution to 3-D Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 3-D
geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

gm = importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.3)

 ElectrostaticResults

5-201

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Apply the voltage boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

5 Functions

5-202

 ElectricPotential: [4359x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric potential.

figure
pdeplot3D(emagmodel,'ColorMapData',R.ElectricPotential)

Plot the electric field.

pdeplot3D(emagmodel,'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey ...
 R.ElectricField.Ez])

 ElectrostaticResults

5-203

See Also
ElectromagneticModel | MagnetostaticResults | solve

Introduced in R2021a

5 Functions

5-204

MagnetostaticResults
Magnetostatic solution and derived quantities

Description
A MagnetostaticResults object contains the magnetic potential, magnetic field, and magnetic flux
density values in a form convenient for plotting and postprocessing.

The magnetic potential, magnetic field, and magnetic flux density are calculated at the nodes of the
triangular or tetrahedral mesh generated by generateMesh. Magnetic potential values at the nodes
appear in the MagneticPotential property. Magnetic field values at the nodes appear in the
MagneticField property. Magnetic flux density at the nodes appear in the MagneticFluxDensity
property.

To interpolate the magnetic potential, magnetic field, and magnetic flux density to a custom grid,
such as the one specified by meshgrid, use the interpolateMagneticPotential,
interpolateMagneticField, and interpolateMagneticFlux functions.

Creation
Solve a magnetostatic problem using the solve function. This function returns a solution as a
MagnetostaticResults object.

Properties
MagneticPotential — Magnetic potential values at nodes
vector | FEStruct object

Magnetic potential values at nodes, returned as a vector for a 2-D problem or an FEStruct object for
a 3-D problem. The properties of this object contain the components of the magnetic potential at
nodes.
Data Types: double

MagneticField — Magnetic field values at nodes
FEStruct object

Magnetic field values at nodes, returned as an FEStruct object. The properties of this object contain
the components of the magnetic field at nodes.

MagneticFluxDensity — Magnetic flux density values at nodes
FEStruct object

Magnetic flux density values at nodes, returned as an FEStruct object. The properties of this object
contain the components of the magnetic flux density at nodes.

Mesh — Finite element mesh
FEMesh object

 MagnetostaticResults

5-205

Finite element mesh, returned as an FEMesh object. For details, see FEMesh. For a 3-D model, the
mesh must be linear.

Object Functions
interpolateMagneticPotential Interpolate magnetic potential in magnetostatic result at arbitrary

spatial locations
interpolateMagneticField Interpolate magnetic field in magnetostatic result at arbitrary spatial

locations
interpolateMagneticFlux Interpolate magnetic flux density in magnetostatic result at arbitrary

spatial locations

Examples

Solution to 2-D Magnetostatic Analysis Model

Solve a 2-D electromagnetic problem.

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHolePlanar.stl')

ans =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

pdegplot(emagmodel,'EdgeLabels','on')

5 Functions

5-206

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Apply the magnetic potential boundary conditions on the edges framing the rectangle and the circle.

electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',1:4);
electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',5);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',0.5);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 MagnetostaticResults with properties:

 MagnetostaticResults

5-207

 MagneticPotential: [1218x1 double]
 MagneticField: [1x1 FEStruct]
 MagneticFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the magnetic potential and field.

pdeplot(emagmodel,'XYData',R.MagneticPotential, ...
 'FlowData',[R.MagneticField.Hx ...
 R.MagneticField.Hy])
axis equal

Solution to 3-D Magnetostatic Analysis Model

Solve an electromagnetic problem and find the magnetic potential and field distribution for a 3-D
geometry representing a plate with a hole.

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

5 Functions

5-208

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',[0;0;0.5]);

Apply the magnetic potential boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'MagneticPotential',[0;0;0],'Face',3:6);
electromagneticBC(emagmodel,'MagneticPotential',[0;0;0.01],'Face',7);

Generate a mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 MagnetostaticResults with properties:

 MagnetostaticResults

5-209

 MagneticPotential: [1x1 FEStruct]
 MagneticField: [1x1 FEStruct]
 MagneticFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the z-component of the magnetic potential.

pdeplot3D(emagmodel,'ColormapData',R.MagneticPotential.Az)

Plot the magnetic field.

pdeplot3D(emagmodel,'FlowData',[R.MagneticField.Hx ...
 R.MagneticField.Hy ...
 R.MagneticField.Hz])

5 Functions

5-210

See Also
ElectromagneticModel | ElectrostaticResults | solve

Introduced in R2021a

 MagnetostaticResults

5-211

evaluate
Package: pde

Interpolate data to selected locations

Note This function supports the legacy workflow. Using the [p,e,t] representation of FEMesh data
is not recommended. Use interpolateSolution and evaluateGradient to interpolate a PDE
solution and its gradient to arbitrary points without switching to a [p,e,t] representation.

Syntax
uOut = evaluate(F,pOut)
uOut = evaluate(F,x,y)
uOut = evaluate(F,x,y,z)

Description
uOut = evaluate(F,pOut) returns the interpolated values from the interpolant F at the points
pOut.

Note If a query point is outside the mesh, evaluate returns NaN for that point.

uOut = evaluate(F,x,y) returns the interpolated values from the interpolant F at the points
[x(k),y(k)], for k from 1 through numel(x). This syntax applies to 2-D geometry.

uOut = evaluate(F,x,y,z) returns the interpolated values from the interpolant F at the points
[x(k),y(k),z(k)], for k from 1 through numel(x). This syntax applies to 3-D geometry.

Examples

Interpolate to a matrix of values

This example shows how to interpolate a solution to a scalar problem using a pOut matrix of values.

Solve the equation −Δu = 1 on the unit disk with zero Dirichlet conditions.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
model = createpde;
gm = geometryFromEdges(model,g);
% Zero Dirichlet conditions
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',(1:gm.NumEdges), ...
 'u',0);
[p,e,t] = initmesh(gm);
c = 1;

5 Functions

5-212

a = 0;
f = 1;
u = assempde(model,p,e,t,c,a,f); % solve the PDE

Construct an interpolator for the solution.

F = pdeInterpolant(p,t,u);

Generate a random set of coordinates in the unit square. Evaluate the interpolated solution at the
random points.

rng default % for reproducibility
pOut = rand(2,25); % 25 numbers between 0 and 1
uOut = evaluate(F,pOut);
numNaN = sum(isnan(uOut))

numNaN = 9

uOut contains some NaN entries because some points in pOut are outside of the unit disk.

Interpolate to x, y values

This example shows how to interpolate a solution to a scalar problem using x, y values.

Solve the equation −Δu = 1 on the unit disk with zero Dirichlet conditions.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
model = createpde;
gm = geometryFromEdges(model,g);
% Zero Dirichlet conditions
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',(1:gm.NumEdges), ...
 'u',0);
[p,e,t] = initmesh(gm);
c = 1;
a = 0;
f = 1;
u = assempde(model,p,e,t,c,a,f); % solve the PDE

Construct an interpolator for the solution.

F = pdeInterpolant(p,t,u); % create the interpolant

Evaluate the interpolated solution at grid points in the unit square with spacing 0.2.

[x,y] = meshgrid(0:0.2:1);
uOut = evaluate(F,x,y);
numNaN = sum(isnan(uOut))

numNaN = 12

uOut contains some NaN entries because some points in the unit square are outside of the unit disk.

 evaluate

5-213

Interpolate a solution with multiple components

This example shows how to interpolate the solution to a system of N = 3 equations.

Solve the system of equations −Δu = f with Dirichlet boundary conditions on the unit disk, where

f = sin(x) + cos(y), cosh(xy), xy
1 + x2 + y2

T
.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
model = createpde(3);
gm = geometryFromEdges(model,g);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',(1:gm.NumEdges), ...
 'u',zeros(3,1));
[p,e,t] = initmesh(g);
c = 1;
a = 0;
f = char('sin(x) + cos(y)','cosh(x.*y)','x.*y./(1+x.^2+y.^2)');
u = assempde(model,p,e,t,c,a,f); % solve the PDE

Construct an interpolant for the solution.

F = pdeInterpolant(p,t,u); % create the interpolant

Interpolate the solution at a circle.

s = linspace(0,2*pi);
x = 0.5 + 0.4*cos(s);
y = 0.4*sin(s);
uOut = evaluate(F,x,y);

Plot the three solution components.

npts = length(x);
plot3(x,y,uOut(1:npts),'b')
hold on
plot3(x,y,uOut(npts+1:2*npts),'k')
plot3(x,y,uOut(2*npts+1:end),'r')
hold off
view(35,35)

5 Functions

5-214

Interpolate a time-varying solution

This example shows how to interpolate a solution that depends on time.

Solve the equation

∂u
∂t − Δu = 1

on the unit disk with zero Dirichlet conditions and zero initial conditions. Solve at five times from 0 to
1.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
model = createpde;
gm = geometryFromEdges(model,g);
% Zero Dirichlet conditions
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',(1:gm.NumEdges), ...
 'u',0);
[p,e,t] = initmesh(gm);
c = 1;
a = 0;

 evaluate

5-215

f = 1;
d = 1;
tlist = 0:1/4:1;
u = parabolic(0,tlist,model,p,e,t,c,a,f,d);

52 successful steps
0 failed attempts
106 function evaluations
1 partial derivatives
13 LU decompositions
105 solutions of linear systems

Construct an interpolant for the solution.

F = pdeInterpolant(p,t,u);

Interpolate the solution at x = 0.1, y = -0.1, and all available times.

x = 0.1;
y = -0.1;
uOut = evaluate(F,x,y)

uOut = 1×5

 0 0.1809 0.2278 0.2388 0.2413

The solution starts at 0 at time 0, as it should. It grows to about 1/4 at time 1.

Interpolate to a Grid

This example shows how to interpolate an elliptic solution to a grid.

Define and Solve the Problem

Use the built-in geometry functions to create an L-shaped region with zero Dirichlet boundary
conditions. Solve an elliptic PDE with coefficients c = 1, a = 0, f = 1, with zero Dirichlet boundary
conditions.

[p,e,t] = initmesh('lshapeg'); % Predefined geometry
u = assempde('lshapeb',p,e,t,1,0,1); % Predefined boundary condition

Create an Interpolant

Create an interpolant for the solution.

F = pdeInterpolant(p,t,u);

Create a Grid for the Solution

xgrid = -1:0.1:1;
ygrid = -1:0.2:1;
[X,Y] = meshgrid(xgrid,ygrid);

The resulting grid has some points that are outside the L-shaped region.

5 Functions

5-216

Evaluate the Solution On the Grid

uout = evaluate(F,X,Y);

The interpolated solution uout is a column vector. You can reshape it to match the size of X or Y. This
gives a matrix, like the output of the tri2grid function.

Z = reshape(uout,size(X));

Input Arguments
F — Interpolant
output of pdeInterpolant

Interpolant, specified as the output of pdeInterpolant.
Example: F = pdeInterpolant(p,t,u)

pOut — Query points
matrix with two or three rows

Query points, specified as a matrix with two or three rows. The first row represents the x component
of the query points, the second row represents the y component, and, for 3-D geometry, the third row
represents the z component. evaluate computes the interpolant at each column of pOut. In other
words, evaluate interpolates at the points pOut(:,k).
Example: pOut = [-1.5,0,1;
1,1,2.2]

Data Types: double

x — Query point component
vector or array

Query point component, specified as a vector or array. evaluate interpolates at either 2-D points
[x(k),y(k)] or at 3-D points [x(k),y(k),z(k)]. The x and y, and z arrays must contain the
same number of entries.

evaluate transforms query point components to the linear index representation, such as x(:).
Example: x = -1:0.2:3
Data Types: double

y — Query point component
vector or array

Query point component, specified as a vector or array. evaluate interpolates at either 2-D points
[x(k),y(k)] or at 3-D points [x(k),y(k),z(k)]. The x and y, and z arrays must contain the
same number of entries.

evaluate transforms query point components to the linear index representation, such as y(:).
Example: y = -1:0.2:3
Data Types: double

 evaluate

5-217

z — Query point component
vector or array

Query point component, specified as a vector or array. evaluate interpolates at either 2-D points
[x(k),y(k)] or at 3-D points [x(k),y(k),z(k)]. The x and y, and z arrays must contain the
same number of entries.

evaluate transforms query point components to the linear index representation, such as z(:).
Example: z = -1:0.2:3
Data Types: double

Output Arguments
uOut — Interpolated values
array

Interpolated values, returned as an array. uOut has the same number of columns as the data u used
in creating F. If u depends on time, uOut contains a column for each time step. For time-independent
u, uOut has one column.

The number of rows in uOut is the number of equations in the PDE system, N, times the number of
query points, pOut. The first pOut rows correspond to equation 1, the next pOut rows correspond to
equation 2, and so on.

If a query point is outside the mesh, evaluate returns NaN for that point.

More About
Element

An element is a basic unit in the finite-element method.

For 2-D problems, an element is a triangle in the model.Mesh.Element property. If the triangle
represents a linear element, it has nodes only at the triangle corners. If the triangle represents a
quadratic element, then it has nodes at the triangle corners and edge centers.

For 3-D problems, an element is a tetrahedron with either four or ten points. A four-point (linear)
tetrahedron has nodes only at its corners. A ten-point (quadratic) tetrahedron has nodes at its corners
and at the center point of each edge.

For details, see “Mesh Data” on page 2-153.

Algorithms
For each point where a solution is requested (pOut), there are two steps in the interpolation process.
First, the element containing the point must be located and second, interpolation within that element
must be performed using the element shape functions and the values of the solution at the element’s
node points.

See Also
pdeInterpolant

5 Functions

5-218

Topics
“Mesh Data” on page 2-153

Introduced in R2014b

 evaluate

5-219

evaluateCGradient
Package: pde

Evaluate flux of PDE solution

Syntax
[cgradx,cgrady] = evaluateCGradient(results,xq,yq)
[cgradx,cgrady,cgradz] = evaluateCGradient(results,xq,yq,zq)
[___] = evaluateCGradient(results,querypoints)

[___] = evaluateCGradient(___ ,iU)

[___] = evaluateCGradient(___ ,iT)

[cgradx,cgrady] = evaluateCGradient(results)
[cgradx,cgrady,cgradz] = evaluateCGradient(results)

Description
[cgradx,cgrady] = evaluateCGradient(results,xq,yq) returns the flux of PDE solution for
the stationary equation at the 2-D points specified in xq and yq. The flux of the solution is the tensor
product of c-coefficient and gradients of the PDE solution, c⊗ ∇u.

[cgradx,cgrady,cgradz] = evaluateCGradient(results,xq,yq,zq) returns the flux of
PDE solution for the stationary equation at the 3-D points specified in xq, yq, and zq.

[___] = evaluateCGradient(results,querypoints) returns the flux of PDE solution for the
stationary equation at the 2-D or 3-D points specified in querypoints.

[___] = evaluateCGradient(___ ,iU) returns the flux of the solution of the PDE system for
equation indices (components) iU. When evaluating flux for a system of PDEs, specify iU after the
input arguments in any of the previous syntaxes.

The first dimension of cgradx, cgrady, and, in the 3-D case, cgradz corresponds to query points.
The second dimension corresponds to equation indices iU.

[___] = evaluateCGradient(___ ,iT) returns the flux of PDE solution for the time-dependent
equation or system of time-dependent equations at times iT. When evaluating flux for a time-
dependent PDE, specify iT after the input arguments in any of the previous syntaxes. For a system of
time-dependent PDEs, specify both equation indices (components) iU and time indices iT.

The first dimension of cgradx, cgrady, and, in the 3-D case, cgradz corresponds to query points.
For a single time-dependent PDE, the second dimension corresponds to time-steps iT. For a system of
time-dependent PDEs, the second dimension corresponds to equation indices iU, and the third
dimension corresponds to time-steps iT.

[cgradx,cgrady] = evaluateCGradient(results) returns the flux of PDE solution of a 2-D
problem at the nodal points of the triangular mesh. The shape of output arrays, cgradx and cgrady,
depends on the number of PDEs for which results is the solution. The first dimension of cgradx
and cgrady represents the node indices. For a system of stationary or time-dependent PDEs, the

5 Functions

5-220

second dimension represents equation indices. For a single time-dependent PDE, the second
dimension represents time-steps. The third dimension represents time-step indices for a system of
time-dependent PDEs.

[cgradx,cgrady,cgradz] = evaluateCGradient(results) returns the flux of PDE solution of
a 3-D problem at the nodal points of the tetrahedral mesh. The first dimension of cgradx, cgrady,
and cgradz represents the node indices. The second dimension represents the equation indices. For
a system of stationary or time-dependent PDEs, the second dimension represents equation indices.
For a single time-dependent PDE, the second dimension represents time-steps. The third dimension
represents time-step indices for a system of time-dependent PDEs.

Examples

Scalar Elliptic Problem

Solve the problem −Δu = 1 on the L-shaped membrane with zero Dirichlet boundary conditions.
Evaluate the tensor product of c-coefficient and gradients of the solution to a scalar elliptic problem
at nodal and arbitrary locations. Plot the results.

Create a PDE model and geometry for this problem.

model = createpde;
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')

 evaluateCGradient

5-221

Specify boundary conditions and coefficients.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

specifyCoefficients(model,'m',0,'d',0,'c',10, ...
 'a',0,'f',1,'Face',1);
specifyCoefficients(model,'m',0,'d',0,'c',5, ...
 'a',0,'f',1,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',1, ...
 'a',0,'f',1,'Face',3);

Mesh the geometry and solve the problem.

generateMesh(model,'Hmax',0.05);
results = solvepde(model);
u = results.NodalSolution;

Compute the flux of the solution and plot the results.

[cgradx,cgrady] = evaluateCGradient(results);

figure
pdeplot(model,'XYData',u,'Contour','on','FlowData',[cgradx,cgrady])

Compute the flux of the solution on the grid from -1 to 1 in each direction using the query points
matrix.

5 Functions

5-222

v = linspace(-1,1,37);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';

[cgradxq,cgradyq] = evaluateCGradient(results,querypoints);

Alternatively, you can specify the query points as X,Y instead of specifying them as a matrix.

[cgradxq,cgradyq] = evaluateCGradient(results,X,Y);

Plot the result using the quiver plotting function.

figure
quiver(X(:),Y(:),cgradxq,cgradyq)
xlabel('x')
ylabel('y')

Stress Components in a Cantilever Beam

Compute stresses in a cantilever beam subject to shear loading at free end.

Create a PDE model and geometry for this problem.

N = 3;
model = createpde(N);

 evaluateCGradient

5-223

importGeometry(model,'SquareBeam.stl');
pdegplot(model,'FaceLabels','on')

Specify coefficients and apply boundary conditions.

E = 2.1e11;
nu = 0.3;
c = elasticityC3D(E, nu);
a = 0;
f = [0;0;0];
specifyCoefficients(model,'m',0,'d',0,'c',c, ...
 'a',a','f',f);

applyBoundaryCondition(model,'dirichlet', ...
 'Face',6, ...
 'u',[0 0 0]);
applyBoundaryCondition(model,'neumann', ...
 'Face',5, ...
 'g',[0,0,-3e3]);

Mesh the geometry and solve the problem.

generateMesh(model,'Hmax',25,'GeometricOrder','quadratic');
results = solvepde(model);

Compute stress, that is, the product of c-coefficient and gradients of displacement.

[sig_xx,sig_yy,sig_zz] = evaluateCGradient(results);

5 Functions

5-224

Plot normal component of stress along x-direction. The top portion of the beam experiences tension,
and the bottom portion experiences compression.

figure
pdeplot3D(model,'ColorMapData',sig_xx(:,1))

Define a line across the beam from the bottom to the top at mid-span and mid-width. Compute
stresses along the line.

zg = linspace(0, 100, 10);
xg = 250*ones(size(zg));
yg = 50*ones(size(zg));

[sig_xx,sig_xy,sig_xz] = ...
evaluateCGradient(results,xg,yg,zg,1);

Plot the normal stress along x-direction.

figure
plot(sig_xx,zg)
grid on
xlabel('\sigma_{xx}')
ylabel('z')

 evaluateCGradient

5-225

Stress Components in a Bracket

Compute stresses in an idealized 3-D mechanical part under an applied load. First, create a PDE
model for this problem.

N = 3;
model = createpde(N);

Import the geometry and plot it.

importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

5 Functions

5-226

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

 evaluateCGradient

5-227

Specify coefficients and apply boundary conditions.

E = 200e9; % elastic modulus of steel in Pascals
nu = 0.3; % Poisson's ratio
c = elasticityC3D(E,nu);
a = 0;
f = [0;0;0]; % Assume all body forces are zero
specifyCoefficients(model,'m',0,'d',0,'c',c,'a',a,'f',f);

applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0,0]);
distributedLoad = 1e4; % Applied load in Pascals
applyBoundaryCondition(model,'neumann','Face',8, ...
 'g',[0,0,-distributedLoad]);

Mesh the geometry and solve the problem.

% Thickness of horizontal plate with hole, meters
bracketThickness = 1e-2;
% Maximum element length for a moderately fine mesh
hmax = bracketThickness;
generateMesh(model,'Hmax',hmax, ...
 'GeometricOrder','quadratic');

result = solvepde(model);

Create a grid. For this grid, compute the stress tensor, which is the product of c-coefficient and
gradients of displacement.

5 Functions

5-228

v = linspace(0,0.2,21);
[xq,yq,zq] = meshgrid(v);

[cgradx,cgrady,cgradz] = evaluateCGradient(result);

Extract individual components of stresses.

sxx = cgradx(:,1);
sxy = cgradx(:,2);
sxz = cgradx(:,3);

syx = cgrady(:,1);
syy = cgrady(:,2);
syz = cgrady(:,3);

szx = cgradz(:,1);
szy = cgradz(:,2);
szz = cgradz(:,3);

Compute von Mises stress.

sVonMises = sqrt(0.5*((sxx-syy).^2 + (syy -szz).^2 +...
 (szz-sxx).^2) + 3*(sxy.^2 + syz.^2 + szx.^2));

Plot von Mises stress. The maximum stress occurs at the weakest section. This section has the least
material to support the applied load.

pdeplot3D(model,'colormapdata',sVonMises)

 evaluateCGradient

5-229

Heat Transfer Problem on a Square

Solve a 2-D transient heat transfer problem on a square domain and compute heat flow across
convective boundary.

Create a PDE model for this problem.

model = createpde;

Create the geometry.

g = @squareg;
geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
xlim([-1.2,1.2])
ylim([-1.2,1.2])
axis equal

Specify material properties and ambient conditions.

rho = 7800;
cp = 500;
k = 100;
Text = 25;
hext = 5000;

5 Functions

5-230

Specify the coefficients. Apply insulated boundary conditions on three edges and the free convection
boundary condition on the right edge.

specifyCoefficients(model,'m',0,'d',rho*cp,'c',k,'a',0,'f',0);

applyBoundaryCondition(model,'neumann', ...
 'Edge',[1,3,4], ...
 'q',0,'g',0);
applyBoundaryCondition(model,'neumann', ...
 'Edge', 2, ...
 'q',hext,'g',Text*hext);

Set the initial conditions: uniform room temperature across domain and higher temperature on the
left edge.

setInitialConditions(model,25);
setInitialConditions(model,100,'Edge',4);

Generate a mesh and solve the problem using 0:1000:200000 as a vector of times.

generateMesh(model);
tlist = 0:1000:200000;
results = solvepde(model,tlist);

Define a line at convection boundary to compute heat flux across it.

yg = -1:0.1:1;
xg = ones(size(yg));

Evaluate the product of c coefficient and spatial gradients at (xg,yg).

[qx,qy] = evaluateCGradient(results,xg,yg,1:length(tlist));

Spatially integrate gradients to obtain heat flow for each time-step.

HeatFlowX(1:length(tlist)) = -trapz(yg,qx(:,1:length(tlist)));

Plot convective heat flow over time.

figure
plot(tlist,HeatFlowX)
title('Heat flow across convection boundary')
xlabel('Time')
ylabel('Heat flow')

 evaluateCGradient

5-231

Heat Transfer Between Two Squares Made of Different Materials

Solve the heat transfer problem for the following 2-D geometry consisting of a square and a diamond
made of different materials. Compute the heat flux density and plot it as a vector field.

Create a PDE model for this problem.

numberOfPDE = 1;
model = createpde(numberOfPDE);

Create a geometry that consists of a square with an embedded diamond.

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1,D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);

geometryFromEdges(model,dl);

pdegplot(model,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5,4.5])

5 Functions

5-232

ylim([-0.5,3.5])
axis equal

Set parameters for the square region.

rho_sq = 2;
C_sq = 0.1;
k_sq = 10;
Q_sq = 0;
h_sq = 0;

Set parameters for the diamond region.

rho_d = 1;
C_d = 0.1;
k_d = 2;
Q_d = 4;
h_d = 0;

Specify the coefficients for both subdomains. Apply the boundary and initial conditions.

specifyCoefficients(model,'m',0,'d',rho_sq*C_sq, ...
 'c',k_sq,'a',h_sq, ...
 'f',Q_sq,'Face',1);
specifyCoefficients(model,'m',0,'d',rho_d*C_d, ...
 'c',k_d,'a',h_d, ...
 'f',Q_d,'Face',2);

 evaluateCGradient

5-233

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[1,2,7,8], ...
 'h',1,'r',0);

setInitialConditions(model,0);

Mesh the geometry and solve the problem. To capture the most dynamic part of heat distribution
process, solve the problem using logspace(-2,-1,10) as a vector of times.

generateMesh(model);

tlist = logspace(-2,-1,10);

results = solvepde(model,tlist);
u = results.NodalSolution;

Compute the heat flux density. Plot the solution with isothermal lines using a contour plot, and plot
the heat flux vector field using arrows. The direction of the heat flow (from higher to lower
temperatures) is opposite to the direction of c⊗ ∇u. Therefore, use -cgradx and -cgrady to show
the heat flow.

[cgradx,cgrady] = evaluateCGradient(results);

figure
pdeplot(model,'XYData',u(:,10),'Contour','on', ...
 'FlowData',[-cgradx(:,10),-cgrady(:,10)], ...
 'ColorMap','hot')

5 Functions

5-234

Input Arguments
results — PDE solution
StationaryResults object | TimeDependentResults object

PDE solution, specified as a StationaryResults object or a TimeDependentResults object.
Create results using solvepde or createPDEResults.
Example: results = solvepde(model)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. evaluateCGradient evaluates the tensor
product of c-coefficient and gradients of the PDE solution at either the 2-D coordinate points
[xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)]. So xq, yq, and (if present)
zq must have the same number of entries.

evaluateCGradient converts query points to column vectors xq(:), yq(:), and (if present)
zq(:). For a single stationary PDE, the result consists of column vectors of the same size. To ensure
that the dimensions of the returned x-, y-, and z-components are consistent with the dimensions of
the original query points, use reshape. For example, use cgradx = reshape(cgradx,size(xq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays
corresponds to spatial points specified by the column vectors xq(:), yq(:), and (if present) zq(:).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. evaluateCGradient evaluates the tensor
product of c-coefficient and gradients of the PDE solution at either the 2-D coordinate points
[xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)]. So xq, yq, and (if present)
zq must have the same number of entries.

evaluateCGradient converts query points to column vectors xq(:), yq(:), and (if present)
zq(:). For a single stationary PDE, the result consists of column vectors of the same size. To ensure
that the dimensions of the returned x-, y-, and z-components are consistent with the dimensions of
the original query points, use reshape. For example, use cgrady = reshape(cgrady,size(yq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays
corresponds to spatial points specified by the column vectors xq(:), yq(:), and (if present) zq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. evaluateCGradient evaluates the tensor
product of c-coefficient and gradients of the PDE solution at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. So xq, yq, and zq must have the same number of entries.

evaluateCGradient converts query points to column vectors xq(:), yq(:), and zq(:). For a
single stationary PDE, the result consists of column vectors of the same size. To ensure that the

 evaluateCGradient

5-235

dimensions of the returned x-, y-, and z-components are consistent with the dimensions of the
original query points, use reshape. For example, use cgradz = reshape(cgradz,size(zq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays
corresponds to spatial points specified by the column vectors xq(:), yq(:), and (if present) zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. evaluateCGradient evaluates the tensor product of c-coefficient and gradients of the
PDE solution at the coordinate points querypoints(:,i), so each column of querypoints
contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

iT — Time indices
vector of positive integers

Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

iU — Equation indices
vector of positive integers

Equation indices, specified as a vector of positive integers. Each entry in iU specifies an equation
index.
Example: iU = [1,5] specifies the indices for the first and fifth equations.
Data Types: double

Output Arguments
cgradx — x-component of the flux of the PDE solution
array

x-component of the flux of the PDE solution, returned as an array. The first array dimension
represents the node index. If results is a StationaryResults object, the second array dimension
represents the equation index for a system of PDEs. If results is a TimeDependentResults object,
the second array dimension represents either the time-step for a single PDE or the equation index for
a system of PDEs. The third array dimension represents the time-step index for a system of time-
dependent PDEs. For information about the size of cgradx, see “Dimensions of Solutions, Gradients,
and Fluxes” on page 3-329.

For query points that are outside the geometry, cgradx = NaN.

cgrady — y-component of the flux of the PDE solution
array

5 Functions

5-236

y-component of the flux of the PDE solution, returned as an array. The first array dimension
represents the node index. If results is a StationaryResults object, the second array dimension
represents the equation index for a system of PDEs. If results is a TimeDependentResults object,
the second array dimension represents either the time-step for a single PDE or the equation index for
a system of PDEs. The third array dimension represents the time-step index for a system of time-
dependent PDEs. For information about the size of cgrady, see “Dimensions of Solutions, Gradients,
and Fluxes” on page 3-329.

For query points that are outside the geometry, cgrady = NaN.

cgradz — z-component of the flux of the PDE solution
array

z-component of the flux of the PDE solution, returned as an array. The first array dimension
represents the node index. If results is a StationaryResults object, the second array dimension
represents the equation index for a system of PDEs. If results is a TimeDependentResults object,
the second array dimension represents either the time-step for a single PDE or the equation index for
a system of PDEs. The third array dimension represents the time-step index for a system of time-
dependent PDEs. For information about the size of cgradz, see “Dimensions of Solutions, Gradients,
and Fluxes” on page 3-329.

For query points that are outside the geometry, cgradz = NaN.

Tips
• While the results object contains the solution and its gradient (both calculated at the nodal

points of the triangular or tetrahedral mesh), it does not contain the flux of the PDE solution. To
compute the flux at the nodal locations, call evaluateCGradient without specifying locations.
By default, evaluateCGradient uses nodal locations.

See Also
PDEModel | StationaryResults | TimeDependentResults | evaluateGradient |
interpolateSolution

Topics
“Deflection Analysis of Bracket” on page 3-71
“Dynamics of Damped Cantilever Beam” on page 3-21
“Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App” on page 3-177

Introduced in R2016b

 evaluateCGradient

5-237

evaluateGradient
Package: pde

Evaluate gradients of PDE solutions at arbitrary points

Syntax
[gradx,grady] = evaluateGradient(results,xq,yq)
[gradx,grady,gradz] = evaluateGradient(results,xq,yq,zq)
[___] = evaluateGradient(results,querypoints)

[___] = evaluateGradient(___ ,iU)

[___] = evaluateGradient(___ ,iT)

Description
[gradx,grady] = evaluateGradient(results,xq,yq) returns the interpolated values of
gradients of the PDE solution results at the 2-D points specified in xq and yq.

[gradx,grady,gradz] = evaluateGradient(results,xq,yq,zq) returns the interpolated
gradients at the 3-D points specified in xq, yq, and zq.

[___] = evaluateGradient(results,querypoints) returns the interpolated values of the
gradients at the points specified in querypoints.

[___] = evaluateGradient(___ ,iU) returns the interpolated values of the gradients for the
system of equations for equation indices (components) iU. When solving a system of elliptic PDEs,
specify iU after the input arguments in any of the previous syntaxes.

The first dimension of gradx, grady, and, in 3-D case, gradz corresponds to query points. The
second dimension corresponds to equation indices iU.

[___] = evaluateGradient(___ ,iT) returns the interpolated values of the gradients for the
time-dependent equation or system of time-dependent equations at times iT. When evaluating
gradient for a time-dependent PDE, specify iT after the input arguments in any of the previous
syntaxes. For a system of time-dependent equations, specify both time indices iT and equation
indices (components) iU.

The first dimension of gradx, grady, and, in 3-D case, gradz corresponds to query points. For a
single time-dependent PDE, the second dimension corresponds to time-steps iT. For a system of time-
dependent PDEs, the second dimension corresponds to equation indices iU, and the third dimension
corresponds to time-steps iT.

Examples

Evaluate Gradients for Scalar Elliptic Problem

Evaluate gradients of the solution to a scalar elliptic problem along a line. Plot the results.

5 Functions

5-238

Create the solution to the problem −Δu = 1 on the L-shaped membrane with zero Dirichlet boundary
conditions.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);

Evaluate gradients of the solution along the straight line from (x,y)=(-1,-1) to (1,1). Plot the
results as a quiver plot by using quiver.

xq = linspace(-1,1,101);
yq = xq;
[gradx,grady] = evaluateGradient(results,xq,yq);

gradx = reshape(gradx,size(xq));
grady = reshape(grady,size(yq));

quiver(xq,yq,gradx,grady)
xlabel('x')
ylabel('y')

 evaluateGradient

5-239

Evaluate Gradients for Poisson's Equation

Calculate gradients for the mean exit time of a Brownian particle from a region that contains
absorbing (escape) boundaries and reflecting boundaries. Use the Poisson's equation with constant
coefficients and 3-D rectangular block geometry to model this problem.

Create the solution for this problem.

model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet', ...
 'Face',[1,2,5], ...
 'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',2);
generateMesh(model);
results = solvepde(model);

Create a grid and interpolate gradients of the solution to the grid.

[X,Y,Z] = meshgrid(1:16:100,1:6:20,1:7:50);
[gradx,grady,gradz] = evaluateGradient(results,X,Y,Z);

5 Functions

5-240

Reshape the gradients to the shape of the grid and plot the gradients.

gradx = reshape(gradx,size(X));
grady = reshape(grady,size(Y));
gradz = reshape(gradz,size(Z));

quiver3(X,Y,Z,gradx,grady,gradz)
axis equal
xlabel('x')
ylabel('y')
zlabel('z')

Evaluate Gradients Using Query Matrix

Solve a scalar elliptic problem and interpolate gradients of the solution to a dense grid. Use a query
matrix to specify the grid.

Create the solution to the problem −Δu = 1 on the L-shaped membrane with zero Dirichlet boundary
conditions.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

 evaluateGradient

5-241

specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);

Interpolate gradients of the solution to the grid from -1 to 1 in each direction. Plot the result using
the quiver plotting function.

v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';

[gradx,grady] = evaluateGradient(results,querypoints);
quiver(X(:),Y(:),gradx,grady)
xlabel('x')
ylabel('y')

Zoom in on a particular part of the plot to see more details. For example, limit the plotting range to
0.2 in each direction.

axis([-0.2 0.2 -0.2 0.2])

5 Functions

5-242

Evaluate Gradients of Solution of Elliptic System

Evaluate gradients of the solution to a two-component elliptic system and plot the results.

Create a PDE model for two components.

model = createpde(2);

Create the 2-D geometry as a rectangle with a circular hole in its center. For details about creating
the geometry, see the example in “Solve PDEs with Constant Boundary Conditions” on page 2-119.

R1 = [3,4,-0.3,0.3,0.3,-0.3,-0.3,-0.3,0.3,0.3]';
C1 = [1,0,0,0.1]';
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
ns = (char('R1','C1'))';
sf = 'R1 - C1';
g = decsg(geom,sf,ns);

Include the geometry in the model and view the geometry.

geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
axis equal
axis([-0.4,0.4,-0.4,0.4])

 evaluateGradient

5-243

Set the boundary conditions and coefficients.

specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',[2; -2]);

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',3,'u',[-1,1]);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1,'u',[1,-1]);
applyBoundaryCondition(model,'neumann', ...
 'Edge',[2,4:8],'g',[0,0]);

Create a mesh and solve the problem.

generateMesh(model,'Hmax',0.1);
results = solvepde(model);

Interpolate the gradients of the solution to the grid from -0.3 to 0.3 in each direction for each of the
two components.

v = linspace(-0.3,0.3,15);
[X,Y] = meshgrid(v);

[gradx,grady] = evaluateGradient(results,X,Y,[1,2]);

5 Functions

5-244

Plot the gradients for the first component.

figure
gradx1 = gradx(:,1);
grady1 = grady(:,1);
quiver(X(:),Y(:),gradx1,grady1)
title('Component 1')
axis equal
xlim([-0.3,0.3])

Plot the gradients for the second component.

figure
gradx2 = gradx(:,2);
grady2 = grady(:,2);
quiver(X(:),Y(:),gradx2,grady2)
title('Component 2')
axis equal
xlim([-0.3,0.3])

 evaluateGradient

5-245

Evaluate Gradients of Solution of Hyperbolic System

Solve a system of hyperbolic PDEs and evaluate gradients.

Import slab geometry for a 3-D problem with three solution components. Plot the geometry.

model = createpde(3);
importGeometry(model,'Plate10x10x1.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-246

Set boundary conditions such that face 2 is fixed (zero deflection in any direction) and face 5 has a
load of 1e3 in the positive z-direction. This load causes the slab to bend upward. Set the initial
condition that the solution is zero, and its derivative with respect to time is also zero.

applyBoundaryCondition(model,'dirichlet','Face',2,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face',5,'g',[0,0,1e3]);
setInitialConditions(model,0,0);

Create PDE coefficients for the equations of linear elasticity. Set the material properties to be similar
to those of steel. See “Linear Elasticity Equations” on page 3-146.

E = 200e9;
nu = 0.3;
specifyCoefficients(model,'m',1,...
 'd',0,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]);

Generate a mesh, setting Hmax to 1.

generateMesh(model,'Hmax',1);

Solve the problem for times 0 through 5e-3 in steps of 1e-4. You might have to wait a few minutes
for the solution.

tlist = 0:5e-4:5e-3;
results = solvepde(model,tlist);

 evaluateGradient

5-247

Evaluate the gradients of the solution at fixed x- and z-coordinates in the centers of their ranges, 5
and 0.5 respectively. Evaluate for y from 0 through 10 in steps of 0.2. Obtain just component 3, the z-
component.

yy = 0:0.2:10;
zz = 0.5*ones(size(yy));
xx = 10*zz;
component = 3;
[gradx,grady,gradz] = evaluateGradient(results,xx,yy,zz, ...
 component,1:length(tlist));

The three projections of the gradients of the solution are 51-by-1-by-51 arrays. Use squeeze to
remove the singleton dimension. Removing the singleton dimension transforms these arrays to 51-
by-51 matrices which simplifies indexing into them.

gradx = squeeze(gradx);
grady = squeeze(grady);
gradz = squeeze(gradz);

Plot the interpolated gradient component grady along the y axis for the following six values from the
time interval tlist.

figure
t = [1:2:11];
for i = t
 p(i) = plot(yy,grady(:,i),'DisplayName', ...
 strcat('t=',num2str(tlist(i))));
 hold on
end
legend(p(t))
xlabel('y')
ylabel('grady')
ylim([-5e-6, 20e-6])

5 Functions

5-248

Input Arguments
results — PDE solution
StationaryResults object | TimeDependentResults object

PDE solution, specified as a StationaryResults object or a TimeDependentResults object.
Create results using solvepde or createPDEResults.
Example: results = solvepde(model)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. evaluateGradient evaluates the gradients of
the solution at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. So xq, yq, and (if present) zq must have the same number of entries.

evaluateGradient converts query points to column vectors xq(:), yq(:), and (if present) zq(:).
For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the
dimensions of the gradient components are consistent with the dimensions of the original query
points, use reshape. For example, use gradx = reshape(gradx,size(xq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays
corresponds to spatial points specified by the column vectors xq(:), yq(:), and (if present) zq(:).

 evaluateGradient

5-249

Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. evaluateGradient evaluates the gradients of
the solution at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. So xq, yq, and (if present) zq must have the same number of entries.

evaluateGradient converts query points to column vectors xq(:), yq(:), and (if present) zq(:).
For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the
dimensions of the gradient components are consistent with the dimensions of the original query
points, use reshape. For example, use grady = reshape(grady,size(yq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays
corresponds to spatial points specified by the column vectors xq(:), yq(:), and (if present) zq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. evaluateGradient evaluates the gradients of
the solution at the 3-D coordinate points [xq(i),yq(i),zq(i)]. So xq, yq, and zq must have the
same number of entries.

evaluateGradient converts query points to column vectors xq(:), yq(:), and (if present) zq(:).
For a single stationary PDE, the result consists of column vectors of the same size. To ensure that the
dimensions of the gradient components are consistent with the dimensions of the original query
points, use reshape. For example, use gradz = reshape(gradz,size(zq)).

For a time-dependent PDE or a system of PDEs, the first dimension of the resulting arrays
corresponds to spatial points specified by the column vectors xq(:), yq(:), and (if present) zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D
geometry. evaluateGradient evaluates the gradients of the solution at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

iU — Equation indices
vector of positive integers

Equation indices, specified as a vector of positive integers. Each entry in iU specifies an equation
index.
Example: iU = [1,5] specifies the indices for the first and fifth equations.
Data Types: double

5 Functions

5-250

iT — Time indices
vector of positive integers

Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

Output Arguments
gradx — x-component of the gradient
array

x-component of the gradient, returned as an array. For query points that are outside the geometry,
gradx = NaN. For information about the size of gradx, see “Dimensions of Solutions, Gradients, and
Fluxes” on page 3-329.

grady — y-component of the gradient
array

y-component of the gradient, returned as an array. For query points that are outside the geometry,
grady = NaN. For information about the size of grady, see “Dimensions of Solutions, Gradients, and
Fluxes” on page 3-329.

gradz — z-component of the gradient
array

z-component of the gradient, returned as an array. For query points that are outside the geometry,
gradz = NaN. For information about the size of gradz, see “Dimensions of Solutions, Gradients, and
Fluxes” on page 3-329.

Tips
The results object contains the solution and its gradient calculated at the nodal points of the
triangular or tetrahedral mesh. You can access the solution and three components of the gradient at
nodal points by using dot notation.

interpolateSolution and evaluateGradient let you interpolate the solution and its gradient to
a custom grid, for example, specified by meshgrid.

See Also
PDEModel | StationaryResults | TimeDependentResults | interpolateSolution |
evaluateCGradient | quiver | quiver3 | contour

Topics
“Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-302
“3-D Solution and Gradient Plots with MATLAB® Functions” on page 3-317
“Dimensions of Solutions, Gradients, and Fluxes” on page 3-329

Introduced in R2016a

 evaluateGradient

5-251

evaluateHeatFlux
Package: pde

Evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations

Syntax
[qx,qy] = evaluateHeatFlux(thermalresults,xq,yq)
[qx,qy,qz] = evaluateHeatFlux(thermalresults,xq,yq,zq)
[___] = evaluateHeatFlux(thermalresults,querypoints)

[___] = evaluateHeatFlux(___ ,iT)

[qx,qy] = evaluateHeatFlux(thermalresults)
[qx,qy,qz] = evaluateHeatFlux(thermalresults)

Description
[qx,qy] = evaluateHeatFlux(thermalresults,xq,yq) returns the heat flux for a thermal
problem at the 2-D points specified in xq and yq. This syntax is valid for both the steady-state and
transient thermal models.

[qx,qy,qz] = evaluateHeatFlux(thermalresults,xq,yq,zq) returns the heat flux for a
thermal problem at the 3-D points specified in xq, yq, and zq. This syntax is valid for both the steady-
state and transient thermal models.

[___] = evaluateHeatFlux(thermalresults,querypoints) returns the heat flux for a
thermal problem at the 2-D or 3-D points specified in querypoints. This syntax is valid for both the
steady-state and transient thermal models.

[___] = evaluateHeatFlux(___ ,iT) returns the heat flux for a thermal problem at the times
specified in iT. You can specify iT after the input arguments in any of the previous syntaxes.

The first dimension of qx, qy, and, in the 3-D case, qz corresponds to query points. The second
dimension corresponds to time steps iT.

[qx,qy] = evaluateHeatFlux(thermalresults) returns the heat flux for a 2-D problem at the
nodal points of the triangular mesh. The first dimension of qx and qy represents the node indices.
The second dimension represents time steps.

[qx,qy,qz] = evaluateHeatFlux(thermalresults) returns the heat flux for a 3-D thermal
problem at the nodal points of the tetrahedral mesh. The first dimension of qx, qy, and qz represents
the node indices. The second dimension represents time steps.

Examples

5 Functions

5-252

Heat Flux for 2-D Steady-State Thermal Model

For a 2-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points
specified by x and y coordinates.

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the geometry and include it in the model.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

Assuming that this geometry represents an iron plate, the thermal conductivity is 79 . 5 W /(mK).

thermalProperties(thermalmodel,'ThermalConductivity',79.5,'Face',1);

Apply a constant temperature of 500 K to the bottom of the plate (edge 3). Also, assume that the top
of the plate (edge 1) is insulated, and apply convection on the two sides of the plate (edges 2 and 4).

thermalBC(thermalmodel,'Edge',3,'Temperature',500);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',0);
thermalBC(thermalmodel,'Edge',[2 4], ...

 evaluateHeatFlux

5-253

 'ConvectionCoefficient',25, ...
 'AmbientTemperature',50);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
results = solve(thermalmodel)

results =
 SteadyStateThermalResults with properties:

 Temperature: [1541x1 double]
 XGradients: [1541x1 double]
 YGradients: [1541x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Evaluate heat flux at the nodal locations.

[qx,qy] = evaluateHeatFlux(results);

figure
pdeplot(thermalmodel,'FlowData',[qx qy])

Create a grid specified by x and y coordinates, and evaluate heat flux to the grid.

v = linspace(-0.5,0.5,11);
[X,Y] = meshgrid(v);

5 Functions

5-254

[qx,qy] = evaluateHeatFlux(results,X,Y);

Reshape the qTx and qTy vectors, and plot the resulting heat flux.

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
figure
quiver(X,Y,qx,qy)

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:) Y(:)]';
[qx,qy] = evaluateHeatFlux(results,querypoints);

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
figure
quiver(X,Y,qx,qy)

 evaluateHeatFlux

5-255

Heat Flux for 3-D Steady-State Thermal Model

For a 3-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points
specified by x, y, and z coordinates.

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the following 3-D geometry and include it in the model.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal

5 Functions

5-256

Assuming that this is a copper block, the thermal conductivity of the block is approximately
4 W /(cmK).

thermalProperties(thermalmodel,'ThermalConductivity',4);

Apply a constant temperature of 373 K to the left side of the block (face 1) and a constant
temperature of 573 K to the right side of the block (face 3).

thermalBC(thermalmodel,'Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);

Apply a heat flux boundary condition to the bottom of the block.

thermalBC(thermalmodel,'Face',4,'HeatFlux',-20);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]

 evaluateHeatFlux

5-257

 Mesh: [1x1 FEMesh]

Evaluate heat flux at the nodal locations.

[qx,qy,qz] = evaluateHeatFlux(thermalresults);

figure
pdeplot3D(thermalmodel,'FlowData',[qx qy qz])

Create a grid specified by x, y, and z coordinates, and evaluate heat flux to the grid.

[X,Y,Z] = meshgrid(1:26:100,1:6:20,1:11:50);

[qx,qy,qz] = evaluateHeatFlux(thermalresults,X,Y,Z);

Reshape the qx, qy, and qz vectors, and plot the resulting heat flux.

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)

5 Functions

5-258

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:) Y(:) Z(:)]';
[qx,qy,qz] = evaluateHeatFlux(thermalresults,querypoints);

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)

 evaluateHeatFlux

5-259

Heat Flux for Transient Thermal Model on Square

Solve a 2-D transient heat transfer problem on a square domain, and compute heat flow across a
convective boundary.

Create a thermal model for this problem.

thermalmodel = createpde('thermal','transient');

Create the geometry and include it in the model.

g = @squareg;
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.2 1.2])
ylim([-1.2 1.2])
axis equal

5 Functions

5-260

Assign the following thermal properties: thermal conductivity is 100 W /(m∘C), mass density is
7800 kg/m3, and specific heat is 500 J /(kg∘C).

thermalProperties(thermalmodel,'ThermalConductivity',100, ...
 'MassDensity',7800, ...
 'SpecificHeat',500);

Apply insulated boundary conditions on three edges and the free convection boundary condition on
the right edge.

thermalBC(thermalmodel,'Edge',[1 3 4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2,...
 'ConvectionCoefficient',5000, ...
 'AmbientTemperature',25);

Set the initial conditions: uniform room temperature across domain and higher temperature on the
top edge.

thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',1);

Generate a mesh and solve the problem using 0:1000:200000 as a vector of times.

generateMesh(thermalmodel);
tlist = 0:1000:200000;
thermalresults = solve(thermalmodel,tlist);

Create a grid specified by x and y coordinates, and evaluate heat flux to the grid.

 evaluateHeatFlux

5-261

v = linspace(-1,1,11);
[X,Y] = meshgrid(v);

[qx,qy] = evaluateHeatFlux(thermalresults,X,Y,1:length(tlist));

Reshape qx and qy, and plot the resulting heat flux for the 25th solution step.

tlist(25)

ans = 24000

figure
quiver(X(:),Y(:),qx(:,25),qy(:,25));
xlim([-1,1])
axis equal

Heat Flux for Transient Thermal Model on Two Squares Made of Different Materials

Solve the heat transfer problem for the following 2-D geometry consisting of a square and a diamond
made of different materials. Compute the heat flux, and plot it as a vector field.

Create a thermal model for transient analysis.

thermalmodel = createpde('thermal','transient');

5 Functions

5-262

Create the geometry and include it in the model.

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal

For the square region, assign the following thermal properties: thermal conductivity is 10 W /(m∘C),
mass density is 2 kg/m3, and specific heat is 0 . 1 J /(kg∘C).

thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);

For the diamond-shaped region, assign the following thermal properties: thermal conductivity is
2 W /(m∘C), mass density is 1 kg/m3, and specific heat is 0 . 1 J /(kg∘C).

 evaluateHeatFlux

5-263

thermalProperties(thermalmodel,'ThermalConductivity',2, ...
 'MassDensity',1, ...
 'SpecificHeat',0.1, ...
 'Face',2);

Assume that the diamond-shaped region is a heat source with the density of 4 W /m3.

internalHeatSource(thermalmodel,4,'Face',2);

Apply a constant temperature of 0∘C to the sides of the square plate.

thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);

Set the initial temperature to 0∘C.

thermalIC(thermalmodel,0);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);

The dynamic for this problem is very fast: the temperature reaches steady state in about 0.1 seconds.
To capture the interesting part of the dynamics, set the solution time to logspace(-2,-1,10). This
gives 10 logarithmically spaced solution times between 0.01 and 0.1. Solve the equation.

tlist = logspace(-2,-1,10);
thermalresults = solve(thermalmodel,tlist);
temp = thermalresults.Temperature;

Compute the heat flux density. Plot the solution with isothermal lines using a contour plot, and plot
the heat flux vector field using arrows.

[qTx,qTy] = evaluateHeatFlux(thermalresults);

figure
pdeplot(thermalmodel,'XYData',temp(:,10),'Contour','on', ...
 'FlowData',[qTx(:,10) qTy(:,10)], ...
 'ColorMap','hot')

5 Functions

5-264

Input Arguments
thermalresults — Solution of thermal problem
SteadyStateThermalResults object | TransientThermalResults object

Solution of a thermal problem, specified as a SteadyStateThermalResults object or a
TransientThermalResults object. Create thermalresults using the solve function.
Example: thermalresults = solve(thermalmodel)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. evaluateHeatFlux evaluates the heat flux at
the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) yq(i) zq(i)].
So xq, yq, and (if present) zq must have the same number of entries.

evaluateHeatFlux converts query points to column vectors xq(:), yq(:), and (if present) zq(:).
It returns the heat flux in a form of a column vector of the same size. To ensure that the dimensions of
the returned solution are consistent with the dimensions of the original query points, use reshape.
For example, use qx = reshape(qx,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

 evaluateHeatFlux

5-265

y-coordinate query points, specified as a real array. evaluateHeatFlux evaluates the heat flux at
the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i) yq(i) zq(i)].
So xq, yq, and (if present) zq must have the same number of entries.

evaluateHeatFlux converts query points to column vectors xq(:), yq(:), and (if present) zq(:).
It returns the heat flux in a form of a column vector of the same size. To ensure that the dimensions of
the returned solution is consistent with the dimensions of the original query points, use reshape. For
example, use qy = reshape(qy,size(yq)).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. evaluateHeatFlux evaluates the heat flux at
the 3-D coordinate points [xq(i) yq(i) zq(i)]. So xq, yq, and zq must have the same number of
entries.

evaluateHeatFlux converts query points to column vectors xq(:), yq(:), and (if present) zq(:).
It returns the heat flux in a form of a column vector of the same size. To ensure that the dimensions of
the returned solution is consistent with the dimensions of the original query points, use reshape. For
example, use qz = reshape(qz,size(zq)).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with two rows for 2-D geometry or three rows for 3-D
geometry. evaluateHeatFlux evaluates the heat flux at the coordinate points querypoints(:,i),
so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

iT — Time indices
vector of positive integers

Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

Output Arguments
qx — x-component of the heat flux
array

x-component of the heat flux, returned as an array. The first array dimension represents the node
index. The second array dimension represents the time step.

For query points that are outside the geometry, qx = NaN.

qy — y-component of the heat flux
array

5 Functions

5-266

y-component of the heat flux, returned as an array. The first array dimension represents the node
index. The second array dimension represents the time step.

For query points that are outside the geometry, qy = NaN.

qz — z-component of the heat flux
array

z-component of the heat flux, returned as an array. The first array dimension represents the node
index. The second array dimension represents the time step.

For query points that are outside the geometry, qz = NaN.

See Also
ThermalModel | SteadyStateThermalResults | TransientThermalResults |
evaluateHeatRate | evaluateTemperatureGradient | interpolateTemperature

Introduced in R2017a

 evaluateHeatFlux

5-267

evaluateHeatRate
Package: pde

Evaluate integrated heat flow rate normal to specified boundary

Syntax
Qn = evaluateHeatRate(thermalresults,RegionType,RegionID)

Description
Qn = evaluateHeatRate(thermalresults,RegionType,RegionID) returns the integrated
heat flow rate normal to the boundary specified by RegionType and RegionID.

Examples

Heat Flow From Face of Block

Compute the heat flow rate across a face of the block geometry.

Create a steady-state thermal model.

thermalmodel = createpde('thermal','steadystate');

Import the block geometry.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-268

Specify the thermal conductivity of the block.

thermalProperties(thermalmodel,'ThermalConductivity',80);

Apply constant temperatures on the opposite ends of the block. All other faces are insulated by
default.

thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',50);

Generate mesh.

generateMesh(thermalmodel,'GeometricOrder','linear');

Solve the thermal model.

thermalresults = solve(thermalmodel);

Compute the heat flow rate across face 3 of the block.

Qn = evaluateHeatRate(thermalresults,'Face',3)

Qn = 4.0000e+04

 evaluateHeatRate

5-269

Convection Cooling of Sphere

Compute the heat flow rate across the surface of the cooling sphere.

Create a thermal model for transient analysis.

thermalmodel = createpde('thermal','transient');

Create a sphere of radius 1, and assign it to the thermal model.

gm = multisphere(1);
thermalmodel.Geometry = gm;

Generate mesh.

generateMesh(thermalmodel,'GeometricOrder','linear');

Specify thermal properties of the sphere.

thermalProperties(thermalmodel,'ThermalConductivity',80, ...
 'SpecificHeat',460, ...
 'MassDensity',7800);

Apply a convection boundary condition on the surface of the sphere.

thermalBC(thermalmodel,'Face',1,...
 'ConvectionCoefficient',500, ...
 'AmbientTemperature',30);

Set the initial temperature.

thermalIC(thermalmodel,800);

Solve the thermal model.

tlist = 0:100:2000;
result = solve(thermalmodel,tlist);

Compute the heat flow rate across the surface of the sphere over time.

Qn = evaluateHeatRate(result,'Face',1);
plot(tlist,Qn)
xlabel('Time')
ylabel('Heat Flow Rate')

5 Functions

5-270

Input Arguments
thermalresults — Solution of thermal problem
SteadyStateThermalResults object

Solution of a thermal problem, specified as a SteadyStateThermalResults object. Create
thermalresults using the solve function.
Example: thermalresults = solve(thermalmodel)

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: Qn = evaluateHeatRate(thermalresults,'Face',3)
Data Types: char | string

RegionID — Geometric region ID
positive integer

Geometric region ID, specified as a positive integer. Find the region IDs using the pdegplot function
with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: Qn = evaluateHeatRate(thermalresults,'Face',3)

 evaluateHeatRate

5-271

Data Types: double

Output Arguments
Qn — Heat flow rate
real number | vector of real numbers

Heat flow rate, returned as a real number or, for time-dependent results, a vector of real numbers.
This value represents the integrated heat flow rate, measured in energy per unit time, flowing in the
direction normal to the boundary. Qn is positive if the heat flows out of the domain, and negative if the
heat flows into the domain.

See Also
ThermalModel | SteadyStateThermalResults | TransientThermalResults |
evaluateHeatFlux | evaluateTemperatureGradient | interpolateTemperature

Introduced in R2017a

5 Functions

5-272

evaluatePrincipalStrain
Package: pde

Evaluate principal strain at nodal locations

Syntax
pStrain = evaluatePrincipalStrain(structuralresults)

Description
pStrain = evaluatePrincipalStrain(structuralresults) evaluates principal strain at
nodal locations using strain values from structuralresults. For transient and frequency response
structural models, evaluatePrincipalStrain evaluates principal strain for all time- or frequency-
steps, respectively.

Examples

Octahedral Shear Strain for Bimetallic Cable Under Tension

Solve a static structural model representing a bimetallic cable under tension, and compute octahedral
shear strain.

Create a structural model.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

 evaluatePrincipalStrain

5-273

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

5 Functions

5-274

 Mesh: [1x1 FEMesh]

Evaluate the principal strain at nodal locations.

pStrain = evaluatePrincipalStrain(structuralresults);

Use the principal strain to evaluate the first and second invariant of strain.

I1 = pStrain.e1 + pStrain.e2 + pStrain.e3;
I2 = pStrain.e1.*pStrain.e2 + ...
 pStrain.e2.*pStrain.e3 + ...
 pStrain.e3.*pStrain.e1;
tauOct = sqrt(2*(I1.^2 -3*I2))/3;
pdeplot3D(structuralmodel,'ColorMapData',tauOct)

Principal Strain for 3-D Structural Dynamic Problem

Evaluate the principal strain and octahedral shear strain in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

 evaluatePrincipalStrain

5-275

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3,...
 'YDisplacement',1E-4,...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

5 Functions

5-276

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

Evaluate the principal strain in the beam.

pStrain = evaluatePrincipalStrain(structuralresults);

Use the principal strain to evaluate the first and second invariants.

I1 = pStrain.e1 + pStrain.e2 + pStrain.e3;
I2 = pStrain.e1.*pStrain.e2 + ...
 pStrain.e2.*pStrain.e3 + ...
 pStrain.e3.*pStrain.e1;

Use the stress invariants to compute the octahedral shear strain.

tauOct = sqrt(2*(I1.^2 -3*I2))/3;

Plot the results.

figure
pdeplot3D(structuralmodel,'ColorMapData',tauOct(:,end))

 evaluatePrincipalStrain

5-277

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

Output Arguments
pStrain — Principal strain at nodal locations
structure array

Principal strain at the nodal locations, returned as a structure array.

See Also
StructuralModel | StaticStructuralResults | interpolateDisplacement |
interpolateStress | interpolateStrain | interpolateVonMisesStress |
evaluateReaction | evaluatePrincipalStress

Introduced in R2017b

5 Functions

5-278

evaluatePrincipalStress
Package: pde

Evaluate principal stress at nodal locations

Syntax
pStress = evaluatePrincipalStress(structuralresults)

Description
pStress = evaluatePrincipalStress(structuralresults) evaluates principal stress at
nodal locations using stress values from structuralresults. For transient and frequency response
structural models, evaluatePrincipalStress evaluates principal stress for all time- and
frequency-steps, respectively.

Examples

Octahedral Shear Stress for Bimetallic Cable Under Tension

Solve a static structural model representing a bimetallic cable under tension, and compute octahedral
shear stress.

Create a structural model.

structuralmodel = createpde('structural','static-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

 evaluatePrincipalStress

5-279

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

5 Functions

5-280

 Mesh: [1x1 FEMesh]

Evaluate the principal stress at nodal locations.

pStress = evaluatePrincipalStress(structuralresults);

Use the principal stress to evaluate the first and second invariant of stress.

I1 = pStress.s1 + pStress.s2 + pStress.s3;
I2 = pStress.s1.*pStress.s2 + ...
 pStress.s2.*pStress.s3 + ...
 pStress.s3.*pStress.s1;
tauOct = sqrt(2*(I1.^2 -3*I2))/3;
pdeplot3D(structuralmodel,'ColorMapData',tauOct)

Principal Stress for 3-D Structural Dynamic Problem

Evaluate the principal stress and octahedral shear stress in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

 evaluatePrincipalStress

5-281

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3,...
 'YDisplacement',1E-4,...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

5 Functions

5-282

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

Evaluate the principal stress in the beam.

pStress = evaluatePrincipalStress(structuralresults);

Use the principal stress to evaluate the first and second invariants.

I1 = pStress.s1 + pStress.s2 + pStress.s3;
I2 = pStress.s1.*pStress.s2 + ...
 pStress.s2.*pStress.s3 + ...
 pStress.s3.*pStress.s1;

Use the stress invariants to compute the octahedral shear stress.

tauOct = sqrt(2*(I1.^2 -3*I2))/3;

Plot the results.

figure
pdeplot3D(structuralmodel,'ColorMapData',tauOct(:,end))

 evaluatePrincipalStress

5-283

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

Output Arguments
pStress — Principal stress at nodal locations
structure array

Principal stress at the nodal locations, returned as a structure array.

See Also
StructuralModel | StaticStructuralResults | interpolateDisplacement |
interpolateStress | interpolateStrain | interpolateVonMisesStress |
evaluateReaction | evaluatePrincipalStrain

Introduced in R2017b

5 Functions

5-284

evaluateReaction
Package: pde

Evaluate reaction forces on boundary

Syntax
F = evaluateReaction(structuralresults,RegionType,RegionID)

Description
F = evaluateReaction(structuralresults,RegionType,RegionID) evaluates reaction
forces on the boundary specified by RegionType and RegionID. The function uses the global
Cartesian coordinate system. For transient and frequency response structural models,
evaluateReaction evaluates reaction forces for all time- and frequency-steps, respectively.

Examples

Reaction Forces on Restrained End of Prismatic Bar

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Create a cuboid geometry and include it in the model. Plot the geometry.

structuralmodel.Geometry = multicuboid(0.01,0.01,0.05);
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5);

 evaluateReaction

5-285

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Fix one end of the bar and apply pressure to the opposite end.

structuralBC(structuralmodel,'Face',1,'Constraint','fixed')

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 1
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []

5 Functions

5-286

 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

structuralBoundaryLoad(structuralmodel,'Face',2,'Pressure',100)

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 2
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 100
 TranslationalStiffness: []
 Label: []

Generate a mesh and solve the problem.

generateMesh(structuralmodel,'Hmax',0.003);
structuralresults = solve(structuralmodel);

Compute the reaction forces on the fixed end.

reaction = evaluateReaction(structuralresults,'Face',1)

reaction = struct with fields:
 Fx: -1.3620e-06
 Fy: 2.2303e-06
 Fz: 0.0103

Reaction Forces for 3-D Structural Dynamic Problem

Evaluate the reaction forces at the fixed end of a beam subject to harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

 evaluateReaction

5-287

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

5 Functions

5-288

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

Compute the reaction forces on the fixed end.

reaction = evaluateReaction(structuralresults,'Face',5)

reaction = struct with fields:
 Fx: [101x1 double]
 Fy: [101x1 double]
 Fz: [101x1 double]

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: evaluateReaction(structuralresults,'Face',2)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: evaluateReaction(structuralresults,'Face',2)
Data Types: double

Output Arguments
F — Reaction forces
structure array

Reaction forces, returned as a structure array. The array fields represent the integrated reaction
forces and surface traction vector, which are computed by using the state of stress on the boundary
and the outward normal.

 evaluateReaction

5-289

See Also
StructuralModel | StaticStructuralResults | interpolateDisplacement |
interpolateStress | interpolateStrain | interpolateVonMisesStress |
evaluatePrincipalStress | evaluatePrincipalStrain

Introduced in R2017b

5 Functions

5-290

evaluateStrain
Package: pde

Evaluate strain for dynamic structural analysis problem

Syntax
nodalStrain = evaluateStrain(structuralresults)

Description
nodalStrain = evaluateStrain(structuralresults) evaluates strain at nodal locations for
all time- or frequency-steps.

Examples

Strain for 3-D Structural Dynamic Problem

Evaluate the strain in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 evaluateStrain

5-291

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0,0,0],'Velocity',[0,0,0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-292

Evaluate the strain in the beam.

strain = evaluateStrain(structuralresults);

Plot the normal strain along x-direction for the last time-step.

figure
pdeplot3D(structuralmodel,'ColorMapData',strain.exx(:,end))
title('x-Direction Normal Strain in the Beam of the Last Time-Step')

Input Arguments
structuralresults — Solution of dynamic structural analysis problem
TransientStructuralResults object | FrequencyStructuralResults object

Solution of a dynamic structural analysis problem, specified as a TransientStructuralResults or
FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel,tlist)

Output Arguments
nodalStrain — Strain at nodes
FEStruct object

 evaluateStrain

5-293

Strain at the nodes, returned as an FEStruct object with the properties representing the
components of strain tensor at nodal locations. Properties of an FEStruct object are read-only.

See Also
StructuralModel | TransientStructuralResults | interpolateDisplacement |
interpolateVelocity | interpolateAcceleration | interpolateStress |
interpolateStrain | interpolateVonMisesStress | evaluateStress |
evaluateVonMisesStress | evaluateReaction | evaluatePrincipalStress |
evaluatePrincipalStrain

Introduced in R2018a

5 Functions

5-294

evaluateStress
Package: pde

Evaluate stress for dynamic structural analysis problem

Syntax
nodalStress = evaluateStress(structuralresults)

Description
nodalStress = evaluateStress(structuralresults) evaluates stress at nodal locations for
all time- or frequency-steps.

Examples

Stress for 3-D Structural Dynamic Problem

Evaluate the stress in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 evaluateStress

5-295

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0,0,0],'Velocity',[0,0,0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-296

Evaluate stress in the beam.

stress = evaluateStress(structuralresults);

Plot the normal stress along x-direction for the last time-step.

figure
pdeplot3D(structuralmodel,'ColorMapData',stress.sxx(:,end))
title('x-Direction Normal Stress in the Beam of the Last Time-Step')

Input Arguments
structuralresults — Solution of dynamic structural analysis problem
TransientStructuralResults object | FrequencyStructuralResults object

Solution of a dynamic structural analysis problem, specified as a TransientStructuralResults or
FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel,tlist)

Output Arguments
nodalStress — Stress at nodes
FEStruct object

 evaluateStress

5-297

Stress at the nodes, returned as an FEStruct object with the properties representing the
components of a stress tensor at nodal locations. Properties of an FEStruct object are read-only.

See Also
StructuralModel | TransientStructuralResults | interpolateDisplacement |
interpolateVelocity | interpolateAcceleration | interpolateStress |
interpolateStrain | interpolateVonMisesStress | evaluateStrain |
evaluateVonMisesStress | evaluateReaction | evaluatePrincipalStress |
evaluatePrincipalStrain

Introduced in R2018a

5 Functions

5-298

evaluateTemperatureGradient
Package: pde

Evaluate temperature gradient of a thermal solution at arbitrary spatial locations

Syntax
[gradTx,gradTy] = evaluateTemperatureGradient(thermalresults,xq,yq)
[gradTx,gradTy,gradTz] = evaluateTemperatureGradient(thermalresults,xq,yq,zq)
[___] = evaluateTemperatureGradient(thermalresults,querypoints)
[___] = evaluateTemperatureGradient(___ ,iT)

Description
[gradTx,gradTy] = evaluateTemperatureGradient(thermalresults,xq,yq) returns the
interpolated values of temperature gradients of the thermal model solution thermalresults at the
2-D points specified in xq and yq. This syntax is valid for both the steady-state and transient thermal
models.

[gradTx,gradTy,gradTz] = evaluateTemperatureGradient(thermalresults,xq,yq,zq)
returns the interpolated temperature gradients at the 3-D points specified in xq, yq, and zq. This
syntax is valid for both the steady-state and transient thermal models.

[___] = evaluateTemperatureGradient(thermalresults,querypoints) returns the
interpolated values of the temperature gradients at the points specified in querypoints. This syntax
is valid for both the steady-state and transient thermal models.

[___] = evaluateTemperatureGradient(___ ,iT) returns the interpolated values of the
temperature gradients for the time-dependent equation at times iT. Specify iT after the input
arguments in any of the previous syntaxes.

The first dimension of gradTx, gradTy, and, in 3-D case, gradTz corresponds to query points. The
second dimension corresponds to time-steps iT.

Examples

Temperature Gradients for 2-D Steady-State Thermal Model

For a 2-D steady-state thermal model, evaluate temperature gradients at the nodal locations and at
the points specified by x and y coordinates.

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the geometry and include it in the model.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');

 evaluateTemperatureGradient

5-299

geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

Assuming that this geometry represents an iron plate, the thermal conductivity is 79 . 5 W /(mK).

thermalProperties(thermalmodel,'ThermalConductivity',79.5,'Face',1);

Apply a constant temperature of 300 K to the bottom of the plate (edge 3). Also, assume that the top
of the plate (edge 1) is insulated, and apply convection on the two sides of the plate (edges 2 and 4).

thermalBC(thermalmodel,'Edge',3,'Temperature',300);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',0);
thermalBC(thermalmodel,'Edge',[2 4], ...
 'ConvectionCoefficient',25, ...
 'AmbientTemperature',50);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
results = solve(thermalmodel)

results =
 SteadyStateThermalResults with properties:

 Temperature: [1541x1 double]
 XGradients: [1541x1 double]

5 Functions

5-300

 YGradients: [1541x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

The solver finds the temperatures and temperature gradients at the nodal locations. To access these
values, use results.Temperature, results.XGradients, and so on. For example, plot the
temperature gradients at nodal locations.

figure;
pdeplot(thermalmodel, ...
 'FlowData',[results.XGradients results.YGradients]);

Create a grid specified by x and y coordinates, and evaluate temperature gradients to the grid.

v = linspace(-0.5,0.5,11);
[X,Y] = meshgrid(v);

[gradTx,gradTy] = ...
evaluateTemperatureGradient(results,X,Y);

Reshape the gradTx and gradTy vectors, and plot the resulting temperature gradients.

gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
figure
quiver(X,Y,gradTx,gradTy)

 evaluateTemperatureGradient

5-301

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:) Y(:)]';
[gradTx,gradTy] = ...
evaluateTemperatureGradient(results,querypoints);

gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
figure
quiver(X,Y,gradTx,gradTy)

5 Functions

5-302

Temperature Gradients for 3-D Steady-State Thermal Model

For a 3-D steady-state thermal model, evaluate temperature gradients at the nodal locations and at
the points specified by x, y, and z coordinates.

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the following 3-D geometry and include it in the model.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal

 evaluateTemperatureGradient

5-303

Assuming that this is a copper block, the thermal conductivity of the block is approximately
4 W /(cmK).

thermalProperties(thermalmodel,'ThermalConductivity',4);

Apply a constant temperature of 373 K to the left side of the block (edge 1) and a constant
temperature of 573 K to the right side of the block.

thermalBC(thermalmodel,'Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);

Apply a heat flux boundary condition to the bottom of the block.

thermalBC(thermalmodel,'Face',4,'HeatFlux',-20);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]

5 Functions

5-304

 Mesh: [1x1 FEMesh]

The solver finds the values of temperatures and temperature gradients at the nodal locations. To
access these values, use results.Temperature, results.XGradients, and so on.

Create a grid specified by x, y, and z coordinates, and evaluate temperature gradients to the grid.

[X,Y,Z] = meshgrid(1:26:100,1:6:20,1:11:50);

[gradTx,gradTy,gradTz] = ...
evaluateTemperatureGradient(thermalresults,X,Y,Z);

Reshape the gradTx, gradTy, and gradTz vectors, and plot the resulting temperature gradients.

gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
gradTz = reshape(gradTz,size(Z));

figure
quiver3(X,Y,Z,gradTx,gradTy,gradTz)
axis equal
xlabel('x')
ylabel('y')
zlabel('z')

Alternatively, you can specify the grid by using a matrix of query points.

 evaluateTemperatureGradient

5-305

querypoints = [X(:) Y(:) Z(:)]';
[gradTx,gradTy,gradTz] = ...
evaluateTemperatureGradient(thermalresults,querypoints);

gradTx = reshape(gradTx,size(X));
gradTy = reshape(gradTy,size(Y));
gradTz = reshape(gradTz,size(Z));

figure
quiver3(X,Y,Z,gradTx,gradTy,gradTz)
axis equal
xlabel('x')
ylabel('y')
zlabel('z')

Temperature Gradients for Transient Thermal Model on Square

Solve a 2-D transient heat transfer problem on a square domain and compute temperature gradients
at the convective boundary.

Create a transient thermal model for this problem.

thermalmodel = createpde('thermal','transient');

Create the geometry and include it in the model.

5 Functions

5-306

g = @squareg;
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.2 1.2])
ylim([-1.2 1.2])
axis equal

Assign the following thermal properties: thermal conductivity is 100 W /(m∘C), mass density is
7800 kg/m3, and specific heat is 500 J /(kg∘C).

thermalProperties(thermalmodel,'ThermalConductivity',100, ...
 'MassDensity',7800, ...
 'SpecificHeat',500);

Apply insulated boundary conditions on three edges and the free convection boundary condition on
the right edge.

thermalBC(thermalmodel,'Edge',[1 3 4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2, ...
 'ConvectionCoefficient',5000, ...
 'AmbientTemperature',25);

Set the initial conditions: uniform room temperature across domain and higher temperature on the
left edge.

thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',4);

 evaluateTemperatureGradient

5-307

Generate a mesh and solve the problem using 0:1000:200000 as a vector of times.

generateMesh(thermalmodel);
tlist = 0:1000:200000;
thermalresults = solve(thermalmodel,tlist);

Define a line at convection boundary and compute temperature gradients across that line.

X = -1:0.1:1;
Y = ones(size(X));

[gradTx,gradTy] = evaluateTemperatureGradient(thermalresults, ...
 X,Y,1:length(tlist));

Plot the interpolated gradient component gradTx along the x axis for the following values from the
time interval tlist.

figure
t = [51:50:201];
for i = t
 p(i) = plot(X,gradTx(:,i),'DisplayName', ...
 strcat('t=',num2str(tlist(i))));
 hold on
end
legend(p(t))
xlabel('x')
ylabel('gradTx')

5 Functions

5-308

Input Arguments
thermalresults — Solution of thermal problem
SteadyStateThermalResults object | TransientThermalResults object

Solution of a thermal problem, specified as a SteadyStateThermalResults object or a
TransientThermalResults object. Create thermalresults using the solve function.
Example: thermalresults = solve(thermalmodel)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. evaluateTemperatureGradient evaluates
temperature gradient at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)]. So xq, yq, and (if present) zq must have the same number of entries.

evaluateTemperatureGradient converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns the temperature gradient in a form of a column vector of the same size. To
ensure that the dimensions of the returned solution is consistent with the dimensions of the original
query points, use reshape. For example, use gradTx = reshape(gradTx,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. evaluateTemperatureGradient evaluates the
temperature gradient at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)]. So xq, yq, and (if present) zq must have the same number of entries.

evaluateTemperatureGradient converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns the temperature gradient in a form of a column vector of the same size. To
ensure that the dimensions of the returned solution is consistent with the dimensions of the original
query points, use reshape. For example, use gradTy = reshape(gradTy,size(yq)).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. evaluateTemperatureGradient evaluates the
temperature gradient at the 3-D coordinate points [xq(i) yq(i) zq(i)]. So xq, yq, and zq must
have the same number of entries.

evaluateTemperatureGradient converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns the temperature gradient in a form of a column vector of the same size. To
ensure that the dimensions of the returned solution is consistent with the dimensions of the original
query points, use reshape. For example, use gradTz = reshape(gradTz,size(zq)).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D
geometry. evaluateTemperatureGradient evaluates the temperature gradient at the coordinate

 evaluateTemperatureGradient

5-309

points querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query
point.
Example: For 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

iT — Time indices
vector of positive integers

Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

Output Arguments
gradTx — x-component of the temperature gradient
matrix

x-component of the temperature gradient, returned as a matrix. For query points that are outside the
geometry, gradTx = NaN.

gradTy — y-component of the temperature gradient
matrix

y-component of the temperature gradient, returned as a matrix. For query points that are outside the
geometry, gradTy = NaN.

gradTz — z-component of the temperature gradient
matrix

z-component of the temperature gradient, returned as a matrix. For query points that are outside the
geometry, gradTz = NaN.

See Also
ThermalModel | SteadyStateThermalResults | TransientThermalResults |
evaluateHeatFlux | evaluateHeatRate | interpolateTemperature

Introduced in R2017a

5 Functions

5-310

evaluateVonMisesStress
Package: pde

Evaluate von Mises stress for dynamic structural analysis problem

Syntax
vmStress = evaluateVonMisesStress(structuralresults)

Description
vmStress = evaluateVonMisesStress(structuralresults) evaluates von Mises stress at
nodal locations for all time- or frequency-steps.

Examples

von Mises Stress for 3-D Structural Dynamic Problem

Evaluate the von Mises stress in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 evaluateVonMisesStress

5-311

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-312

Evaluate the von Mises stress in the beam.

vmStress = evaluateVonMisesStress(structuralresults);

Plot the von Mises stress for the last time-step.

figure
pdeplot3D(structuralmodel,'ColorMapData',vmStress(:,end))
title('von Mises Stress in the Beam for the Last Time-Step')

Input Arguments
structuralresults — Solution of dynamic structural analysis problem
TransientStructuralResults object | FrequencyStructuralResults object

Solution of a dynamic structural analysis problem, specified as a TransientStructuralResults or
FrequencyStructuralResults object. Create structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel,tlist)

Output Arguments
vmStress — Von Mises Stress at nodes
matrix

 evaluateVonMisesStress

5-313

Von Mises Stress at the nodes, returned as a matrix. The rows of the matrix contain the values of von
Mises stress at nodal locations, while the columns correspond to the time or frequency steps.

See Also
StructuralModel | TransientStructuralResults | interpolateDisplacement |
interpolateVelocity | interpolateAcceleration | interpolateStress |
interpolateStrain | interpolateVonMisesStress | evaluateStrain | evaluateStress |
evaluateReaction | evaluatePrincipalStress | evaluatePrincipalStrain

Introduced in R2018a

5 Functions

5-314

FEMesh Properties
Mesh object

Description
An FEMesh object contains a description of the finite element mesh. A PDEModel container has an
FEMesh object in its Mesh property.

Generate a mesh for your model using the generateMesh function.

Properties
Properties

Nodes — Mesh nodes
matrix

Mesh nodes, returned as a matrix. Nodes is a D-by-Nn matrix, where D is the number of geometry
dimensions (2 or 3), and Nn is the number of nodes in the mesh. Each column of Nodes contains the
x, y, and in 3-D, z coordinates for that mesh node.

2-D meshes have nodes at the mesh triangle corners for linear elements, and at the corners and edge
midpoints for 'quadratic' elements. 3-D meshes have nodes at tetrahedral vertices, and the
'quadratic' elements have additional nodes at the center points of each edge. See “Mesh Data” on
page 2-153.
Data Types: double

Elements — Mesh elements
matrix

Mesh elements, returned as an M-by-Ne matrix, where Ne is the number of elements in the mesh, and
M is:

• 3 for 2-D triangles with 'linear' GeometricOrder
• 6 for 2-D triangles with 'quadratic' GeometricOrder
• 4 for 3-D tetrahedra with 'linear' GeometricOrder
• 10 for 3-D tetrahedra with 'quadratic' GeometricOrder

Each column in Elements contains the indices of the nodes for that mesh element.
Data Types: double

MaxElementSize — Target maximum mesh element size
positive real number

Target maximum mesh element size, returned as a positive real number. The maximum mesh element
size is the length of the longest edge in the mesh. The generateMesh Hmax name-value pair sets the
target maximum size at the time it creates the mesh. generateMesh can occasionally create a mesh
with some elements that exceed MaxElementSize by a few percent.

 FEMesh Properties

5-315

Data Types: double

MinElementSize — Target minimum mesh element size
positive real number

Target minimum mesh element size, returned as a positive real number. The minimum mesh element
size is the length of the shortest edge in the mesh. The Hmin name-value pair passed to the
generateMesh function sets the target minimum size the at the time it creates the mesh.
generateMesh can occasionally create a mesh with some elements that are smaller than
MinElementSize.
Data Types: double

MeshGradation — Mesh growth rate
1.5 (default) | scalar strictly between 1 and 2

Mesh growth rate, returned as a scalar strictly between 1 and 2.
Data Types: double

GeometricOrder — Element polynomial order
'linear' | 'quadratic'

Element polynomial order, returned as 'linear' or 'quadratic'. See Elements or “Mesh Data”
on page 2-153.
Data Types: double

See Also
generateMesh | meshToPet | PDEModel | findElements | findNodes | meshQuality | area |
volume

Topics
“Solve Problems Using PDEModel Objects” on page 2-2
“Finite Element Method Basics” on page 1-11
“Mesh Data” on page 2-153

Introduced in R2015a

5 Functions

5-316

extrude
Package: pde

Vertically extrude 2-D geometry or specified faces of 3-D geometry

Syntax
extrude(g,height)
extrude(g,FaceID,height)
h = extrude(___)

Description
extrude(g,height) creates a 3-D discrete geometry by extruding a 2-D geometry along the z-axis
by the value of height. You can create a stacked multilayered 3-D discrete geometry by specifying
height as a vector of thicknesses of the layers.

extrude(g,FaceID,height) extrudes specified faces of a 3-D geometry along the direction normal
to the faces. Here, FaceID specifies which faces to extrude. You can extrude faces into multiple
layers by specifying height as a vector of thicknesses of the layers.

All of the specified faces must be flat and have the same orientation. The extruded volumes must not
intersect with each other or with the existing geometry.

h = extrude(___) returns a handle h. If the original geometry is a DiscreteGeometry object,
then the function modifies the original geometry, and h a handle to the modified DiscreteGeometry
object. If the original geometry is an AnalyticGeometry object, then h is a handle to a new
DiscreteGeometry object. In this case, the original geometry remains unchanged.

Examples

Single Layer Extrusion

Create a 3-D geometry by extruding a 2-D geometry along the z-axis.

Create a PDE model.

model = createpde;

Import a 2-D geometry.

g = importGeometry(model,'PlateHolePlanar.stl');

Plot the geometry and display the face labels.

pdegplot(g,'FaceLabels','on')

 extrude

5-317

Create a 3-D geometry by extruding the 2-D geometry along the z-axis by 5 units.

extrude(g,5)

ans =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 7
 NumEdges: 15
 NumVertices: 10
 Vertices: [10x3 double]

Plot the new geometry and display the face labels.

pdegplot(g,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-318

Multiple Layer Extrusion

Create a stacked multilayered 3-D geometry by extruding a 2-D geometry along the z-axis.

Create a PDE model.

model = createpde;

Import a geometry.

g = importGeometry(model,'PlateHolePlanar.stl')

g =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Plot the geometry and display the face labels.

pdegplot(g,'FaceLabels','on')

 extrude

5-319

Create a 3-D geometry consisting of three blocks with holes stacked on top of each other. The heights
of the blocks are 5, 10, and 20 units.

extrude(g,[5,10,20])

ans =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 19
 NumEdges: 35
 NumVertices: 20
 Vertices: [20x3 double]

Plot the new geometry and display the cell labels.

pdegplot(g,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-320

Geometry with an Added Vertex

Extrude a 2-D geometry that has a vertex added by the addVertex function. The layers of the
extruded geometry all have a corresponding vertex, but there are no edges between these vertices.

Create a PDE model.

model = createpde;

Import a geometry.

g = importGeometry(model,'PlateHolePlanar.stl');

Plot the geometry and display the vertex labels.

pdegplot(g,'VertexLabels','on')

 extrude

5-321

Add a new vertex on the right edge.

addVertex(g,'Coordinates',[10 12]);

Plot the new geometry and display the vertex labels.

pdegplot(g,'FaceLabels','on','VertexLabels','on')

5 Functions

5-322

Create a 3-D geometry consisting of three blocks with holes stacked on top of each other. The heights
of the blocks are 5, 10, and 20 units.

extrude(g,[5,10,20])

ans =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 19
 NumEdges: 35
 NumVertices: 24
 Vertices: [24x3 double]

Plot the new geometry and display the vertex labels. The extrude function replicates the added
vertex V6 into three new vertices: V12, V18, and V24. It does not create edges between these
vertices.

pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)

 extrude

5-323

Geometry with an Added Face

Extrude a 2-D geometry that has a face added by the addFace function.

Create a PDE model.

model = createpde;

Import a geometry.

g = importGeometry(model,'PlateHolePlanar.stl');

Plot the geometry and display the face and edge labels.

pdegplot(g,'FaceLabels','on','EdgeLabels','on')

5 Functions

5-324

Fill the hole in the center by adding a face.

addFace(g,5)

ans =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 2
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Plot the modified geometry.

pdegplot(g,'FaceLabels','on')

 extrude

5-325

Create a 3-D geometry by extruding the 2-D geometry along the z-axis by 2 units.

extrude(g,2)

ans =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 9
 NumEdges: 15
 NumVertices: 10
 Vertices: [10x3 double]

Plot the new geometry and display the cell labels.

pdegplot(g,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-326

Faces of 3-D Geometry

Extrude specified faces of a 3-D geometry.

Import the geometry and plot it with the face and edge labels.

g = importGeometry('PlateHolePlanar.stl');
pdegplot(g,'FaceLabels','on','EdgeLabels','on')

 extrude

5-327

Fill the hole in the center by adding a face. Plot the modified geometry.

addFace(g,5);
pdegplot(g,'FaceLabels','on')

5 Functions

5-328

Create a 3-D geometry by extruding the 2-D geometry along the z-axis by 2 units.

extrude(g,2);

Plot the new geometry with the cell and face labels.

pdegplot(g,'CellLabels','on','Facelabels','on','FaceAlpha',0.5)

 extrude

5-329

Now, extrude the center face of the geometry by 5 units.

extrude(g,4,5);

Plot the resulting geometry with the cell labels.

pdegplot(g,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-330

Now, call extrude again, and this time specify a vector of heights. The function extrudes all specified
faces by each of the specified heights, which creates multiple layers.

extrude(g,[1 2],[3 4]);
pdegplot(g,'CellLabels','on','FaceAlpha',0.5)

 extrude

5-331

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

height — Cell heights
positive real number | vector of positive real numbers

Cell heights, specified as a positive real number or a vector of positive real numbers.

If height is a vector and g is a 2-D geometry, then height(i) specifies the height of the ith layer of
a multilayered (stacked) 3-D geometry. Each layer constitutes a new cell.

If g is a 3-D geometry, the function extrudes all specified faces into several layers, with height(i)
specifying the height of the ith layer.
Example: extrude(g,5.5)

FaceID — Faces to extrude in 3-D geometry
positive real number | vector of positive real numbers

Faces to extrude in 3-D geometry, specified as a positive real number or a vector of positive real
numbers. If height is a vector, then the function extrudes all specified faces into several layers,
same as it does for 2-D geometries.

5 Functions

5-332

Output Arguments
h — Resulting geometry
handle

Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object,
then h is a handle to the modified DiscreteGeometry object g. If g is an AnalyticGeometry
object, then h is a handle to a new DiscreteGeometry object. In this case, the original geometry g
remains unchanged.

Tips
• extrude modifies a geometry, but it does not modify the corresponding mesh. After modifying a

geometry, regenerate the mesh to ensure a proper mesh association with the new geometry.
• If a 2-D geometry has new vertices added by using the addVertex function, extrude replicates

the new vertices on each new layer of the extruded 3-D geometry, but it does not connect these
vertices by edges.

• If g is an AnalyticGeometry object, and you want to replace it with the extruded discrete 3-D
geometry, assign the output to the original geometry, for example, g = extrude(g,20).

See Also
DiscreteGeometry Properties | AnalyticGeometry Properties | addVertex | addFace | pdegplot |
importGeometry | generateMesh | multicuboid | multicylinder | multisphere

Introduced in R2020b

 extrude

5-333

faceEdges
Find edges attached to specified faces

Syntax
EdgeID = faceEdges(g,RegionID)
EdgeID = faceEdges(g,RegionID,FilterType)

Description
EdgeID = faceEdges(g,RegionID) finds edges attached to the faces with ID numbers listed in
RegionID.

EdgeID = faceEdges(g,RegionID,FilterType) returns internal, external, or all edges attached
to the faces with ID numbers listed in RegionID. This syntax is valid for 3-D geometries only.

Examples

Edges Attached to Specified Faces of 3-D Geometry

Find edges attached to the top and bottom faces of a block.

Create a block geometry.

gm = multicuboid(3,2,1)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 6
 NumEdges: 12
 NumVertices: 8
 Vertices: [8x3 double]

Plot the geometry with the face labels.

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)

5 Functions

5-334

Find edges attached to faces 1 and 2.

edgeIDs = faceEdges(gm,[1 2])

edgeIDs = 1×8

 1 2 3 4 5 6 7 8

Plot the geometry with the edge labels.

figure
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)

 faceEdges

5-335

Edges Attached to Specified Faces of 2-D Geometry

Find edges attached to two faces of the L-shaped membrane.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in
the file lshapeg.

model = createpde();
gm = geometryFromEdges(model,@lshapeg)

gm =
 AnalyticGeometry with properties:

 NumCells: 0
 NumFaces: 3
 NumEdges: 10
 NumVertices: 8
 Vertices: [8x2 double]

Plot the geometry with the face labels.

pdegplot(gm,'FaceLabels','on')

5 Functions

5-336

Find edges attached to faces 1 and 2.

edgeIDs = faceEdges(gm,[1 2])

edgeIDs = 1×8

 1 2 3 6 7 8 9 10

Plot the geometry with the edge labels.

figure
pdegplot(gm,'EdgeLabels','on')

 faceEdges

5-337

Edges Attached to Internal and External Faces

Find edges attached to the side face of the inner cuboid in a geometry consisting of two nested
cuboids.

Create a geometry that consists of two nested cuboids of the same height.

gm = multicuboid([2 5],[4 10],3)

gm =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 12
 NumEdges: 24
 NumVertices: 16
 Vertices: [16x3 double]

Plot the geometry with the face labels.

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)

5 Functions

5-338

Find all edges attached to the side face of the inner cuboid.

edgeIDs = faceEdges(gm,6)

edgeIDs = 1×4

 1 5 10 12

From all edges attached to that face, return the edges attached to only the internal faces. Internal
faces are faces shared between multiple cells.

edgeIDs = faceEdges(gm,6,'internal')

edgeIDs = 1×2

 10 12

From all edges attached to that face, return the edges attached to the external faces.

edgeIDs = faceEdges(gm,6,'external')

edgeIDs = 1×2

 1 5

Plot the geometry with the edge labels.

 faceEdges

5-339

pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

RegionID — Face ID
positive number | vector of positive numbers

Face ID, specified as a positive number or a vector of positive numbers. Each number represents a
face ID.

FilterType — Type of edges to return
'all' (default) | 'internal' | 'external'

Type of edges to return, specified as 'internal', 'external', or 'all'. Depending on this
argument, faceEdges returns these types of faces for a 3-D geometry:

• 'internal' — Edges attached to only internal faces. Internal faces are faces shared between
multiple cells.

• 'external' — Edges attached to only external faces. External faces are faces not shared
between multiple cells.

5 Functions

5-340

• 'all' — All edges attached to the specified cells.

Output Arguments
EdgeID — IDs of edges attached to specified faces
positive number | vector of positive numbers

IDs of edges attached to the specified faces, returned as a positive number or a vector of positive
numbers.

See Also
cellEdges | cellFaces | facesAttachedToEdges | nearestEdge | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

 faceEdges

5-341

facesAttachedToEdges
Find faces attached to specified edges

Syntax
FaceID = facesAttachedToEdges(g,RegionID)
FaceID = facesAttachedToEdges(g,RegionID,FilterType)

Description
FaceID = facesAttachedToEdges(g,RegionID) finds faces attached to the edges with ID
numbers listed in RegionID.

FaceID = facesAttachedToEdges(g,RegionID,FilterType) returns internal, external, or all
faces attached to the edges with ID numbers listed in RegionID. This syntax is valid for 3-D
geometries only.

Examples

Faces Attached to Specified Edges of 3-D Geometry

Find faces attached to particular edges of a block.

Create a block geometry.

gm = multicuboid(3,2,1)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 6
 NumEdges: 12
 NumVertices: 8
 Vertices: [8x3 double]

Plot the geometry with the edge labels.

pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)

5 Functions

5-342

Find faces attached to edges 1, 2, and 5.

faceIDs = facesAttachedToEdges(gm,[1 2 5])

faceIDs = 1×4

 1 2 5 6

Plot the geometry with the face labels.

figure
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)

 facesAttachedToEdges

5-343

Faces Attached to Specified Edges of 2-D Geometry

Find faces attached to particular edges of the L-shaped membrane.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in
the file lshapeg.

model = createpde();
gm = geometryFromEdges(model,@lshapeg)

gm =
 AnalyticGeometry with properties:

 NumCells: 0
 NumFaces: 3
 NumEdges: 10
 NumVertices: 8
 Vertices: [8x2 double]

Plot the geometry with the edge labels.

pdegplot(gm,'EdgeLabels','on')

5 Functions

5-344

Find faces attached to edges 7 and 10.

faceIDs = facesAttachedToEdges(gm,[7 10])

faceIDs = 1×2

 1 2

Plot the geometry with the face labels.

figure
pdegplot(gm,'FaceLabels','on')

 facesAttachedToEdges

5-345

Internal and External Faces Attached to Specified Edges

Find internal and external faces attached to the edges of the inner cuboid in a geometry consisting of
two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.

gm = multicuboid([2 5],[4 10],3)

gm =
 DiscreteGeometry with properties:

 NumCells: 2
 NumFaces: 12
 NumEdges: 24
 NumVertices: 16
 Vertices: [16x3 double]

Plot the geometry with the edge labels.

pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)

5 Functions

5-346

Find all faces attached to the top edges of the inner cuboid.

facesAttachedToEdges(gm,[5:8])

ans = 1×6

 2 3 4 5 6 12

Find only the internal faces attached to the top edges of the inner cuboid. Internal faces are faces
shared between multiple cells.

facesAttachedToEdges(gm,[5:8],'internal')

ans = 1×4

 3 4 5 6

Find only the external faces attached to the top edges of the inner cuboid.

facesAttachedToEdges(gm,[5:8],'external')

ans = 1×2

 2 12

Plot the geometry with the face labels.

 facesAttachedToEdges

5-347

figure
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

RegionID — Edge ID
positive number | vector of positive numbers

Edge ID, specified as a positive number or a vector of positive numbers. Each number represents an
edge ID.

FilterType — Type of faces to return
'all' (default) | 'internal' | 'external'

Type of faces to return, specified as 'internal', 'external', or 'all'. Depending on this
argument, facesAttachedToEdges returns these types of faces for a 3-D geometry:

• 'internal' — Internal faces, that is, faces shared between multiple cells.
• 'external' — External faces, that is, faces not shared between multiple cells.

5 Functions

5-348

• 'all' — All faces attached to the specified cells.

Output Arguments
FaceID — IDs of faces attached to specified edges
positive number | vector of positive numbers

IDs of faces attached to the specified edges, returned as a positive number or a vector of positive
numbers.

See Also
cellEdges | cellFaces | faceEdges | nearestEdge | nearestFace | DiscreteGeometry
Properties | AnalyticGeometry Properties

Introduced in R2021a

 facesAttachedToEdges

5-349

findBodyLoad
Package: pde

Find body load assigned to geometric region

Syntax
bl = findBodyLoad(structuralmodel.BodyLoads,RegionType,RegionID)

Description
bl = findBodyLoad(structuralmodel.BodyLoads,RegionType,RegionID) returns the body
load assigned to a geometric region of the structural model. A body load must use units consistent
with the geometry and other model attributes.

Examples

Find Body Load

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create and plot the geometry.

gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)

5 Functions

5-350

Specify the Young's modulus, Poisson's ratio, and mass density. Notice that the mass density value is
required for modeling gravitational effects.

structuralProperties(structuralModel,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3,...
 'MassDensity',2.7E-6);

Specify the gravity load on the beam.

structuralBodyLoad(structuralModel, ...
 'GravitationalAcceleration',[0;0;-9.8]);

Check the body load specification for cell 1.

findBodyLoad(structuralModel.BodyLoads,'Cell',1)

ans =
 BodyLoadAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: [3x1 double]
 AngularVelocity: []
 Temperature: []
 TimeStep: []
 Label: []

 findBodyLoad

5-351

Input Arguments
structuralmodel.BodyLoads — Body loads
BodyLoads property of StructuralModel object

Body loads of the model, specified as a BodyLoads property of a StructuralModel object.

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example: findBodyLoad(structuralmodel.BodyLoads,'Cell',1)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: findBodyLoad(structuralmodel.BodyLoads,'Cell',1)
Data Types: double

Output Arguments
bl — Body load assignment
BodyLoadAssignment object

Body load assignment, returned as a BodyLoadAssignment object. For details, see
BodyLoadAssignment Properties.

See Also
structuralBodyLoad

Introduced in R2017b

5 Functions

5-352

findBoundaryConditions
Package: pde

Find boundary condition assignment for a geometric region

Syntax
BCregion = findBoundaryConditions(BCs,RegionType,RegionID)

Description
BCregion = findBoundaryConditions(BCs,RegionType,RegionID) returns boundary
condition BCregion assigned to the specified region.

Examples

Find Boundary Conditions for Particular Regions

Create a PDE model and import a simple block geometry. Plot the geometry displaying the face labels.

model = createpde(3);
importGeometry(model,'Block.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

 findBoundaryConditions

5-353

Set zero Dirichlet conditions on faces 1 and 2 for all equations.

applyBoundaryCondition(model,'dirichlet','Face',1:2,'u',[0,0,0]);

On face 3, set the Neumann boundary condition for equation 1 and Dirichlet boundary condition for
equations 2 and 3.

h = [0 0 0;0 1 0;0 0 1];
r = [0;3;3];
q = [1 0 0;0 0 0;0 0 0];
g = [10;0;0];
applyBoundaryCondition(model,'mixed','Face',3,'h',h,'r',r,'g',g,'q',q);

Set Neumann boundary conditions with opposite signs on faces 5 and 6 for all equations.

applyBoundaryCondition(model,'neumann','Face',4:5,'g',[1;1;1]);
applyBoundaryCondition(model,'neumann','Face',6,'g',[-1;-1;-1]);

Check the boundary condition specification on face 1.

findBoundaryConditions(model.BoundaryConditions,'Face',1)

ans =
 BoundaryCondition with properties:

 BCType: 'dirichlet'
 RegionType: 'Face'
 RegionID: [1 2]

5 Functions

5-354

 r: []
 h: []
 g: []
 q: []
 u: [0 0 0]
 EquationIndex: []
 Vectorized: 'off'

Check the boundary condition specification on face 3.

findBoundaryConditions(model.BoundaryConditions,'Face',3)

ans =
 BoundaryCondition with properties:

 BCType: 'mixed'
 RegionType: 'Face'
 RegionID: 3
 r: [3x1 double]
 h: [3x3 double]
 g: [3x1 double]
 q: [3x3 double]
 u: []
 EquationIndex: []
 Vectorized: 'off'

Check the boundary condition specification on face 5.

findBoundaryConditions(model.BoundaryConditions,'Face',5)

ans =
 BoundaryCondition with properties:

 BCType: 'neumann'
 RegionType: 'Face'
 RegionID: [4 5]
 r: []
 h: []
 g: [3x1 double]
 q: []
 u: []
 EquationIndex: []
 Vectorized: 'off'

Input Arguments
BCs — Boundary conditions of a PDE model
BoundaryConditions property of a PDE model

Boundary conditions of a PDE model, specified as the BoundaryConditions property of PDEModel.
Example: model.BoundaryConditions

 findBoundaryConditions

5-355

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: findBoundaryConditions(model.BoundaryConditions,'Face',3)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: findBoundaryConditions(model.BoundaryConditions,'Face',3)
Data Types: double

Output Arguments
BCregion — Boundary condition for a particular region
BoundaryCondition object

Boundary condition for a particular region, returned as a BoundaryCondition object.

See Also
applyBoundaryCondition | BoundaryCondition

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016b

5 Functions

5-356

findCoefficients
Package: pde

Locate active PDE coefficients

Syntax
CA = findCoefficients(coeffs,RegionType,RegionID)

Description
CA = findCoefficients(coeffs,RegionType,RegionID) returns the active coefficient
assignment CA for the coefficients in the specified region.

Examples

Find the Active Coefficients for a Region

Create a PDE model that has a few subdomains.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal

 findCoefficients

5-357

Set coefficients on each pair of regions.

specifyCoefficients(model,'m',0,'d',0,'c',12,'a',0,'f',1,'Face',[1,2]);
specifyCoefficients(model,'m',0,'d',0,'c',13,'a',0,'f',2,'Face',[1,3]);
specifyCoefficients(model,'m',0,'d',0,'c',23,'a',0,'f',3,'Face',[2,3]);

Check the coefficient specification for region 1.

coeffs = model.EquationCoefficients;
ca = findCoefficients(coeffs,'Face',1)

ca =
 CoefficientAssignment with properties:

 RegionType: 'face'
 RegionID: [1 3]
 m: 0
 d: 0
 c: 13
 a: 0
 f: 2

Input Arguments
coeffs — Model coefficients
EquationCoefficients property of a PDE model

5 Functions

5-358

Model coefficients, specified as the EquationCoefficients property of a PDE model. Coefficients
can be complex numbers.
Example: model.EquationCoefficients

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D model, or 'Cell' for a 3-D model.
Example: ca = findCoefficients(coeffs,'Face',[1,3])
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. View the subdomain labels for a 2-D model using
pdegplot(model,'FaceLabels','on'). Currently, there are no subdomains for 3-D models, so
the only acceptable value for a 3-D model is 1.
Example: ca = findCoefficients(coeffs,'Face',[1,3])
Data Types: double

Output Arguments
CA — Coefficient assignment
CoefficientAssignment object

Coefficient assignment, returned as a CoefficientAssignment object.

See Also
CoefficientAssignment | specifyCoefficients

Topics
“View, Edit, and Delete PDE Coefficients” on page 2-95
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

 findCoefficients

5-359

findElectromagneticBC
Package: pde

Find electromagnetic boundary conditions assigned to geometric region

Syntax
emBC = findElectromagneticBC(emagmodel.BoundaryConditions,RegionType,
RegionID)

Description
emBC = findElectromagneticBC(emagmodel.BoundaryConditions,RegionType,
RegionID) returns the voltage or magnetic potential assigned to the specified region of the specified
model.

Examples

Find Electromagnetic Boundary Conditions for Edges of 2-D Geometry

Create an electromagnetic model for a magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Include the L-shaped membrane geometry in the model and plot it with the face labels.

geometryFromEdges(emagmodel,@lshapeg);
pdegplot(emagmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal

5 Functions

5-360

Assign magnetic potential values to edges 1 and 2.

electromagneticBC(emagmodel,'Edge',1,'MagneticPotential',1);
electromagneticBC(emagmodel,'Edge',2,'MagneticPotential',0);

Check the boundary condition specifications for edge 1 and 2.

emBC = findElectromagneticBC(emagmodel.BoundaryConditions,'Edge',1:2);
emBC(1)

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Edge'
 RegionID: 1
 Voltage: []
 MagneticPotential: 1
 Vectorized: 'off'

emBC(2)

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Edge'
 RegionID: 2
 Voltage: []

 findElectromagneticBC

5-361

 MagneticPotential: 0
 Vectorized: 'off'

Find Electromagnetic Boundary Conditions for Faces of 3-D Geometry

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

gm = importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.3)

Apply the voltage boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

Check the boundary condition specifications for faces 4, 5, and 7.

emBC = findElectromagneticBC(emagmodel.BoundaryConditions, ...
 'Face',[4 5 7]);
emBC(1)

5 Functions

5-362

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Face'
 RegionID: [3 4 5 6]
 Voltage: 0
 MagneticPotential: []
 Vectorized: 'off'

emBC(2)

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Face'
 RegionID: [3 4 5 6]
 Voltage: 0
 MagneticPotential: []
 Vectorized: 'off'

emBC(3)

ans =
 ElectromagneticBCAssignment with properties:

 RegionType: 'Face'
 RegionID: 7
 Voltage: 1000
 MagneticPotential: []
 Vectorized: 'off'

Input Arguments
emagmodel.BoundaryConditions — Boundary conditions of electromagnetic model
BoundaryConditions property

Boundary conditions of an electromagnetic model, specified as the BoundaryConditions property
of the model.
Example: findElectromagneticBC(emagmodel.BoundaryConditions,'Edge',1)

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the edge or face IDs by using pdegplot
with the 'EdgeLabels' or 'FaceLabels' name-value argument set to 'on'.
Data Types: double

 findElectromagneticBC

5-363

Output Arguments
emBC — Electromagnetic boundary condition assignment
ElectromagneticBCAssignment object

Electromagnetic boundary condition assignment, returned as an ElectromagneticBCAssignment
object. For more information, see ElectromagneticBCAssignment Properties.

See Also
ElectromagneticModel | electromagneticBC | ElectromagneticBCAssignment Properties

Introduced in R2021a

5 Functions

5-364

findElectromagneticProperties
Package: pde

Find electromagnetic material properties assigned to geometric region

Syntax
emProperties = findElectromagneticProperties(emagmodel.MaterialProperties,
RegionType,RegionID)

Description
emProperties = findElectromagneticProperties(emagmodel.MaterialProperties,
RegionType,RegionID) returns the electromagnetic material properties assigned to the specified
region of the specified model.

Examples

Find Relative Permittivity for Faces of 2-D Geometry

Create an electromagnetic model for an electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Include the L-shaped membrane geometry in the model and plot it with the face labels.

geometryFromEdges(emagmodel,@lshapeg);
pdegplot(emagmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal

 findElectromagneticProperties

5-365

Specify the vacuum permittivity value in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify a different value of relative permittivity for each face.

electromagneticProperties(emagmodel,'RelativePermittivity',2.5, ...
 'Face',1);
electromagneticProperties(emagmodel,'RelativePermittivity',2.25, ...
 'Face',2);
electromagneticProperties(emagmodel,'RelativePermittivity',1, ...
 'Face',3);

Check the electromagnetic material properties specification for each face.

findElectromagneticProperties(emagmodel.MaterialProperties,'Face',1)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 RelativePermittivity: 2.5000
 RelativePermeability: []

findElectromagneticProperties(emagmodel.MaterialProperties,'Face',2)

5 Functions

5-366

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 2
 RelativePermittivity: 2.2500
 RelativePermeability: []

findElectromagneticProperties(emagmodel.MaterialProperties,'Face',3)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Face'
 RegionID: 3
 RelativePermittivity: 1
 RelativePermeability: []

Find Relative Permeability for Cells of 3-D Geometry

Create and plot a geometry consisting of two nested spheres.

gm = multisphere([5 15]);
pdegplot(gm,'CellLabels','on','FaceAlpha',0.3)

 findElectromagneticProperties

5-367

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Include the geometry in the model.

emagmodel.Geometry = gm;

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify a different value of relative permittivity for each cell.

electromagneticProperties(emagmodel,'RelativePermittivity',2.5, ...
 'Cell',1);
electromagneticProperties(emagmodel,'RelativePermittivity',2.25, ...
 'Cell',2);

Check the electromagnetic material properties specification for each cell.

findElectromagneticProperties(emagmodel.MaterialProperties,'Cell',1)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 RelativePermittivity: 2.5000
 RelativePermeability: []

findElectromagneticProperties(emagmodel.MaterialProperties,'Cell',2)

ans =
 ElectromagneticMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 2
 RelativePermittivity: 2.2500
 RelativePermeability: []

Input Arguments
emagmodel.MaterialProperties — Material properties of electromagnetic model
MaterialProperties property

Material properties of an electromagnetic model, specified as the MaterialProperties property of
the model.
Example: emagmodel.MaterialProperties

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D geometry or 'Cell' for a 3-D geometry.

5 Functions

5-368

Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the face or cell IDs by using pdegplot with
the 'FaceLabels' or 'CellLabels' name-value argument set to 'on'.
Data Types: double

Output Arguments
emProperties — Material properties assignment
ElectromagneticMaterialAssignment object

Material properties assignment, returned as an ElectromagneticMaterialAssignment object.
For more information, see ElectromagneticMaterialAssignment Properties.

See Also
electromagneticProperties | ElectromagneticModel | ElectromagneticMaterialAssignment
Properties

Introduced in R2021a

 findElectromagneticProperties

5-369

findElectromagneticSource
Package: pde

Find electromagnetic source assigned to geometric region

Syntax
emSource = findElectromagneticSource(emagmodel.Sources,RegionType,RegionID)

Description
emSource = findElectromagneticSource(emagmodel.Sources,RegionType,RegionID)
returns the change or current density emSource assigned to the specified region of the specified
model.

Examples

Find Current Density for Faces of 2-D Geometry

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Include the L-shaped membrane geometry in the model and plot it with the face labels.

geometryFromEdges(emagmodel,@lshapeg);
pdegplot(emagmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal

5 Functions

5-370

Specify a different current density for each face.

electromagneticSource(emagmodel,'Face',1,'CurrentDensity',10);
electromagneticSource(emagmodel,'Face',2,'CurrentDensity',20);
electromagneticSource(emagmodel,'Face',3,'CurrentDensity',30);

Check the electromagnetic source specification for each face.

findElectromagneticSource(emagmodel.Sources,'Face',1)

ans =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Face'
 RegionID: 1
 ChargeDensity: []
 CurrentDensity: 10

findElectromagneticSource(emagmodel.Sources,'Face',2)

ans =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Face'
 RegionID: 2
 ChargeDensity: []
 CurrentDensity: 20

 findElectromagneticSource

5-371

findElectromagneticSource(emagmodel.Sources,'Face',3)

ans =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Face'
 RegionID: 3
 ChargeDensity: []
 CurrentDensity: 30

Find Charge Density for Cells of 3-D Geometry

Create and plot a geometry consisting of two nested spheres.

gm = multisphere([5 15]);
pdegplot(gm,'CellLabels','on','FaceAlpha',0.3)

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Include the geometry in the model.

emagmodel.Geometry = gm;

5 Functions

5-372

Specify the charge density for the inner sphere.

electromagneticSource(emagmodel,'Cell',1,'ChargeDensity',10);

Check the electromagnetic source specification for each cell.

findElectromagneticSource(emagmodel.Sources,'Cell',1)

ans =
 ElectromagneticSourceAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 ChargeDensity: 10
 CurrentDensity: []

findElectromagneticSource(emagmodel.Sources,'Cell',2)

ans =

 0x1 ElectromagneticSourceAssignment array with properties:

 RegionType
 RegionID
 ChargeDensity
 CurrentDensity

Input Arguments
emagmodel.Sources — Source in electromagnetic model
Sources property

Source in an electromagnetic model, specified as the Sources property of the model.
Example: findElectromagneticSource(emagmodel.Sources,'Face',1)

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. Find the face or cell IDs by using pdegplot with
the 'FaceLabels' or 'CellLabels' name-value argument set to 'on'.
Data Types: double

Output Arguments
emSource — Electromagnetic source assignment
ElectromagneticSourceAssignment object

 findElectromagneticSource

5-373

Electromagnetic source assignment, returned as an ElectromagneticSourceAssignment object.
For more information, see ElectromagneticSourceAssignment Properties.

See Also
ElectromagneticModel | ElectromagneticSourceAssignment Properties |
electromagneticSource

Introduced in R2021a

5 Functions

5-374

findElements
Package: pde

Find mesh elements in specified region

Syntax
elemIDs = findElements(mesh,'region',RegionType,RegionID)
elemIDs = findElements(mesh,'box',xlim,ylim)
elemIDs = findElements(mesh,'box',xlim,ylim,zlim)
elemIDs = findElements(mesh,'radius',center,radius)
elemIDs = findElements(mesh,'attached',nodeID)

Description
elemIDs = findElements(mesh,'region',RegionType,RegionID) returns the IDs of the
mesh elements that belong to the specified geometric region.

elemIDs = findElements(mesh,'box',xlim,ylim) returns the IDs of the mesh elements
within a bounding box specified by xlim and ylim. Use this syntax for 2-D meshes.

elemIDs = findElements(mesh,'box',xlim,ylim,zlim) returns the IDs of the mesh elements
located within a bounding box specified by xlim, ylim, and zlim. Use this syntax for 3-D meshes.

elemIDs = findElements(mesh,'radius',center,radius) returns the IDs of mesh elements
located within a circle (for 2-D meshes) or sphere (for 3-D meshes) specified by center and radius.

elemIDs = findElements(mesh,'attached',nodeID) returns the IDs of the mesh elements
attached to the specified node. Here, nodeID is the ID of a corner node. This syntax ignores the IDs
of the nodes located in the middle of element edges.

For multiple nodes, specify nodeID as a vector.

Examples

Elements Associated with Particular Face

Find the elements associated with a geometric region.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function lshapeg. Plot the geometry.

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on','EdgeLabels','on')

 findElements

5-375

Generate a mesh.

mesh = generateMesh(model,'Hmax',0.5);

Find the elements associated with face 2.

Ef2 = findElements(mesh,'region','Face',2);

Highlight these elements in green on the mesh plot.

figure
pdemesh(mesh,'ElementLabels','on')
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Ef2),'EdgeColor','green')

5 Functions

5-376

Elements Within Bounding Box

Find the elements located within a specified box.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

 findElements

5-377

Generate a mesh.

mesh = generateMesh(model,'Hmax',2,'Hmin',0.4)

mesh =
 FEMesh with properties:

 Nodes: [2x386 double]
 Elements: [6x172 double]
 MaxElementSize: 2
 MinElementSize: 0.4000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

Find the elements located within the following box.

Eb = findElements(mesh,'box',[5 10],[10 20]);

Highlight these elements in green on the mesh plot.

figure
pdemesh(model)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Eb),'EdgeColor','green')

5 Functions

5-378

Elements Within Bounding Disk

Find the elements located within a specified disk.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

 findElements

5-379

Generate a mesh.

mesh = generateMesh(model,'Hmax',2,'Hmin',0.4,'GeometricOrder','linear')

mesh =
 FEMesh with properties:

 Nodes: [2x107 double]
 Elements: [3x172 double]
 MaxElementSize: 2
 MinElementSize: 0.4000
 MeshGradation: 1.5000
 GeometricOrder: 'linear'

Find the elements located within radius 2 from the center [5,10].

Er = findElements(mesh,'radius',[5 10],2);

Highlight these elements in green on the mesh plot.

figure
pdemesh(model)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Er),'EdgeColor','green')

5 Functions

5-380

Elements Attached to Specified Nodes

Find the elements attached to a specified corner node.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

 findElements

5-381

Generate a linear triangular mesh by setting the geometric order value to linear. This mesh
contains only corner nodes.

mesh = generateMesh(model,'Hmax',2,'Hmin',0.4, ...
 'GeometricOrder','linear');

Find the node closest to the point [15;10].

N_ID = findNodes(mesh,'nearest',[15;10])

N_ID = 10

Find the elements attached to this node.

En = findElements(mesh,'attached',N_ID)

En = 1×3

 95 97 98

Highlight the node and the elements in green on the mesh plot.

figure
pdemesh(model)
hold on
plot(mesh.Nodes(1,N_ID),mesh.Nodes(2,N_ID),'or','Color','g', ...
 'MarkerFaceColor','g')
pdemesh(mesh.Nodes,mesh.Elements(:,En),'EdgeColor','green')

5 Functions

5-382

Input Arguments
mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

RegionType — Geometric region type
'Cell' for a 3-D model | 'Face' for a 2-D model

Geometric region type, specified as 'Cell' or 'Face'.
Example: findElements(mesh,'region','Face',1:3)
Data Types: char

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: findElements(mesh,'region','Face',1:3)

 findElements

5-383

Data Types: double

xlim — x-limits of bounding box
two-element row vector

x-limits of the bounding box, specified as a two-element row vector. The first element of xlim is the
lower x-bound, and the second element is the upper x-bound.
Example: findElements(mesh,'box',[5 10],[10 20])
Data Types: double

ylim — y-limits of bounding box
two-element row vector

y-limits of the bounding box, specified as a two-element row vector. The first element of ylim is the
lower y-bound, and the second element is the upper y-bound.
Example: findElements(mesh,'box',[5 10],[10 20])
Data Types: double

zlim — z-limits of bounding box
two-element row vector

z-limits of the bounding box, specified as a two-element row vector. The first element of zlim is the
lower z-bound, and the second element is the upper z-bound. You can specify zlim only for 3-D
meshes.
Example: findElements(mesh,'box',[5 10],[10 20],[1 2])
Data Types: double

center — Center of bounding circle or sphere
two-element row vector for a 2-D mesh | three-element row vector for a 3-D mesh

Center of the bounding circle or sphere, specified as a two-element row vector for a 2-D mesh or
three-element row vector for a 3-D mesh. The elements of these vectors contain the coordinates of
the center of a circle or a sphere.
Example: findElements(mesh,'radius',[0 0 0],0.5)
Data Types: double

radius — Radius of bounding circle or sphere
positive number

Radius of the bounding circle or sphere, specified as a positive number.
Example: findElements(mesh,'radius',[0 0 0],1)
Data Types: double

nodeID — ID of corner node of element
positive integer | vector of positive integers

ID of the corner node of the element, specified as a positive integer or a vector of positive integers.
The findElements function can find an ID of the element by the ID of the corner node of the
element. The function ignores IDs of the nodes located in the middle of element edges. For multiple
nodes, specify nodeID as a vector.

5 Functions

5-384

Example: findElements(mesh,'attached',[7 8 21])
Data Types: double

Output Arguments
elemIDs — Element IDs
positive integer | row vector of positive integers

Element IDs, returned as a positive integer or a row vector of positive integers.

See Also
findNodes | meshQuality | area | volume | FEMesh Properties

Topics
“Finite Element Method Basics” on page 1-11

Introduced in R2018a

 findElements

5-385

findHeatSource
Package: pde

Find heat source assigned to a geometric region

Syntax
hsa = findHeatSource(thermalmodel.HeatSources,RegionType,RegionID)

Description
hsa = findHeatSource(thermalmodel.HeatSources,RegionType,RegionID) returns the
heat source value hsa assigned to the specified region.

Examples

Find Heat Sources for Faces of 2-D Geometry

Create a thermal model that has three faces.

thermalmodel = createpde('thermal');
geometryFromEdges(thermalmodel,@lshapeg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal

5 Functions

5-386

Specify that face 1 generates heat at 10 W/m^3, face 2 generates heat at 20 W/m^3, and face 3
generates heat at 30 W/m^3.

internalHeatSource(thermalmodel,10,'Face',1);
internalHeatSource(thermalmodel,20,'Face',2);
internalHeatSource(thermalmodel,30,'Face',3);

Check the heat source specification for face 1.

hsaFace1 = findHeatSource(thermalmodel.HeatSources,'Face',1)

hsaFace1 =
 HeatSourceAssignment with properties:

 RegionType: 'face'
 RegionID: 1
 HeatSource: 10
 Label: []

Check the heat source specification for faces 2 and 3.

hsa = findHeatSource(thermalmodel.HeatSources,'Face',[2 3]);
hsaFace2 = hsa(1)

hsaFace2 =
 HeatSourceAssignment with properties:

 findHeatSource

5-387

 RegionType: 'face'
 RegionID: 2
 HeatSource: 20
 Label: []

hsaFace3 = hsa(2)

hsaFace3 =
 HeatSourceAssignment with properties:

 RegionType: 'face'
 RegionID: 3
 HeatSource: 30
 Label: []

Find Heat Sources for Cells of 3-D Geometry

Create a geometry that consists of three stacked cylinders and include the geometry in a thermal
model.

gm = multicylinder(10,[1 2 3],'ZOffset',[0 1 3])

gm =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 7
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x3 double]

thermalmodel = createpde('thermal');
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-388

Specify that the cylinder C1 generates heat at 10 W /m3, the cylinder C2 generates heat at 20 W /m3,
and the cylinder C3 generates heat at 30 W /m3.

internalHeatSource(thermalmodel,10,'Cell',1);
internalHeatSource(thermalmodel,20,'Cell',2);
internalHeatSource(thermalmodel,30,'Cell',3);

Check the heat source specification for cell 1.

hsaCell1 = findHeatSource(thermalmodel.HeatSources,'Cell',1)

hsaCell1 =
 HeatSourceAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 HeatSource: 10
 Label: []

Check the heat source specification for cells 2 and 3.

hsa = findHeatSource(thermalmodel.HeatSources,'Cell',[2:3]);
hsaCell2 = hsa(1)

hsaCell2 =
 HeatSourceAssignment with properties:

 findHeatSource

5-389

 RegionType: 'cell'
 RegionID: 2
 HeatSource: 20
 Label: []

hsaCell3 = hsa(2)

hsaCell3 =
 HeatSourceAssignment with properties:

 RegionType: 'cell'
 RegionID: 3
 HeatSource: 30
 Label: []

Input Arguments
thermalmodel.HeatSources — Internal heat source of the model
HeatSources property of a thermal model

Internal heat source of the model, specified as the HeatSources property of a ThermalModel
object.

RegionType — Geometric region type
'Face' | 'Cell'

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using the
pdegplot function.
Data Types: double

Output Arguments
hsa — Heat source assignment
HeatSourceAssignment object

Heat source assignment, returned as a HeatSourceAssignment object.

See Also
HeatSourceAssignment | internalHeatSource

Introduced in R2017a

5 Functions

5-390

findInitialConditions
Package: pde

Locate active initial conditions

Syntax
ic = findInitialConditions(ics,RegionType,RegionID)

Description
ic = findInitialConditions(ics,RegionType,RegionID) returns the active initial condition
assignment ic for the initial conditions in the specified region.

Examples

Find the Active Initial Conditions

This example shows find the active initial conditions for a region.

Create a PDE model that has a few subdomains.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal

 findInitialConditions

5-391

Set initial conditions on each pair of regions.

setInitialConditions(model,12,'Face',[1,2]);
setInitialConditions(model,13,'Face',[1,3]);
setInitialConditions(model,23,'Face',[2,3]);

Check the initial conditions specification for region 1.

ics = model.InitialConditions;
ic = findInitialConditions(ics,'Face',1)

ic =
 GeometricInitialConditions with properties:

 RegionType: 'face'
 RegionID: [1 3]
 InitialValue: 13
 InitialDerivative: []

Input Arguments
ics — Model initial conditions
InitialConditions property of a PDE model

5 Functions

5-392

Model initial conditions, specified as the InitialConditions property of a PDE model. Initial
conditions can be complex numbers.
Example: model.InitialConditions

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 2-D model or 3-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Edge' for a 2-D model, 'Face' for a 2-D model or 3-D model, or
'Cell' for a 3-D model.
Example: ca = findInitialConditions(ics,'Face',[1,3])
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, specified as a vector of positive integers. View the subdomain labels for a 2-D model using
pdegplot(model,'FaceLabels','on'). Currently, there are no subdomains for 3-D models, so
the only acceptable value for a 3-D model is 1.
Example: ca = findInitialConditions(ics,'Face',[1,3])
Data Types: double

Output Arguments
ic — Initial condition assignment
GeometricInitialConditions object | NodalInitialConditions object

Initial condition assignment, returned as a GeometricInitialConditions or NodalInitialConditions
object.

See Also
GeometricInitialConditions | NodalInitialConditions | setInitialConditions

Topics
“View, Edit, and Delete Initial Conditions” on page 2-107
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

 findInitialConditions

5-393

findNodes
Package: pde

Find mesh nodes in specified region

Syntax
nodes = findNodes(mesh,'region',RegionType,RegionID)
nodes = findNodes(mesh,'box',xlim,ylim)
nodes = findNodes(mesh,'box',xlim,ylim,zlim)
nodes = findNodes(mesh,'radius',center,radius)
nodes = findNodes(mesh,'nearest',point)

Description
nodes = findNodes(mesh,'region',RegionType,RegionID) returns the IDs of the mesh
nodes that belong to the specified geometric region.

nodes = findNodes(mesh,'box',xlim,ylim) returns the IDs of the mesh nodes within a
bounding box specified by xlim and ylim. Use this syntax for 2-D meshes.

nodes = findNodes(mesh,'box',xlim,ylim,zlim) returns the IDs of the mesh nodes located
within a bounding box specified by xlim, ylim, and zlim. Use this syntax for 3-D meshes.

nodes = findNodes(mesh,'radius',center,radius) returns the IDs of mesh nodes located
within a circle (for 2-D meshes) or sphere (for 3-D meshes) specified by center and radius.

nodes = findNodes(mesh,'nearest',point) returns the IDs of mesh nodes closest to a query
point or multiple query points with Cartesian coordinates specified by point.

Examples

Nodes Associated with Particular Edges and Faces

Find the nodes associated with a geometric region.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function lshapeg. Plot the geometry.

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on','EdgeLabels','on')

5 Functions

5-394

Generate a mesh.

mesh = generateMesh(model,'Hmax',0.5);

Find the nodes associated with face 2.

Nf2 = findNodes(mesh,'region','Face',2);

Highlight these nodes in green on the mesh plot.

figure
pdemesh(model,'NodeLabels','on')
hold on
plot(mesh.Nodes(1,Nf2),mesh.Nodes(2,Nf2),'ok','MarkerFaceColor','g')

 findNodes

5-395

Find the nodes associated with edges 5 and 7.

Ne57 = findNodes(mesh,'region','Edge',[5 7]);

Highlight these nodes in green on the mesh plot.

figure
pdemesh(model,'NodeLabels','on')
hold on
plot(mesh.Nodes(1,Ne57),mesh.Nodes(2,Ne57),'or','MarkerFaceColor','g')

5 Functions

5-396

Nodes Within Bounding Box

Find the nodes located within a specified box.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

 findNodes

5-397

Generate a mesh.

mesh = generateMesh(model,'Hmax',2,'Hmin',0.4, ...
 'GeometricOrder','linear');

Find the nodes located within the following box.

Nb = findNodes(mesh,'box',[5 10],[10 20]);

Highlight these nodes in green on the mesh plot.

figure
pdemesh(model)
hold on
plot(mesh.Nodes(1,Nb),mesh.Nodes(2,Nb),'or','MarkerFaceColor','g')

5 Functions

5-398

Nodes Within Bounding Disk

Find the nodes located within a specified disk.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

 findNodes

5-399

Generate a mesh.

mesh = generateMesh(model,'Hmax',2,'Hmin',0.4, ...
 'GeometricOrder','linear');

Find the nodes located within radius 2 from the center [5 10].

Nb = findNodes(mesh,'radius',[5 10],2);

Highlight these nodes in green on the mesh plot.

figure
pdemesh(model)
hold on
plot(mesh.Nodes(1,Nb),mesh.Nodes(2,Nb),'or','MarkerFaceColor','g')

5 Functions

5-400

Nodes Closest to Specified Points

Find the node closest to a specified point and highlight it on the mesh plot.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

 findNodes

5-401

Generate a mesh.

mesh = generateMesh(model,'Hmax',2,'Hmin',0.4);

Find the node closest to the point [15;10].

N_ID = findNodes(mesh,'nearest',[15;10])

N_ID = 10

Highlight this node in green on the mesh plot.

figure
pdemesh(model)
hold on
plot(mesh.Nodes(1,N_ID),mesh.Nodes(2,N_ID),'or','MarkerFaceColor','g')

5 Functions

5-402

Input Arguments
mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

RegionType — Geometric region type
'Cell' | 'Face' | 'Edge' | 'Vertex'

Geometric region type, specified as 'Cell', 'Face', 'Edge', or 'Vertex'.
Example: findNodes(mesh,'region','Face',1:3)
Data Types: char

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: findNodes(mesh,'region','Face',1:3)

 findNodes

5-403

Data Types: double

xlim — x-limits of bounding box
two-element row vector

x-limits of the bounding box, specified as a two-element row vector. The first element of xlim is the
lower x-bound, and the second element is the upper x-bound.
Example: findNodes(mesh,'box',[5 10],[10 20])
Data Types: double

ylim — y-limits of bounding box
two-element row vector

y-limits of the bounding box, specified as a two-element row vector. The first element of ylim is the
lower y-bound, and the second element is the upper y-bound.
Example: findNodes(mesh,'box',[5 10],[10 20])
Data Types: double

zlim — z-limits of bounding box
two-element row vector

z-limits of the bounding box, specified as a two-element row vector. The first element of zlim is the
lower z-bound, and the second element is the upper z-bound. You can specify zlim only for 3-D
meshes.
Example: findNodes(mesh,'box',[5 10],[10 20],[1 2])
Data Types: double

center — Center of bounding circle or sphere
two-element row vector for a 2-D mesh | three-element row vector for a 3-D mesh

Center of the bounding circle or sphere, specified as a two-element row vector for a 2-D mesh or
three-element row vector for a 3-D mesh. The elements of these vectors contain the coordinates of
the center of a circle or a sphere.
Example: findNodes(mesh,'radius',[0 0 0],0.5)
Data Types: double

radius — Radius of bounding circle or sphere
positive number

Radius of the bounding circle or sphere, specified as a positive number.
Example: findNodes(mesh,'radius',[0 0 0],0.5)
Data Types: double

point — Cartesian coordinates of query points
2-by-N or 3-by-N matrix

Cartesian coordinates of query points, specified as a 2-by-N or 3-by-N matrix. These matrices contain
the coordinates of the query points. Here, N is the number of query points.
Example: findNodes(mesh,'nearest',[15 10.5 1; 12 10 1.2])

5 Functions

5-404

Data Types: double

Output Arguments
nodes — Node IDs
positive integer | row vector of positive integers

Node IDs, returned as a positive integer or a row vector of positive integers.

See Also
findElements | meshQuality | area | volume | FEMesh Properties

Topics
“Finite Element Method Basics” on page 1-11

Introduced in R2018a

 findNodes

5-405

findStructuralBC
Package: pde

Find structural boundary conditions and boundary loads assigned to geometric region

Syntax
sbca = findStructuralBC(structuralmodel.BoundaryConditions,RegionType,
RegionID)

Description
sbca = findStructuralBC(structuralmodel.BoundaryConditions,RegionType,
RegionID) returns the structural boundary conditions and boundary loads assigned to the region
specified by RegionType and RegionID. The function returns structural boundary conditions
assigned by structuralBC and boundary loads assigned by structuralBoundaryLoad.

Examples

Find Structural Boundary Conditions

Find the structural boundary conditions for the faces of a 3-D geometry.

Create a structural model and include a block geometry.

structuralmodel = createpde('structural','static-solid');

Include the block geometry in the model and plot the geometry.

importGeometry(structuralmodel,'Block.stl');
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-406

Specify the surface traction on face 1 of the block.

structuralBoundaryLoad(structuralmodel,'Face',1, ...
 'SurfaceTraction', ...
 [100;10;300]);

Specify the pressure on face 3 of the block.

structuralBoundaryLoad(structuralmodel,'Face',3,'Pressure',300);

Apply free constraint on faces 5 and 6 of the block.

structuralBC(structuralmodel,'Face',[5,6],'Constraint','free');

Check the boundary condition specification for faces 1 and 3.

sbca = findStructuralBC(structuralmodel.BoundaryConditions, ...
 'Face',[1,3]);
sbcaFace1 = sbca(1)

sbcaFace1 =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 1
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements

 findStructuralBC

5-407

 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
 TranslationalStiffness: []
 Label: []

sbcaFace3 = sbca(2)

sbcaFace3 =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 3
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 300
 TranslationalStiffness: []
 Label: []

Check the boundary condition specification for faces 5 and 6.

sbca = findStructuralBC(structuralmodel.BoundaryConditions, ...
 'Face',[5,6]);
sbcaFace5 = sbca(1)

sbcaFace5 =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: [5 6]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []

5 Functions

5-408

 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "free"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

sbcaFace6 = sbca(2)

sbcaFace6 =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: [5 6]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "free"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

Input Arguments
structuralmodel.BoundaryConditions — Structural boundary conditions
BoundaryConditions property of StructuralModel object

Structural boundary conditions of the model, specified as the BoundaryConditions property of a
StructuralModel object.

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: findStructuralBC(structuralmodel.BoundaryConditions,'Edge',1)

 findStructuralBC

5-409

Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: findStructuralBC(structuralmodel.BoundaryConditions,'Face',1:3)
Data Types: double

Output Arguments
sbca — Structural boundary conditions and boundary loads assignment
StructuralBC object

Structural boundary conditions and boundary loads assignment, returned as a StructuralBC object.
For details, see StructuralBC Properties.

See Also
structuralBC | structuralBoundaryLoad

Introduced in R2017b

5 Functions

5-410

findStructuralIC
Package: pde

Find initial displacement and velocity assigned to geometric region

Syntax
sica = findStructuralIC(structuralmodel.InitialConditions,RegionType,
RegionID)

Description
sica = findStructuralIC(structuralmodel.InitialConditions,RegionType,
RegionID) returns the initial displacement and velocity assigned to the specified region.

Examples

Find Initial Conditions for Cells of 3-D Geometry

Find the initial displacement and velocity assigned to the cells of a 3-D geometry.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry consisting of the three nested cylinders and include it in the model. Plot the
geometry.

gm = multicylinder([5 10 15],2);
structuralmodel = createpde('structural','transient-solid');
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on','FaceAlpha',0.5)

 findStructuralIC

5-411

Set the initial conditions for each cell. When you specify only the initial velocity or initial
displacement, structuralIC assumes that the omitted parameter is zero.

structuralIC(structuralmodel,'Displacement',[0;0;0],...
 'Velocity',[0;0;0], ...
 'Cell',1);
structuralIC(structuralmodel,'Displacement',[0;0.1;0], ...
 'Cell',2);
structuralIC(structuralmodel,'Velocity',[0;0.2;0], ...
 'Cell',3);

Check the initial condition specification for cell 1.

SICACell1 = findStructuralIC(structuralmodel.InitialConditions,'Cell',1)

SICACell1 =
 GeometricStructuralICs with properties:

 RegionType: 'Cell'
 RegionID: 1
 InitialDisplacement: [3x1 double]
 InitialVelocity: [3x1 double]

SICACell1.InitialDisplacement

ans = 3×1

5 Functions

5-412

 0
 0
 0

SICACell1.InitialVelocity

ans = 3×1

 0
 0
 0

Find Initial Displacement Set as Previously Obtained Static Solution

Use a static solution as an initial condition for a dynamic structural model. Check and plot the initial
displacement.

Create a static model.

staticmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
staticmodel.Geometry = gm;
pdegplot(staticmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 findStructuralIC

5-413

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(staticmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Apply the boundary condition and static load.

structuralBC(staticmodel,'Face',5,'Constraint','fixed');
structuralBoundaryLoad(staticmodel,'Face',3, ...
 'SurfaceTraction',[0;1E6;0]);
generateMesh(staticmodel,'Hmax',0.02);
Rstatic = solve(staticmodel);

Create a dynamic model and assign geometry.

dynamicmodel = createpde('structural','transient-solid');
gm = multicuboid(0.06,0.005,0.01);
dynamicmodel.Geometry = gm;

Apply the boundary condition.

structuralBC(dynamicmodel,'Face',5,'Constraint','fixed');

Specify the initial condition using the static solution.

generateMesh(dynamicmodel,'Hmax',0.02);
structuralIC(dynamicmodel,Rstatic)

5 Functions

5-414

ans =
 NodalStructuralICs with properties:

 InitialDisplacement: [113x3 double]
 InitialVelocity: [113x3 double]

Check the initial condition specification for dynamicmodel.

sica = findStructuralIC(dynamicmodel.InitialConditions,'Cell',1)

sica =
 NodalStructuralICs with properties:

 InitialDisplacement: [113x3 double]
 InitialVelocity: [113x3 double]

Plot the z-component of the initial displacement.

pdeplot3D(dynamicmodel,'ColorMapData',sica.InitialDisplacement(:,3))
title('Initial Displacement in the Z-direction')

Input Arguments
structuralmodel.InitialConditions — Initial conditions
InitialConditions property of a StructuralModel object

 findStructuralIC

5-415

Initial conditions of a transient structural model, specified as the InitialConditions property of a
StructuralModel object.

RegionType — Geometric region type
'Face' | 'Edge' | 'Vertex' | 'Cell' for a 3-D model

Geometric region type, specified as 'Face', 'Edge', or 'Vertex' for a 2-D model or 3-D model, or
'Cell' for a 3-D model.
Data Types: char

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Data Types: double

Output Arguments
sica — Structural initial condition assignment
GeometricStructuralICs object | NodalStructuralICs object

Structural initial condition for a particular region, returned as a GeometricStructuralICs or
NodalStructuralICs object. For details, see GeometricStructuralICs Properties and
NodalStructuralICs Properties.

See Also
structuralIC | GeometricStructuralICs Properties | NodalStructuralICs Properties |
StructuralModel

Introduced in R2018a

5 Functions

5-416

findStructuralProperties
Package: pde

Find structural material properties assigned to geometric region

Syntax
smpa = findStructuralProperties(structuralmodel.MaterialProperties,
RegionType,RegionID)

Description
smpa = findStructuralProperties(structuralmodel.MaterialProperties,
RegionType,RegionID) returns the structural material properties assigned to the specified region.
Structural properties include the Young's modulus, Poisson's ratio, and mass density of the material.

Examples

Find Young's Modulus and Poisson's Ratio

Find Young's modulus and Poisson's ratio for cells of a 3-D geometry.

Create a structural model.

structuralmodel = createpde('structural','static-solid');

Create the geometry consisting of three stacked cylinders and include it in the model. Plot the
geometry.

gm = multicylinder(10,[1 2 3],'ZOffset',[0 1 3]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on','FaceAlpha',0.5)

 findStructuralProperties

5-417

Assign different values of the Young's modulus and Poisson's ratio to each cell.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',200E9, ...
 'PoissonsRatio',0.3);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);
structuralProperties(structuralmodel,'Cell',3,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.35);

Check the structural properties specification for cell 1.

mC1 = findStructuralProperties(structuralmodel.MaterialProperties, ...
 'Cell',1)

mC1 =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 2.0000e+11
 PoissonsRatio: 0.3000
 MassDensity: []
 CTE: []

Check the structural properties specification for cells 2 and 3.

5 Functions

5-418

mC23 = findStructuralProperties(structuralmodel.MaterialProperties, ...
 'Cell',[2,3]);
mC2 = mC23(1)

mC2 =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 2
 YoungsModulus: 2.1000e+11
 PoissonsRatio: 0.3000
 MassDensity: []
 CTE: []

mC3 = mC23(2)

mC3 =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 3
 YoungsModulus: 1.1000e+11
 PoissonsRatio: 0.3500
 MassDensity: []
 CTE: []

Input Arguments
structuralmodel.MaterialProperties — Material properties
MaterialProperties property of StructuralModel object

Material properties of the model, specified as the MaterialProperties property of a
StructuralModel object.
Example: structuralmodel.MaterialProperties

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example: findStructuralProperties(structuralmodel.MaterialProperties,'Cell',1)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example:
findStructuralProperties(structuralmodel.MaterialProperties,'Face',1:3)

Data Types: double

 findStructuralProperties

5-419

Output Arguments
smpa — Material properties assignment
StructuralMaterialAssignment object

Material properties assignment, returned as a StructuralMaterialAssignment object. For
details, see StructuralMaterialAssignment Properties.

See Also
structuralProperties | StructuralMaterialAssignment Properties

Introduced in R2017b

5 Functions

5-420

findThermalBC
Package: pde

Find thermal boundary conditions assigned to a geometric region

Syntax
tbca = findThermalBC(thermalmodel.BoundaryConditions,RegionType,RegionID)

Description
tbca = findThermalBC(thermalmodel.BoundaryConditions,RegionType,RegionID)
returns the thermal boundary condition assigned to the specified region.

Examples

Find Thermal Boundary Conditions for Edges of 2-D Geometry

Create a thermal model and include a square geometry.

thermalmodel = createpde('thermal');
geometryFromEdges(thermalmodel,@squareg);
pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1.1 1.1])
axis equal

 findThermalBC

5-421

Apply temperature boundary conditions on edges 1 and 3 of the square.

thermalBC(thermalmodel,'Edge',[1 3],'Temperature',100);

Apply a heat flux boundary condition on edge 4 of the square.

thermalBC(thermalmodel,'Edge',4,'HeatFlux',20);

Check the boundary condition specification on edge 1.

tbcaEdge1 = findThermalBC(thermalmodel.BoundaryConditions,'Edge',1)

tbcaEdge1 =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: [1 3]
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

Check the boundary condition specifications on edges 3 and 4.

5 Functions

5-422

tbca = findThermalBC(thermalmodel.BoundaryConditions,'Edge',[3:4]);
tbcaEdge3 = tbca(1)

tbcaEdge3 =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: [1 3]
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

tbcaEdge4 = tbca(2)

tbcaEdge4 =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: 4
 Temperature: []
 HeatFlux: 20
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

Find Thermal Boundary Conditions for Faces of 3-D Geometry

Create a thermal model and include a block geometry.

thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)

 findThermalBC

5-423

Apply temperature boundary condition on faces 1 and 3 of a block.

thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);

Apply convection boundary condition on faces 5 and 6 of a block.

thermalBC(thermalmodel,'Face',[5,6],...
 'ConvectionCoefficient',5,...
 'AmbientTemperature',27);

Check the boundary condition specification on faces 1 and 3.

tbca = findThermalBC(thermalmodel.BoundaryConditions,'Face',[1,3]);
tbcaFace1 = tbca(1)

tbcaFace1 =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: 1
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'

5 Functions

5-424

 Label: []

tbcaFace3 = tbca(2)

tbcaFace3 =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: 3
 Temperature: 300
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

Check the boundary condition specifications on faces 5 and 6.

tbcaFace5 = findThermalBC(thermalmodel.BoundaryConditions,'Face',5)

tbcaFace5 =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: [5 6]
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: 5
 Emissivity: []
 AmbientTemperature: 27
 Vectorized: 'off'
 Label: []

tbcaFace6 = findThermalBC(thermalmodel.BoundaryConditions,'Face',6)

tbcaFace6 =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: [5 6]
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: 5
 Emissivity: []
 AmbientTemperature: 27
 Vectorized: 'off'
 Label: []

Input Arguments
thermalmodel.BoundaryConditions — Boundary conditions of a thermal model
BoundaryConditions property of a thermal model

 findThermalBC

5-425

Boundary conditions of a thermal model, specified as the BoundaryConditions property of a
ThermalModel object.
Example: thermalmodel.BoundaryConditions

RegionType — Geometric region type
'Face' | 'Edge'

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot
with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Data Types: double

Output Arguments
tbca — Thermal boundary condition for a particular region
ThermalBC object

Thermal boundary condition for a particular region, returned as a ThermalBC object.

See Also
thermalBC | ThermalBC

Introduced in R2017a

5 Functions

5-426

findThermalIC
Package: pde

Find thermal initial conditions assigned to a geometric region

Syntax
tica = findThermalIC(thermalmodel.InitialConditions,RegionType,RegionID)

Description
tica = findThermalIC(thermalmodel.InitialConditions,RegionType,RegionID)
returns the thermal initial condition assigned to the specified region.

Examples

Find Initial Temperatures for Faces of 2-D Geometry

Create a transient thermal model that has three faces.

thermalmodel = createpde('thermal','transient');
geometryFromEdges(thermalmodel,@lshapeg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal

 findThermalIC

5-427

Set initial temperatures for each face.

thermalIC(thermalmodel,10,'Face',1);
thermalIC(thermalmodel,20,'Face',2);
thermalIC(thermalmodel,30,'Face',3);

Check the initial condition specification for face 1.

ticaFace1 = findThermalIC(thermalmodel.InitialConditions,'Face',1)

ticaFace1 =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 1
 InitialTemperature: 10

Check the initial temperature specifications for faces 2 and 3.

tica = findThermalIC(thermalmodel.InitialConditions,'Face',[2 3]);
ticaFace2 = tica(1)

ticaFace2 =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 2

5 Functions

5-428

 InitialTemperature: 20

ticaFace3 = tica(2)

ticaFace3 =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 3
 InitialTemperature: 30

Find Initial Temperatures for Cells of 3-D Geometry

Create a geometry that consists of three nested cylinders and include the geometry in a transient
thermal model.

gm = multicylinder([5 10 15],2)

gm =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 9
 NumEdges: 6
 NumVertices: 6
 Vertices: [6x3 double]

thermalmodel = createpde('thermal','transient');
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'CellLabels','on','FaceAlpha',0.5)

 findThermalIC

5-429

Set initial temperatures for each cell.

thermalIC(thermalmodel,0,'Cell',1);
thermalIC(thermalmodel,100,'Cell',2);
thermalIC(thermalmodel,0,'Cell',3);

Check the initial condition specification for cell 1.

ticaCell1 = findThermalIC(thermalmodel.InitialConditions,'Cell',1)

ticaCell1 =
 GeometricThermalICs with properties:

 RegionType: 'cell'
 RegionID: 1
 InitialTemperature: 0

Check the initial condition specification for cells 2 and 3.

tica = findThermalIC(thermalmodel.InitialConditions,'Cell',[2:3]);
ticaCell2 = tica(1)

ticaCell2 =
 GeometricThermalICs with properties:

 RegionType: 'cell'
 RegionID: 2

5 Functions

5-430

 InitialTemperature: 100

ticaCell3 = tica(2)

ticaCell3 =
 GeometricThermalICs with properties:

 RegionType: 'cell'
 RegionID: 3
 InitialTemperature: 0

Find Initial Temperature Set by Using Previously Obtained Solution

Create a thermal model and include a square geometry.

thermalmodel = createpde('thermal','transient');
gm = @squareg;
geometryFromEdges(thermalmodel,gm);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1 1.1])
axis equal

Specify material properties, heat source, set initial and boundary conditions.

 findThermalIC

5-431

thermalProperties(thermalmodel,'ThermalConductivity',500,...
 'MassDensity',200,...
 'SpecificHeat',100);
internalHeatSource(thermalmodel,2);
thermalBC(thermalmodel,'Edge',[1 3],'Temperature',100);
thermalIC(thermalmodel,0);

Generate a mesh and solve the problem.

generateMesh(thermalmodel);
tlist = 0:0.5:10;
result1 = solve(thermalmodel,tlist)

result1 =
 TransientThermalResults with properties:

 Temperature: [1541x21 double]
 SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5 ...]
 XGradients: [1541x21 double]
 YGradients: [1541x21 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Check the currently active initial temperature specification.

tica = findThermalIC(thermalmodel.InitialConditions,'Face',1)

tica =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 1
 InitialTemperature: 0

Now, resume the analysis and solve the problem for times from 10 to 15 seconds. Use the previously
obtained solution for 10 seconds as an initial condition. Since 10 seconds is the last element in
tlist, you do not need to specify the solution time index. By default, thermalIC uses the last
solution index.

ic = thermalIC(thermalmodel,result1);

Solve the problem

tlist = 10:0.5:15;
result2 = solve(thermalmodel,tlist);

Check the currently active initial temperature specification.

tica = findThermalIC(thermalmodel.InitialConditions,'Face',1)

tica =
 NodalThermalICs with properties:

 InitialTemperature: [1541x1 double]

pdeplot(thermalmodel,'XYData',tica.InitialTemperature)

5 Functions

5-432

Input Arguments
thermalmodel.InitialConditions — Initial conditions of a thermal model
InitialConditions property of a thermal model

Initial conditions of a thermal model, specified as the InitialConditions property of a
ThermalModel object.

RegionType — Geometric region type
'Edge' | 'Face' | 'Vertex' | 'Cell' for a 3-D model

Geometric region type, specified as 'Edge', 'Face', or 'Vertex' for a 2-D model or 3-D model, or
'Cell' for a 3-D model.
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs using the
pdegplot function with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Data Types: double

 findThermalIC

5-433

Output Arguments
tica — Thermal initial condition for a particular region
GeometricThermalICs object | NodalThermalICs object

Thermal initial condition for a particular region, returned as a GeometricThermalICs or
NodalThermalICs object.

See Also
GeometricThermalICs | NodalThermalICs | thermalIC

Introduced in R2017a

5 Functions

5-434

findThermalProperties
Package: pde

Find thermal material properties assigned to a geometric region

Syntax
tmpa = findThermalProperties(thermalmodel.MaterialProperties,RegionType,
RegionID)

Description
tmpa = findThermalProperties(thermalmodel.MaterialProperties,RegionType,
RegionID) returns thermal material properties tmpa assigned to the specified region.

Examples

Find Thermal Conductivity, Mass Density, and Specific Heat for Faces of 2-D Geometry

Create a transient thermal model that has three faces.

thermalmodel = createpde('thermal','transient');
geometryFromEdges(thermalmodel,@lshapeg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal

 findThermalProperties

5-435

For face 1, specify the following thermal properties:

• Thermal conductivity is 10 W/ m ⋅∘ C
• Mass density is 1 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅∘ C

thermalProperties(thermalmodel,'ThermalConductivity',10,...
 'MassDensity',1,...
 'SpecificHeat',0.1,...
 'Face',1);

For face 2, specify the following thermal properties:

• Thermal conductivity is 20 W/ m ⋅∘ C
• Mass density is 2 kg/m3

• Specific heat is 0 . 2 J/ kg ⋅∘ C

thermalProperties(thermalmodel,'ThermalConductivity',20,...
 'MassDensity',2,...
 'SpecificHeat',0.2,...
 'Face',2);

For face 3, specify the following thermal properties:

5 Functions

5-436

• Thermal conductivity is 30 W/ m ⋅∘ C)
• Mass density is 3 kg/m3

• Specific heat is 0 . 3 J/ kg ⋅∘ C

thermalProperties(thermalmodel,'ThermalConductivity',30,...
 'MassDensity',3,...
 'SpecificHeat',0.3,...
 'Face',3);

Check the material properties specification for face 1.

mpaFace1 = findThermalProperties(thermalmodel.MaterialProperties, ...
 'Face',1)

mpaFace1 =
 ThermalMaterialAssignment with properties:

 RegionType: 'face'
 RegionID: 1
 ThermalConductivity: 10
 MassDensity: 1
 SpecificHeat: 0.1000

Check the heat source specification for faces 2 and 3.

mpa = findThermalProperties(thermalmodel.MaterialProperties, ...
 'Face',[2,3]);
mpaFace2 = mpa(1)

mpaFace2 =
 ThermalMaterialAssignment with properties:

 RegionType: 'face'
 RegionID: 2
 ThermalConductivity: 20
 MassDensity: 2
 SpecificHeat: 0.2000

mpaFace3 = mpa(2)

mpaFace3 =
 ThermalMaterialAssignment with properties:

 RegionType: 'face'
 RegionID: 3
 ThermalConductivity: 30
 MassDensity: 3
 SpecificHeat: 0.3000

 findThermalProperties

5-437

Find Thermal Conductivity for Cells of 3-D Geometry

Create a geometry that consists of three stacked cylinders and include the geometry in a thermal
model.

gm = multicylinder(10,[1 2 3],'ZOffset',[0 1 3])

gm =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 7
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x3 double]

thermalmodel = createpde('thermal');
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'CellLabels','on','FaceAlpha',0.5)

Thermal conductivity of the cylinder C1 is 10 W/ m ⋅∘ C .

thermalProperties(thermalmodel,'ThermalConductivity',10,'Cell',1);

Thermal conductivity of the cylinder C2 is 20 W/ m ⋅∘ C .

thermalProperties(thermalmodel,'ThermalConductivity',20,'Cell',2);

5 Functions

5-438

Thermal conductivity of the cylinder C3 is 30 W/ m ⋅∘ C .

thermalProperties(thermalmodel,'ThermalConductivity',30,'Cell',3);

Check the material properties specification for cell 1:

mpaCell1 = findThermalProperties(thermalmodel.MaterialProperties, ...
 'Cell',1)

mpaCell1 =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 10
 MassDensity: []
 SpecificHeat: []

Check the heat source specification for cells 2 and 3:

mpa = findThermalProperties(thermalmodel.MaterialProperties,'Cell',2:3);
mpaCell2 = mpa(1)

mpaCell2 =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 2
 ThermalConductivity: 20
 MassDensity: []
 SpecificHeat: []

mpaCell3 = mpa(2)

mpaCell3 =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 3
 ThermalConductivity: 30
 MassDensity: []
 SpecificHeat: []

Input Arguments
thermalmodel.MaterialProperties — Material properties of the model
MaterialProperties property of a thermal model

Material properties of the model, specified as the MaterialProperties property of a thermal
model.
Example: thermalmodel.MaterialProperties

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

 findThermalProperties

5-439

Geometric region type, specified as 'Face' or 'Cell'.
Example: findThermalProperties(thermalmodel.MaterialProperties,'Cell',1)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: findThermalProperties(thermalmodel.MaterialProperties,'Face',1:3)
Data Types: double

Output Arguments
tmpa — Material properties assignment
ThermalMaterialAssignment object

Material properties assignment, returned as a ThermalMaterialAssignment object. See
ThermalMaterialAssignment.

See Also
ThermalMaterialAssignment | thermalProperties | ThermalModel

Introduced in R2017a

5 Functions

5-440

generateMesh
Package: pde

Create triangular or tetrahedral mesh

Syntax
generateMesh(model)
generateMesh(model,Name,Value)
mesh = generateMesh(___)

Description
generateMesh(model) creates a mesh and stores it in the model object. model must contain a
geometry. For details about creating a geometry and including it in a model, see “Geometry and
Mesh” and the geometry functions listed there.

generateMesh(model,Name,Value) modifies the mesh creation according to the Name,Value
arguments.

mesh = generateMesh(___) also returns the mesh to the MATLAB workspace, using any of the
previous syntaxes.

Examples

Generate 2-D Mesh

Generate the default 2-D mesh for the L-shaped geometry.

Create a PDE model and include the L-shaped geometry.

model = createpde(1);
geometryFromEdges(model,@lshapeg);

Generate the default mesh for the geometry.

generateMesh(model);

View the mesh.

pdeplot(model)

 generateMesh

5-441

Generate 3-D Mesh

Create a mesh that is finer than the default.

Create a PDE model and include the BracketTwoHoles geometry.

model = createpde(1);
importGeometry(model,'BracketTwoHoles.stl');

Generate a default mesh for comparison.

generateMesh(model)

ans =
 FEMesh with properties:

 Nodes: [3x10003 double]
 Elements: [10x5774 double]
 MaxElementSize: 9.7980
 MinElementSize: 4.8990
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

View the mesh.

5 Functions

5-442

pdeplot3D(model)

Create a mesh with target maximum element size 5 instead of the default 7.3485.

generateMesh(model,'Hmax',5)

ans =
 FEMesh with properties:

 Nodes: [3x66965 double]
 Elements: [10x44080 double]
 MaxElementSize: 5
 MinElementSize: 2.5000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

View the mesh.

pdeplot3D(model)

 generateMesh

5-443

Refine Mesh on Specified Edges and Vertices

Generate a 2-D mesh with finer spots around the specified edges and vertices.

Create a model.

model = createpde;

Create and plot a 2-D geometry representing a circle with a diamond-shaped hole in its center.

g = geometryFromEdges(model,@scatterg);
pdegplot(g,'VertexLabels','on','EdgeLabels','on')

5 Functions

5-444

Generate a mesh for this geometry using the default mesh parameters.

m1 = generateMesh(model)

m1 =
 FEMesh with properties:

 Nodes: [2x1159 double]
 Elements: [6x547 double]
 MaxElementSize: 0.0509
 MinElementSize: 0.0254
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

Plot the resulting mesh.

pdeplot(m1)

 generateMesh

5-445

Generate a mesh with the target size on edge 1, which is smaller than the target minimum element
size, MinElementSize, of the default mesh.

m2 = generateMesh(model,'Hedge',{1,0.001})

m2 =
 FEMesh with properties:

 Nodes: [2x2635 double]
 Elements: [6x1243 double]
 MaxElementSize: 0.0509
 MinElementSize: 0.0254
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

Plot the resulting mesh.

pdeplot(m2)

5 Functions

5-446

Generate a mesh specifying the target sizes for edge 1 and vertices 6 and 7.

m3 = generateMesh(model,'Hedge',{1,0.001},'Hvertex',{[6 7],0.002})

m3 =
 FEMesh with properties:

 Nodes: [2x2903 double]
 Elements: [6x1365 double]
 MaxElementSize: 0.0509
 MinElementSize: 0.0254
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

Plot the resulting mesh.

pdeplot(m3)

 generateMesh

5-447

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: generateMesh(model,'Hmax',0.25);

GeometricOrder — Element geometric order
'quadratic' (default) | 'linear'

5 Functions

5-448

Element geometric order, specified as 'linear' or 'quadratic'.

A triangle or tetrahedron representing a linear element has nodes at the corners. A triangle or
tetrahedron representing a quadratic element has nodes at its corners and edge centers. The center
nodes in quadratic meshes are always added at half-distance between corners. For geometries with
curved surfaces and edges, center nodes might not appear on the edge or surface itself.

In general, 'quadratic' elements produce more accurate solutions. Override the default
'quadratic' only to solve a 3-D magnetostatic problem, to save memory, or to solve a 2-D problem
using a legacy solver. Legacy PDE solvers use linear triangular mesh for 2-D geometries.
Example: generateMesh(model,'GeometricOrder','linear');
Data Types: char | string

Hgrad — Mesh growth rate
1.5 (default) | number greater than or equal to 1 and less than or equal to 2

Mesh growth rate, specified as a number greater than or equal to 1 and less than or equal to 2.
Example: generateMesh(model,'Hgrad',1.3);
Data Types: double

Hmax — Target maximum mesh edge length
positive number

Target maximum mesh edge length, specified as a positive number.

Hmax is an approximate upper bound on the mesh edge lengths. Occasionally, generateMesh can
create a mesh with some elements that exceed Hmax.

generateMesh estimates the default value of Hmax from overall dimensions of the geometry.

Small Hmax values let you create finer meshes, but mesh generation can take a very long time in this
case. You can interrupt mesh generation by using Ctrl+C. Note that generateMesh can take
additional time to respond to the interrupt.
Example: generateMesh(model,'Hmax',0.25);
Data Types: double

Hmin — Target minimum mesh edge length
nonnegative number

Target minimum mesh edge length, specified as a nonnegative number.

Hmin is an approximate lower bound on the mesh edge lengths. Occasionally, generateMesh can
create a mesh with some elements that are smaller than Hmin.

generateMesh estimates the default value of Hmin from overall dimensions of the geometry.
Example: generateMesh(model,'Hmin',0.05);
Data Types: double

Hface — Target size on selected faces
cell array

 generateMesh

5-449

Target size on selected faces, specified as a cell array containing an even number of elements. Odd-
indexed elements are positive integers or vectors of positive integers specifying face IDs. Even-
indexed elements are positive numbers specifying the target size for the corresponding faces.
Example: generateMesh(model,'Hmax',0.25,'Hface',{[1 2],0.1,[3 4 5],0.05})
Data Types: double

Hedge — Target size around selected edges
cell array

Target size around selected edges, specified as a cell array containing an even number of elements.
Odd-indexed elements are positive integers or vectors of positive integers specifying edge IDs. Even-
indexed elements are positive numbers specifying the target sizes for the corresponding edges.
Example: generateMesh(model,'Hmax',0.25,'Hedge',{[1 2],0.01,3,0.05})
Data Types: double

Hvertex — Target size around selected vertices
cell array

Target size around selected vertices, specified as a cell array containing an even number of elements.
Odd-indexed elements are positive integers or vectors of positive integers specifying vertex IDs.
Even-indexed elements are positive numbers specifying the target sizes for the corresponding
vertices.
Example: generateMesh(model,'Hmax',0.25,'Hvertex',{1,0.02})
Data Types: double

Output Arguments
mesh — Mesh description
FEMesh object

Mesh description, returned as an FEMesh object. mesh is the same as model.Mesh.

More About
Element

An element is a basic unit in the finite-element method.

For 2-D problems, an element is a triangle in the model.Mesh.Element property. If the triangle
represents a linear element, it has nodes only at the triangle corners. If the triangle represents a
quadratic element, then it has nodes at the triangle corners and edge centers.

For 3-D problems, an element is a tetrahedron with either four or ten points. A four-point (linear)
tetrahedron has nodes only at its corners. A ten-point (quadratic) tetrahedron has nodes at its corners
and at the center point of each edge.

For details, see “Mesh Data” on page 2-153.

5 Functions

5-450

Tips
• generateMesh can return slightly different meshes in different releases. For example, the

number of elements in the mesh can change. Avoid writing code that relies on explicitly specified
node and element IDs or node and element counts.

• generateMesh uses the following set of rules when you specify local element sizes with Hface,
Hedge, or Hvertex. These rules are valid for both the default and custom values of Hmin and
Hmax.

• If you specify local sizes for regions near each other, generateMesh uses the minimum size.
For example, if you specify size 1 on an edge and size 0.5 on one of its vertices, the function
gradually reduces the element sizes in the proximity of that vertex.

• If you specify local sizes smaller than Hmin, generateMesh ignores Hmin in those localities.
• If you specify local sizes larger than Hmax, generateMesh ignores the specified local sizes.

Hmax is not exceeded anywhere in the mesh.

See Also
FEMesh | geometryFromEdges | importGeometry | PDEModel

Topics
“Solve Problems Using PDEModel Objects” on page 2-2
“Finite Element Method Basics” on page 1-11
“Mesh Data” on page 2-153
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced in R2015a

 generateMesh

5-451

GeometricInitialConditions Properties
Initial conditions over a region or region boundary

Description
A GeometricInitialConditions object contains a description of the initial conditions over a
geometric region or boundary of the region. A PDEModel container has a vector of
GeometricInitialConditions objects in its
InitialConditions.InitialConditionAssignments property.

Set initial conditions for your model using the setInitialConditions function.

Properties
Properties

RegionType — Region type
'face' | 'cell'

Region type, returned as 'face' for a 2-D region, or 'cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function. Set the 'FacenLabels' name-value pair to
'on'.
Data Types: double

InitialValue — Initial value
scalar | vector | function handle

Initial value, returned as a scalar, vector, or function handle. For details, see
setInitialConditions.
Data Types: double | function_handle
Complex Number Support: Yes

InitialDerivative — Initial derivative
scalar | vector | function handle

Initial derivative, returned as a scalar, vector, or function handle. For details, see
setInitialConditions.
Data Types: double | function_handle
Complex Number Support: Yes

5 Functions

5-452

See Also
findInitialConditions | setInitialConditions | NodalInitialConditions

Topics
“Set Initial Conditions” on page 2-98
“View, Edit, and Delete Initial Conditions” on page 2-107
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

 GeometricInitialConditions Properties

5-453

GeometricStructuralICs Properties
Initial displacement and velocity over a region

Description
A GeometricStructuralICs object contains a description of the initial displacement and velocity
over a geometric region for a transient structural model. A StructuralModel container has a vector
of GeometricStructuralICs objects in its InitialConditions.StructuralICAssignments
property.

To set initial conditions for your structural model, use the structuralIC function.

Properties
Properties

RegionType — Geometric region type
'Face' | 'Edge' | 'Vertex' | 'Cell' for a 3-D model

Geometric region type, returned as 'Face', 'Edge', or 'Vertex' for a 2-D model or 3-D model, or
'Cell' for a 3-D model.
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, returned as a vector of positive integers. Find the region IDs by using
pdegplot.
Data Types: double

InitialDisplacement — Initial displacement
numeric vector | function handle

Initial displacement, returned as a numeric vector or function handle. For details, see
structuralIC.
Data Types: double | function_handle

InitialVelocity — Initial velocity
numeric vector | function handle

Initial velocity, returned as a numeric vector or function handle. For details, see structuralIC.
Data Types: double | function_handle

See Also
structuralIC | findStructuralIC | NodalStructuralICs Properties

5 Functions

5-454

Introduced in R2018a

 GeometricStructuralICs Properties

5-455

GeometricThermalICs Properties
Initial temperature over a region or region boundary

Description
A GeometricThermalICs object contains a description of the initial temperature over a geometric
region or a boundary of the region. A ThermalModel container has a vector of
GeometricThermalICs objects in its InitialConditions.ThermalICAssignments property.

Set initial conditions for your model using the thermalIC function.

Properties
Properties

RegionType — Region type
'Vertex' | 'Edge' | 'Face' | 'Cell'

Region type, returned as 'Vertex', 'Edge', or 'Face' for a 2-D or 3-D region, or 'Cell' for a 3-D
region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function and setting the 'FaceLabels' name-value pair
to 'on'.
Data Types: double

InitialTemperature — Initial temperature
scalar | vector | function handle

Initial temperature, returned as a scalar, vector, or function handle. For details, see thermalIC.
Data Types: double | function_handle

See Also
thermalIC | findThermalIC | NodalThermalICs

Introduced in R2017a

5 Functions

5-456

NodalInitialConditions Properties
Initial conditions at mesh nodes

Description
A NodalInitialConditions object contains a description of the initial conditions at mesh nodes. A
PDEModel container has a vector of NodalInitialConditions objects in its
InitialConditions.InitialConditionAssignments property.

Set initial conditions for your model using the setInitialConditions function.

Properties
Properties

InitialValue — Initial value
scalar | vector | function handle

Initial value, returned as a scalar, vector, or function handle. For details, see
setInitialConditions.
Data Types: double | function_handle
Complex Number Support: Yes

InitialDerivative — Initial derivative
scalar | vector | function handle

Initial derivative, returned as a scalar, vector, or function handle. For details, see
setInitialConditions.
Data Types: double | function_handle
Complex Number Support: Yes

See Also
findInitialConditions | setInitialConditions | GeometricInitialConditions

Topics
“Set Initial Conditions” on page 2-98
“View, Edit, and Delete Initial Conditions” on page 2-107
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016b

 NodalInitialConditions Properties

5-457

NodalStructuralICs Properties
Initial displacement and velocity at mesh nodes

Description
A NodalStructuralICs object contains a description of the initial displacement and velocity at
mesh nodes. A StructuralModel container has a vector of GeometricStructuralICs objects in
its InitialConditions.StructuralICAssignments property.

To set initial conditions for your structural model, use the structuralIC function.

Properties
Properties

InitialDisplacement — Initial displacement
numeric vector | function handle

Initial displacement, returned as a numeric vector or function handle. For details, see
structuralIC.
Data Types: double | function_handle

InitialVelocity — Initial velocity
numeric vector | function handle

Initial velocity, returned as a numeric vector or function handle. For details, see structuralIC.
Data Types: double | function_handle

See Also
structuralIC | findStructuralIC | GeometricStructuralICs Properties

Introduced in R2018a

5 Functions

5-458

NodalThermalICs Properties
Initial temperature at mesh nodes

Description
A NodalThermalICs object contains a description of the initial temperatures at mesh nodes. A
ThermalModel container has a vector of NodalThermalICs objects in its
InitialConditions.ThermalICAssignments property.

Set initial conditions for your model using the thermalIC function.

Properties
Properties

InitialTemperature — Initial temperature
scalar | vector | function handle

Initial temperature, returned as a scalar, vector, or function handle. For details, see thermalIC.
Data Types: double | function_handle

See Also
thermalIC | findThermalIC | GeometricThermalICs

Introduced in R2017a

 NodalThermalICs Properties

5-459

geometryFromEdges
Package: pde

Create 2-D geometry from decomposed geometry matrix

Syntax
geometryFromEdges(model,g)
pg = geometryFromEdges(model,g)

Description
geometryFromEdges(model,g) adds the 2-D geometry described in g to the model container.

pg = geometryFromEdges(model,g) additionally returns the geometry to the Workspace.

Examples

Geometry from Decomposed Solid Geometry

Create a decomposed solid geometry model and include it in a PDE model.

Create a default scalar PDE model.

model = createpde;

Define a circle in a rectangle, place these in one matrix, and create a set formula that subtracts the
circle from the rectangle.

R1 = [3,4,-1,1,1,-1,0.5,0.5,-0.75,-0.75]';
C1 = [1,0.5,-0.25,0.25]';
C1 = [C1;zeros(length(R1) - length(C1),1)];
gm = [R1,C1];
sf = 'R1-C1';

Create the geometry.

ns = char('R1','C1');
ns = ns';
g = decsg(gm,sf,ns);

Include the geometry in the model and plot it.

geometryFromEdges(model,g);
pdegplot(model,'EdgeLabels','on')
axis equal
xlim([-1.1,1.1])

5 Functions

5-460

Predefined Geometry Functions

The toolbox provides the several geometry functions. Specify them by using the following function
handles.

model = createpde;
g = geometryFromEdges(model,@cardg);
pdegplot(model)

 geometryFromEdges

5-461

clear model
model = createpde;
g = geometryFromEdges(model,@circleg);
pdegplot(model)

5 Functions

5-462

clear model
model = createpde;
g = geometryFromEdges(model,@cirsg);
pdegplot(model)

 geometryFromEdges

5-463

clear model
model = createpde;
g = geometryFromEdges(model,@crackg);
pdegplot(model)

5 Functions

5-464

clear model
model = createpde;
g = geometryFromEdges(model,@lshapeg);
pdegplot(model)

 geometryFromEdges

5-465

clear model
model = createpde;
g = geometryFromEdges(model,@scatterg);
pdegplot(model)

5 Functions

5-466

clear model
model = createpde;
g = geometryFromEdges(model,@squareg);
pdegplot(model)

 geometryFromEdges

5-467

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

g — Geometry description
decomposed geometry matrix | name of a geometry function | handle to a geometry function

Geometry description, specified as a decomposed geometry matrix, as the name of a geometry
function, or as a handle to a geometry function. For details about a decomposed geometry matrix, see
decsg.

A geometry function must return the same result for the same input arguments in every function call.
Thus, it must not contain functions and expressions designed to return a variety of results, such as
random number generators.

5 Functions

5-468

Example: geometryFromEdges(model,@circleg)
Data Types: double | char | function_handle

Output Arguments
pg — Geometry object
AnalyticGeometry object

Geometry object, returned as an AnalyticGeometry object. This object is stored in model.Geometry.

See Also
AnalyticGeometry | PDEModel

Topics
“Solve PDEs with Constant Boundary Conditions” on page 2-119
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

 geometryFromEdges

5-469

geometryFromMesh
Package: pde

Create 2-D or 3-D geometry from mesh

Syntax
geometryFromMesh(model,nodes,elements)
geometryFromMesh(model,nodes,elements,ElementIDToRegionID)
[G,mesh] = geometryFromMesh(model,nodes,elements)

Description
geometryFromMesh(model,nodes,elements) creates geometry within model. For planar and
volume triangulated meshes, this function also incorporates nodes in the model.Mesh.Nodes
property and elements in the model.Mesh.Elements property. To replace the imported mesh with
a mesh having a different target element size, use generateMesh.

If elements represents a surface triangular mesh that bounds a closed volume, then
geometryFromMesh creates the geometry, but does not incorporate the mesh into the corresponding
properties of the model. To generate a mesh in this case, use generateMesh.

geometryFromMesh(model,nodes,elements,ElementIDToRegionID) creates a multidomain
geometry. Here, ElementIDToRegionID specifies the subdomain IDs for each element of the mesh.

[G,mesh] = geometryFromMesh(model,nodes,elements) returns a handle G to the geometry
in model.Geometry, and a handle mesh to the mesh in model.Mesh.

Examples

Geometry from Volume Mesh

Import a tetrahedral mesh into a PDE model.

Load a tetrahedral mesh into your workspace. The tetmesh file ships with your software. Put the
data in the correct shape for geometryFromMesh.

load tetmesh
nodes = X';
elements = tet';

Create a PDE model and import the mesh into the model.

model = createpde();
geometryFromMesh(model,nodes,elements);

View the geometry and face numbers.

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-470

Geometry from Convex Hull

Create a geometric block from the convex hull of a mesh grid of points.

Create a 3-D mesh grid.

[x,y,z] = meshgrid(-2:4:2);

Create the convex hull.

x = x(:);
y = y(:);
z = z(:);
K = convhull(x,y,z);

Put the data in the correct shape for geometryFromMesh.

nodes = [x';y';z'];
elements = K';

Create a PDE model and import the mesh.

model = createpde();
geometryFromMesh(model,nodes,elements);

View the geometry and face numbers.

 geometryFromMesh

5-471

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

Geometry from alphaShape

Create a 3-D geometry using the MATLAB alphaShape function. First, create an alphaShape object
of a block with a cylindrical hole. Then import the geometry into a PDE model from the alphaShape
boundary.

Create a 2-D mesh grid.

[xg,yg] = meshgrid(-3:0.25:3);
xg = xg(:);
yg = yg(:);

Create a unit disk. Remove all the mesh grid points that fall inside the unit disk, and include the unit
disk points.

t = (pi/24:pi/24:2*pi)';
x = cos(t);
y = sin(t);
circShp = alphaShape(x,y,2);
in = inShape(circShp,xg,yg);
xg = [xg(~in); cos(t)];
yg = [yg(~in); sin(t)];

5 Functions

5-472

Create 3-D copies of the remaining mesh grid points, with the z-coordinates ranging from 0 through
1. Combine the points into an alphaShape object.

zg = ones(numel(xg),1);
xg = repmat(xg,5,1);
yg = repmat(yg,5,1);
zg = zg*(0:.25:1);
zg = zg(:);
shp = alphaShape(xg,yg,zg);

Obtain a surface mesh of the alphaShape object.

[elements,nodes] = boundaryFacets(shp);

Put the data in the correct shape for geometryFromMesh.

nodes = nodes';
elements = elements';

Create a PDE model and import the surface mesh.

model = createpde();
geometryFromMesh(model,nodes,elements);

View the geometry and face numbers.

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

To use the geometry in an analysis, create a volume mesh.

 geometryFromMesh

5-473

generateMesh(model);

2-D Multidomain Geometry

Create a 2-D multidomain geometry from a mesh.

Load information about nodes, elements, and element-to-domain correspondence into your
workspace. The file MultidomainMesh2D ships with your software.

load MultidomainMesh2D

Create a PDE model.

model = createpde;

Import the mesh into the model.

geometryFromMesh(model,nodes,elements,ElementIdToRegionId);

View the geometry and face numbers.

pdegplot(model,'FaceLabels','on')

5 Functions

5-474

3-D Multidomain Geometry

Create a 3-D multidomain geometry from a mesh.

Load information about nodes, elements, and element-to-domain correspondence into your
workspace. The file MultidomainMesh3D ships with your software.

load MultidomainMesh3D

Create a PDE model.

model = createpde;

Import the mesh into the model.

geometryFromMesh(model,nodes,elements,ElementIdToRegionId);

View the geometry and cell numbers.

pdegplot(model,'CellLabels','on')

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

 geometryFromMesh

5-475

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

nodes — Mesh nodes
matrix of real numbers

Mesh nodes, specified as a matrix of real numbers. The matrix size is 2-by-Nnodes for a 2-D case and
3-by-Nnodes for a 3-D case. Nnodes is the number of nodes in the mesh.

Node j has x, y, and z coordinates in column j of nodes.
Data Types: double

elements — Mesh elements
3-by-Nelements integer matrix | 4-by-Nelements integer matrix | 6-by-Nelements integer matrix |
10-by-Nelements integer matrix

Mesh elements, specified as an integer matrix with 3, 4, 6, or 10 rows, and Nelements columns,
where Nelements is the number of elements in the mesh.

• Linear planar mesh or linear mesh on the geometry surface has size 3-by-Nelements. Each
column of elements contains the indices of the triangle corner nodes for a surface element. In
this case, the resulting geometry does not contain a full mesh. Create the mesh using the
generateMesh function.

• Linear elements have size 4-by-Nelements. Each column of elements contains the indices of the
tetrahedral corner nodes for an element.

• Quadratic planar mesh or quadratic mesh on the geometry surface has size 6-by-Nelements. Each
column of elements contains the indices of the triangle corner nodes and edge centers for a
surface element. In this case, the resulting geometry does not contain a full mesh. Create the
mesh using the generateMesh function.

• Quadratic elements have size 10-by-Nelements. Each column of elements contains the indices
of the tetrahedral corner nodes and the tetrahedral edge midpoint nodes for an element.

For details on node numbering for linear and quadratic elements, see “Mesh Data” on page 2-153.
Data Types: double

ElementIDToRegionID — Domain information for each element
vector of positive integers

Domain information for each mesh element, specified as a vector of positive integers. Each element is
an ID of a geometric region for an element of the mesh. The length of this vector equals the number
of elements in the mesh.
Data Types: double

5 Functions

5-476

Output Arguments
G — Geometry
handle to model.Geometry

Geometry, returned as a handle to model.Geometry. This geometry is of class DiscreteGeometry.

mesh — Finite element mesh
handle to model.Mesh

Finite element mesh, returned as a handle to model.Mesh.

• If elements is a 3-by-Nelements matrix representing a surface mesh, then mesh is []. In this
case, create a mesh for the geometry using the generateMesh function.

• If elements is a matrix with more than three rows representing a volume mesh, then mesh has
the same nodes and elements as the inputs. You can get a different mesh for the geometry by
using the generateMesh function.

See Also
alphaShape | DiscreteGeometry | generateMesh | importGeometry

Topics
“STL File Import” on page 2-31
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015b

 geometryFromMesh

5-477

HeatSourceAssignment Properties
Heat source assignments

Description
A HeatSourceAssignment object contains a description of the heat sources for a thermal model. A
ThermalModel container has a vector of HeatSourceAssignment objects in its
HeatSources.HeatSourceAssignments property.

Create heat source assignments for your thermal model using the internalHeatSource function.

Properties
Properties

RegionType — Region type
'Face' | 'Cell'

Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function. Set the 'FaceLabels' name-value pair to
'on'.
Data Types: double

HeatSource — Heat source value
number | function handle

Heat source value, returned as a number or a function handle. A heat source with a negative value is
called a heat sink.
Data Types: double | function_handle

Label — Label for use with linearizeInput
character vector | string

Label for use with linearizeInput, returned as a character vector or a string.
Data Types: char | string

See Also
findHeatSource | internalHeatSource

Introduced in R2017a

5 Functions

5-478

hyperbolic
(Not recommended) Solve hyperbolic PDE problem

Note hyperbolic is not recommended. Use solvepde instead.

Syntax
u = hyperbolic(u0,ut0,tlist,model,c,a,f,d)
u = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d)
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M)
u = hyperbolic(___ ,rtol)
u = hyperbolic(___ ,rtol,atol)
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M, ___ ,'DampingMatrix',D)
u = hyperbolic(___ ,'Stats','off')

Description
Hyperbolic equation solver

Solves PDE problems of the type

d∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

on a 2-D or 3-D region Ω, or the system PDE problem

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

The variables c, a, f, and d can depend on position, time, and the solution u and its gradient.

u = hyperbolic(u0,ut0,tlist,model,c,a,f,d) produces the solution to the FEM formulation
of the scalar PDE problem

d∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

on a 2-D or 3-D region Ω, or the system PDE problem

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

with geometry, mesh, and boundary conditions specified in model, with initial value u0 and initial
derivative with respect to time ut0. The variables c, a, f, and d in the equation correspond to the
function coefficients c, a, f, and d respectively.

u = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d) solves the problem using boundary
conditions b and finite element mesh specified in [p,e,t].

 hyperbolic

5-479

u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M) solves the problem based on finite element
matrices that encode the equation, mesh, and boundary conditions.

u = hyperbolic(___ ,rtol) and u = hyperbolic(___ ,rtol,atol) modify the solution
process by passing to the ODE solver a relative tolerance rtol, and optionally an absolute tolerance
atol.

u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M, ___ ,'DampingMatrix',D) modifies the
problem to include a damping matrix D.

u = hyperbolic(___ ,'Stats','off') turns off the display of internal ODE solver statistics
during the solution process.

Examples

Hyperbolic Equation

Solve the wave equation

∂2u
∂t2 = Δu

on the square domain specified by squareg.

Create a PDE model and import the geometry.

model = createpde;
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal

5 Functions

5-480

Set Dirichlet boundary conditions u = 0 for x = ± 1, and Neumann boundary conditions

∇u ⋅ n = 0

for y = ± 1. (The Neumann boundary condition is the default condition, so the second specification is
redundant.)

applyBoundaryCondition(model,'dirichlet','Edge',[2,4],'u',0);
applyBoundaryCondition(model,'neumann','Edge',[1,3],'g',0);

Set the initial conditions

u0 = 'atan(cos(pi/2*x))';
ut0 = '3*sin(pi*x).*exp(cos(pi*y))';

Set the solution times.

tlist = linspace(0,5,31);

Give coefficients for the problem.

c = 1;
a = 0;
f = 0;
d = 1;

Generate a mesh and solve the PDE.

 hyperbolic

5-481

generateMesh(model,'GeometricOrder','linear','Hmax',0.1);
u1 = hyperbolic(u0,ut0,tlist,model,c,a,f,d);

460 successful steps
51 failed attempts
1024 function evaluations
1 partial derivatives
135 LU decompositions
1023 solutions of linear systems

Plot the solution at the first and last times.

figure
pdeplot(model,'XYData',u1(:,1))

figure
pdeplot(model,'XYData',u1(:,end))

5 Functions

5-482

For a version of this example with animation, see “Wave Equation on Square Domain” on page 3-271.

Hyperbolic Equation using Legacy Syntax

Solve the wave equation

∂2u
∂t2 = Δu

on the square domain specified by squareg, using a geometry function to specify the geometry, a
boundary function to specify the boundary conditions, and using initmesh to create the finite
element mesh.

Specify the geometry as @squareg and plot the geometry.

g = @squareg;
pdegplot(g,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal

 hyperbolic

5-483

Set Dirichlet boundary conditions u = 0 for x = ± 1, and Neumann boundary conditions

∇u ⋅ n = 0

for y = ± 1. (The Neumann boundary condition is the default condition, so the second specification is
redundant.)

The squareb3 function specifies these boundary conditions.

b = @squareb3;

Set the initial conditions

u0 = 'atan(cos(pi/2*x))';
ut0 = '3*sin(pi*x).*exp(cos(pi*y))';

Set the solution times.

tlist = linspace(0,5,31);

Give coefficients for the problem.

c = 1;
a = 0;
f = 0;
d = 1;

Create a mesh and solve the PDE.

5 Functions

5-484

[p,e,t] = initmesh(g);
u = hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d);

462 successful steps
70 failed attempts
1066 function evaluations
1 partial derivatives
156 LU decompositions
1065 solutions of linear systems

Plot the solution at the first and last times.

figure
pdeplot(p,e,t,'XYData',u(:,1))

figure
pdeplot(p,e,t,'XYData',u(:,end))

 hyperbolic

5-485

For a version of this example with animation, see “Wave Equation on Square Domain” on page 3-271.

Hyperbolic Solution Using Finite Element Matrices

Solve a hyperbolic problem using finite element matrices.

Create a model and import the BracketWithHole.stl geometry.

model = createpde();
importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

5 Functions

5-486

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

 hyperbolic

5-487

Set coefficients c = 1, a = 0, f = 0.5, and d = 1.

c = 1;
a = 0;
f = 0.5;
d = 1;

Generate a mesh for the model.

generateMesh(model);

Create initial conditions and boundary conditions. The boundary condition for the rear face is
Dirichlet with value 0. All other faces have the default boundary condition. The initial condition is
u(0) = 0, du/dt(0) = x/2. Give the initial condition on the derivative by calculating the x-
position of each node in xpts, and passing x/2.

applyBoundaryCondition(model,'Face',4,'u',0);
u0 = 0;
xpts = model.Mesh.Nodes(1,:);
ut0 = xpts(:)/2;

Create the associated finite element matrices.

[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);

Solve the PDE for times from 0 to 2.

5 Functions

5-488

tlist = linspace(0,5,50);
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M);

1493 successful steps
70 failed attempts
2972 function evaluations
1 partial derivatives
276 LU decompositions
2971 solutions of linear systems

View the solution at a few times. Scale all the plots to have the same color range by using the caxis
command.

umax = max(max(u));
umin = min(min(u));

subplot(2,2,1)
pdeplot3D(model,'ColorMapData',u(:,5))
caxis([umin umax])
title('Time 1/2')
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',u(:,10))
caxis([umin umax])
title('Time 1')
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',u(:,15))
caxis([umin umax])
title('Time 3/2')
subplot(2,2,4)
pdeplot3D(model,'ColorMapData',u(:,20))
caxis([umin umax])
title('Time 2')

 hyperbolic

5-489

The solution seems to have a frequency of one, because the plots at times 1/2 and 3/2 show maximum
values, and those at times 1 and 2 show minimum values.

Hyperbolic Equation with Damping

Solve a hyperbolic problem that includes damping. You must use the finite element matrix form to use
damping.

Create a model and import the BracketWithHole.stl geometry.

model = createpde();
importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

5 Functions

5-490

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

 hyperbolic

5-491

Set coefficients c = 1, a = 0, f = 0.5, and d = 1.

c = 1;
a = 0;
f = 0.5;
d = 1;

Generate a mesh for the model.

generateMesh(model);

Create initial conditions and boundary conditions. The boundary condition for the rear face is
Dirichlet with value 0. All other faces have the default boundary condition. The initial condition is
u(0) = 0, du/dt(0) = x/2. Give the initial condition on the derivative by calculating the x-
position of each node in xpts, and passing x/2.

applyBoundaryCondition(model,'Face',4,'u',0);
u0 = 0;
xpts = model.Mesh.Nodes(1,:);
ut0 = xpts(:)/2;

Create the associated finite element matrices.

[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);

Use a damping matrix that is 10% of the mass matrix.

5 Functions

5-492

Damping = 0.1*M;

Solve the PDE for times from 0 to 2.

tlist = linspace(0,5,50);
u = hyperbolic(u0,ut0,tlist,Kc,Fc,B,ud,M,'DampingMatrix',Damping);

1441 successful steps
70 failed attempts
2844 function evaluations
1 partial derivatives
288 LU decompositions
2843 solutions of linear systems

Plot the maximum value at each time. The oscillations damp slightly as time increases.

plot(max(u))
xlabel('Time')
ylabel('Maximum value')
title('Maximum of Solution')

Input Arguments
u0 — Initial condition
vector | character vector | character array | string scalar | string vector

 hyperbolic

5-493

Initial condition, specified as a scalar, vector of nodal values, character vector, character array, string
scalar, or string vector. The initial condition is the value of the solution u at the initial time, specified
as a column vector of values at the nodes. The nodes are either p in the [p,e,t] data structure, or
are model.Mesh.Nodes.

• If the initial condition is a constant scalar v, specify u0 as v.
• If there are Np nodes in the mesh, and N equations in the system of PDEs, specify u0 as a column

vector of Np*N elements, where the first Np elements correspond to the first component of the
solution u, the second Np elements correspond to the second component of the solution u, etc.

• Give a text expression of a function, such as 'x.^2 + 5*cos(x.*y)'. If you have a system of
N > 1 equations, give a text array such as

char('x.^2 + 5*cos(x.*y)',...
 'tanh(x.*y)./(1+z.^2)')

Example: x.^2+5*cos(y.*x)
Data Types: double | char | string
Complex Number Support: Yes

ut0 — Initial derivative
vector | character vector | character array | string scalar | string vector

Initial derivative, specified as a vector, character vector, character array, string scalar, or string
vector. The initial gradient is the value of the derivative of the solution u at the initial time, specified
as a vector of values at the nodes. The nodes are either p in the [p,e,t] data structure, or are
model.Mesh.Nodes.

• If the initial derivative is a constant value v, specify u0 as v.
• If there are Np nodes in the mesh, and N equations in the system of PDEs, specify ut0 as a vector

of Np*N elements, where the first Np elements correspond to the first component of the solution u,
the second Np elements correspond to the second component of the solution u, etc.

• Give a text expression of a function, such as 'x.^2 + 5*cos(x.*y)'. If you have a system of
N > 1 equations, use a text array such as

char('x.^2 + 5*cos(x.*y)',...
 'tanh(x.*y)./(1+z.^2)')

Example: p(1,:).^2+5*cos(p(2,:).*p(1,:))
Data Types: double | char | string
Complex Number Support: Yes

tlist — Solution times
real vector

Solution times, specified as a real vector. The solver returns the solution to the PDE at the solution
times.
Example: 0:0.2:4
Data Types: double

model — PDE model
PDEModel object

5 Functions

5-494

PDE model, specified as a PDEModel object.
Example: model = createpde

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

d∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

d∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

d∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

 hyperbolic

5-495

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string | function_handle
Complex Number Support: Yes

d — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. d represents the d coefficient in the scalar PDE

d∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler
app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)

5 Functions

5-496

Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Kc — Stiffness matrix
sparse matrix | full matrix

Stiffness matrix, specified as a sparse matrix or as a full matrix. See “Elliptic Equations” on page 5-
93. Typically, Kc is the output of assempde.

Fc — Load vector
vector

Load vector, specified as a vector. See “Elliptic Equations” on page 5-93. Typically, Fc is the output of
assempde.

B — Dirichlet nullspace
sparse matrix

Dirichlet nullspace, returned as a sparse matrix. See “Algorithms” on page 5-93. Typically, B is the
output of assempde.

ud — Dirichlet vector
vector

Dirichlet vector, returned as a vector. See “Algorithms” on page 5-93. Typically, ud is the output of
assempde.

M — Mass matrix
sparse matrix | full matrix

Mass matrix. specified as a sparse matrix or a full matrix. See “Elliptic Equations” on page 5-93.

To obtain the input matrices for pdeeig, hyperbolic or parabolic, run both assema and
assempde:

[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);

Note Create the M matrix using assema with d, not a, as the argument before f.

Data Types: double
Complex Number Support: Yes

 hyperbolic

5-497

rtol — Relative tolerance for ODE solver
1e-3 (default) | positive real

Relative tolerance for ODE solver, specified as a positive real.
Example: 2e-4
Data Types: double

atol — Absolute tolerance for ODE solver
1e-6 (default) | positive real

Absolute tolerance for ODE solver, specified as a positive real.
Example: 2e-7
Data Types: double

D — Damping matrix
matrix

Damping matrix, specified as a matrix. D has the same size as the stiffness matrix Kc or the mass
matrix M. When you include D, hyperbolic solves the following ODE for the variable v:

BTMBd2v
dt2 + BTDBdv

dt + Kv = F

with initial condition u0 and initial derivative ut0. Then hyperbolic returns the solution
u = B*v + ud.

For an example using D, see “Dynamics of Damped Cantilever Beam” on page 3-21.
Example: alpha*M + beta*K
Data Types: double
Complex Number Support: Yes

Output Arguments
u — PDE solution
matrix

PDE solution, returned as a matrix. The matrix is Np*N-by-T, where Np is the number of nodes in the
mesh, N is the number of equations in the PDE (N = 1 for a scalar PDE), and T is the number of
solution times, meaning the length of tlist. The solution matrix has the following structure.

• The first Np elements of each column in u represent the solution of equation 1, then next Np
elements represent the solution of equation 2, etc. The solution u is the value at the corresponding
node in the mesh.

• Column i of u represents the solution at time tlist(i).

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.

To plot the solution, use pdeplot for 2-D geometry, or see “3-D Solution and Gradient Plots with
MATLAB® Functions” on page 3-317.

5 Functions

5-498

Algorithms
Hyperbolic Equations

Partial Differential Equation Toolbox solves equations of the form

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

When the d coefficient is 0, but m is not, the documentation calls this a hyperbolic equation, whether
or not it is mathematically of the hyperbolic form.

Using the same ideas as for the parabolic equation, hyperbolic implements the numerical solution
of

m∂
2u
∂t2 − ∇ ⋅ c∇u + au = f

for x in Ω, where x represents a 2-D or 3-D point, with the initial conditions

u x, 0 = u0 x
∂u
∂t x, 0 = v0 x

for all x in Ω, and usual boundary conditions. In particular, solutions of the equation utt - cΔu = 0 are
waves moving with speed c.

Using a given mesh of Ω, the method of lines yields the second order ODE system

Md2U
dt2 + KU = F

with the initial conditions

Ui 0 = u0 xi ∀i
d
dtUi 0 = v0 xi ∀i

after we eliminate the unknowns fixed by Dirichlet boundary conditions. As before, the stiffness
matrix K and the mass matrix M are assembled with the aid of the function assempde from the
problems

–∇ · (c∇u) + au = f and –∇ · (0∇u) + mu = 0. (5-3)

hyperbolic internally calls assema, assemb, and assempde to create finite element matrices
corresponding to the problem. It calls ode15s to solve the resulting system of ordinary differential
equations.

Finite Element Basis for 3-D

The finite element method for 3-D geometry is similar to the 2-D method described in “Elliptic
Equations” on page 5-93. The main difference is that the elements in 3-D geometry are tetrahedra,
which means that the basis functions are different from those in 2-D geometry.

 hyperbolic

5-499

It is convenient to map a tetrahedron to a canonical tetrahedron with a local coordinate system (r,s,t).

In local coordinates, the point p1 is at (0,0,0), p2 is at (1,0,0), p3 is at (0,1,0), and p4 is at (0,0,1).

For a linear tetrahedron, the basis functions are

ϕ1 = 1 − r − s− t
ϕ2 = r
ϕ3 = s
ϕ4 = t

For a quadratic tetrahedron, there are additional nodes at the edge midpoints.

5 Functions

5-500

The corresponding basis functions are

ϕ1 = 2 1 − r − s− t 2− 1 − r − s− t

ϕ2 = 2r2− r

ϕ3 = 2s2− s

ϕ4 = 2t2− t
ϕ5 = 4r 1 − r − s− t

ϕ6 = 4rs
ϕ7 = 4s 1 − r − s− t
ϕ8 = 4t 1 − r − s− t

ϕ9 = 4rt
ϕ10 = 4st

As in the 2-D case, a 3-D basis function ϕi takes the value 0 at all nodes j, except for node i, where it
takes the value 1.

Systems of PDEs

Partial Differential Equation Toolbox software can also handle systems of N partial differential
equations over the domain Ω. We have the elliptic system

−∇ ⋅ c⊗ ∇u + au = f

the parabolic system

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

 hyperbolic

5-501

the hyperbolic system

d∂
2u
∂t2 − ∇ ⋅ c⊗ ∇u + au = f

and the eigenvalue system

−∇ ⋅ c⊗ ∇u + au = λdu

where c is an N-by-N-by-D-by-D tensor, and D is the geometry dimensions, 2 or 3.

For 2-D systems, the notation ∇ ⋅ (c⊗ ∇u) represents an N-by-1 matrix with an (i,1)-component

∑
j = 1

N ∂
∂x ci, j, 1, 1

∂
∂x + ∂

∂x ci, j, 1, 2
∂
∂y + ∂

∂y ci, j, 2, 1
∂
∂x + ∂

∂y ci, j, 2, 2
∂
∂y u j

For 3-D systems, the notation ∇ ⋅ (c⊗ ∇u) represents an N-by-1 matrix with an (i,1)-component

∑
j = 1

N ∂
∂x ci, j, 1, 1

∂
∂x + ∂

∂x ci, j, 1, 2
∂
∂y + ∂

∂x ci, j, 1, 3
∂
∂z u j

+ ∑
j = 1

N ∂
∂y ci, j, 2, 1

∂
∂x + ∂

∂y ci, j, 2, 2
∂
∂y + ∂

∂y ci, j, 2, 3
∂
∂z u j

+ ∑
j = 1

N ∂
∂z ci, j, 3, 1

∂
∂x + ∂

∂z ci, j, 3, 2
∂
∂y + ∂

∂z ci, j, 3, 3
∂
∂z u j

The symbols a and d denote N-by-N matrices, and f denotes a column vector of length N.

The elements cijkl, aij, dij, and fi of c, a, d, and f are stored row-wise in the MATLAB matrices c, a, d,
and f. The case of identity, diagonal, and symmetric matrices are handled as special cases. For the
tensor cijkl this applies both to the indices i and j, and to the indices k and l.

Partial Differential Equation Toolbox software does not check the ellipticity of the problem, and it is
quite possible to define a system that is not elliptic in the mathematical sense. The preceding
procedure that describes the scalar case is applied to each component of the system, yielding a
symmetric positive definite system of equations whenever the differential system possesses these
characteristics.

The boundary conditions now in general are mixed, i.e., for each point on the boundary a combination
of Dirichlet and generalized Neumann conditions,

hu = r
n · c⊗ ∇u + qu = g + h′μ

For 2-D systems, the notation n · c⊗ ∇u represents an N-by-1 matrix with (i,1)-component

∑
j = 1

N
cos(α)ci, j, 1, 1

∂
∂x + cos(α)ci, j, 1, 2

∂
∂y + sin(α)ci, j, 2, 1

∂
∂x + sin(α)ci, j, 2, 2

∂
∂y u j

where the outward normal vector of the boundary is n = cos(α), sin(α) .

For 3-D systems, the notation n · c⊗ ∇u represents an N-by-1 matrix with (i,1)-component

5 Functions

5-502

∑
j = 1

N
cos(α)ci, j, 1, 1

∂
∂x + cos(α)ci, j, 1, 2

∂
∂y + cos(α)ci, j, 1, 3

∂
∂z u j

+ ∑
j = 1

N
cos(β)ci, j, 2, 1

∂
∂x + cos(β)ci, j, 2, 2

∂
∂y + cos(β)ci, j, 2, 3

∂
∂z u j

+ ∑
j = 1

N
cos(γ)ci, j, 3, 1

∂
∂x + cos(γ)ci, j, 3, 2

∂
∂y + cos(γ)ci, j, 3, 3

∂
∂z u j

where the outward normal to the boundary is

n = cos α , cos β , cos γ

There are M Dirichlet conditions and the h-matrix is M-by-N, M ≥ 0. The generalized Neumann
condition contains a source h′μ, where the Lagrange multipliers μ are computed such that the
Dirichlet conditions become satisfied. In a structural mechanics problem, this term is exactly the
reaction force necessary to satisfy the kinematic constraints described by the Dirichlet conditions.

The rest of this section details the treatment of the Dirichlet conditions and may be skipped on a first
reading.

Partial Differential Equation Toolbox software supports two implementations of Dirichlet conditions.
The simplest is the “Stiff Spring” model, so named for its interpretation in solid mechanics. See
“Elliptic Equations” on page 5-93 for the scalar case, which is equivalent to a diagonal h-matrix. For
the general case, Dirichlet conditions

hu = r

are approximated by adding a term

L(h′hu− h′r)

to the equations KU = F, where L is a large number such as 104 times a representative size of the
elements of K.

When this number is increased, hu = r will be more accurately satisfied, but the potential ill-
conditioning of the modified equations will become more serious.

The second method is also applicable to general mixed conditions with nondiagonal h, and is free of
the ill-conditioning, but is more involved computationally. Assume that there are Np nodes in the
mesh. Then the number of unknowns is NpN = Nu. When Dirichlet boundary conditions fix some of
the unknowns, the linear system can be correspondingly reduced. This is easily done by removing
rows and columns when u values are given, but here we must treat the case when some linear
combinations of the components of u are given, hu = r. These are collected into HU = R where H is
an M-by-Nu matrix and R is an M-vector.

With the reaction force term the system becomes

KU +H´ µ = F

HU = R.

The constraints can be solved for M of the U-variables, the remaining called V, an Nu – M vector. The
null space of H is spanned by the columns of B, and U = BV + ud makes U satisfy the Dirichlet
conditions. A permutation to block-diagonal form exploits the sparsity of H to speed up the following

 hyperbolic

5-503

computation to find B in a numerically stable way. µ can be eliminated by pre-multiplying by B´ since,
by the construction, HB = 0 or B´H´ = 0. The reduced system becomes

B´ KBV = B´ F – B´Kud

which is symmetric and positive definite if K is.

See Also
solvepde

Introduced before R2006a

5 Functions

5-504

importGeometry
Package: pde

Import 2-D or 3-D geometry from STL data

Syntax
gm = importGeometry(geometryfile)

importGeometry(model,geometryfile)
gm = importGeometry(model,geometryfile)

Description
gm = importGeometry(geometryfile) creates a geometry object from the specified STL
geometry file.

importGeometry(model,geometryfile) creates a geometry object from the specified STL
geometry file and includes the geometry in the model container.

gm = importGeometry(model,geometryfile) includes the geometry in the model container and
also returns the geometry gm to the MATLAB workspace.

Examples

Import 3-D Geometry Without Creating Model

Create a geometry object from an STL geometry file.

gm = importGeometry('ForearmLink.stl');

Plot the geometry.

pdegplot(gm)

 importGeometry

5-505

Import Planar Geometry into Model

Import a planar STL geometry and include it in a PDE model. When importing a planar geometry,
importGeometry converts it to a 2-D geometry by mapping it to the X-Y plane.

Create a PDEModel container.

model = createpde;

Import a geometry into the container.

importGeometry(model,'PlateHolePlanar.stl')

ans =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Plot the geometry with the edge labels.

5 Functions

5-506

pdegplot(model,'EdgeLabels','on')

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

geometryfile — Path to STL file
character vector | string scalar

Path to STL file, specified as a character vector or a string scalar ending with the file extension
'.stl' or '.STL'.
Example: '../geometries/Carburetor.stl'
Data Types: char | string

 importGeometry

5-507

Output Arguments
gm — Geometry
DiscreteGeometry object

Geometry, returned as a DiscreteGeometry object. See DiscreteGeometry for details.

Limitations
• importGeometry does not allow you to import a multidomain 2-D or 3-D geometry where

subdomains have any common points. If the subdomains of the geometry have common points, the
toolbox still treats these subdomains as disconnected, without any common interface between
them. Each subdomain has its own mesh.

Because of this limitation, you cannot import nested 3-D geometries directly. As a workaround, you
can import a mesh and then create a multidomain geometry from the mesh by using the
geometryFromMesh function. See “Multidomain Geometry Reconstructed from Mesh” on page 2-
67.

Tips
• The STL format approximates the boundary of a CAD geometry by a collection of triangles, and

the importGeometry function reconstructs the faces and edges from this data. Reconstruction
from STL data is not precise and can result in a loss of edges and, therefore, the merging of
adjacent faces. Typically, lost edges are the edges between two adjacent faces meeting at a small
angle, or smooth edges bounding blend surfaces. Usually, the loss of such edges does not affect
the analysis workflow.

• Because STL geometries are only approximations of the original CAD geometries, the areas and
volumes of the STL and CAD geometries can differ.

See Also
DiscreteGeometry | geometryFromMesh | pdegplot | PDEModel | StructuralModel |
ThermalModel | ElectromagneticModel

Topics
“STL File Import” on page 2-31
“Multidomain Geometry Reconstructed from Mesh” on page 2-67
“Sphere in Cube” on page 2-59
“Geometry from Triangulated Mesh” on page 2-47

5 Functions

5-508

Introduced in R2015a

 importGeometry

5-509

initmesh
Package: pde

Create initial 2-D mesh

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow. For the corresponding step in the recommended workflow, see generateMesh.

Syntax
[p,e,t] = initmesh(g)
[p,e,t] = initmesh(g,Name,Value)

Description
[p,e,t] = initmesh(g) generates a triangular mesh for a 2-D geometry. The function uses a
Delaunay triangulation algorithm.

[p,e,t] = initmesh(g,Name,Value) generates a 2-D mesh using one or more Name,Value pair
arguments.

Examples

Initial Mesh for L-shaped Membrane

Generate a triangular mesh of the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

Plot the mesh.

pdemesh(p,e,t)

5 Functions

5-510

Maximum Mesh Edge Length

Generate a triangular mesh of the L-shaped membrane with the target maximum mesh edge length of
0.1.

[p,e,t] = initmesh('lshapeg','Hmax',0.1);

Plot the mesh.

pdemesh(p,e,t)

 initmesh

5-511

Input Arguments
g — Geometry description
decomposed geometry matrix | geometry function | handle to geometry function

Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle
to the geometry function. For details about a decomposed geometry matrix, see decsg. For details
about a geometry function, see “Parametrized Function for 2-D Geometry Creation” on page 2-10.

A geometry function must return the same result for the same input arguments in every function call.
Thus, it must not contain functions and expressions designed to return a variety of results, such as
random number generators.
Data Types: double | char | string | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [p,e,t] = initmesh('lshapeg','Hmax',0.1);

Hmax — Target maximum mesh edge length
positive real number

5 Functions

5-512

Target maximum mesh edge length, specified as the comma-separated pair consisting of 'Hmax' and
a positive real number.

Hmax is an approximate upper bound on the mesh edge lengths. initmesh estimates the default
value of Hmax from overall dimensions of the geometry.

Small Hmax values let you create finer meshes, but mesh generation can take a very long time in this
case. You can interrupt mesh generation by using Ctrl+C. Note that initmesh can take additional
time to respond to the interrupt.
Example: [p,e,t] = initmesh(g,'Hmax',0.25);
Data Types: double

Hgrad — Mesh growth rate
1.3 (default) | number strictly greater than 1 and less than 2

Mesh growth rate, specified as the comma-separated pair consisting of 'Hgrad' and a number
strictly greater than 1 and less than 2.
Example: [p,e,t] = initmesh(g,'Hgrad',1.5);
Data Types: double

Box — Toggle to preserve bounding box
'off' (default) | 'on'

Toggle to preserve bounding box, specified as the comma-separated pair consisting of 'Box' and
'on' or 'off'. By turning on 'Box' you can get a good idea of how the mesh generation algorithm
works within the bounding box.
Example: [p,e,t] = initmesh(g,'Box','on');
Data Types: char | string

Init — Toggle to use edge triangulation
'off' (default) | 'on'

Toggle to use edge triangulation, specified as the comma-separated pair consisting of 'Init' and
'on' or 'off'. By turning on Init you can see the initial triangulation of the boundaries. For
example, use these commands to determine the subdomain number n of the point xy.

[p,e,t] = initmesh(g,'Hmax',Inf,'Init','on');
[uxy,tn,a2,a3] = tri2grid(p,t,zeros(size(p,2)),x,y);
n = t(4,tn);

If the point is outside the geometry, tn is NaN, and the command n = t(4,tn) results in a failure.
Data Types: char | string

Jiggle — Toggle to call jigglemesh after creating the mesh
'mean' (default) | 'minimum' | 'on' | 'off'

Toggle to call jigglemesh after creating the mesh, specified as the comma-separated pair consisting
of 'Jiggle' and 'mean', 'minimum''on', or 'off'.

• 'mean' — call jigglemesh with the argument 'Opt' set to 'mean'.
• 'minimum' — call jigglemesh with the argument 'Opt' set to 'minimum'.

 initmesh

5-513

• 'on' — call jigglemesh with the argument 'Opt' set to 'off'.
• 'off' — do not call jigglemesh.

Example: [p,e,t] = initmesh(g,'Jiggle','minimum');
Data Types: char | string

JiggleIter — Maximum number of iterations for jigglemesh
10 (default) | positive integer

Maximum number of iterations for jigglemesh, specified as the comma-separated pair consisting of
'JiggleIter' and a positive integer.
Example: [p,e,t] = initmesh(g,'Jiggle','on','JiggleIter',50);
Data Types: double

MesherVersion — Algorithm for generating initial mesh
'preR2013a' (default) | 'R2013a'

Algorithm for generating initial mesh, specified as the comma-separated pair consisting of
'MesherVersion' and either 'R2013a' or 'preR2013a'. The 'R2013a' algorithm runs faster,
and can triangulate more geometries than the 'preR2013a' algorithm. Both algorithms use
Delaunay triangulation.
Data Types: char | string

Output Arguments
p — Mesh points
2-by-Np matrix

Mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k
of p consists of the x-coordinate of point k in p(1,k) and the y-coordinate of point k in p(2,k). For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

e — Mesh edges
7-by-Ne matrix

Mesh edges, returned as a 7-by-Ne matrix, where Ne is the number of boundary edges in the mesh.
An edge is a pair of points in p containing a boundary between subdomains, or containing an outer
boundary. For details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

t — Mesh elements
4-by-Nt matrix

Mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.

The t(i,k), with i ranging from 1 through end - 1, contain indices to the corner points of element
k. For details, see “Mesh Data as [p,e,t] Triples” on page 2-150. The last row, t(end,k), contains the
subdomain number of the element.

References
[1] George, P. L. Automatic Mesh Generation — Application to Finite Element Methods. Wiley, 1991.

5 Functions

5-514

See Also
decsg | jigglemesh | refinemesh | adaptmesh

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 initmesh

5-515

internalHeatSource
Package: pde

Specify internal heat source for a thermal model

Syntax
internalHeatSource(thermalmodel,heatSourceValue)
internalHeatSource(thermalmodel,heatSourceValue,RegionType,RegionID)
internalHeatSource(___ ,'Label',labeltext)
heatSource = internalHeatSource(___)

Description
internalHeatSource(thermalmodel,heatSourceValue) specifies an internal heat source for
the thermal model. This syntax declares that the entire geometry is a heat source.

Note Use internalHeatSource for specifying internal heat generators, that is, for specifying
heat sources that belong to the geometry of the model. To specify a heat influx from an external
source, use the thermalBC function with the HeatFlux parameter.

internalHeatSource(thermalmodel,heatSourceValue,RegionType,RegionID) specifies
geometry regions of type RegionType with ID numbers in RegionID as heat sources. Always specify
heatSourceValue first, then specify RegionType and RegionID.

internalHeatSource(___ ,'Label',labeltext) adds a label for the internal heat source to be
used by the linearizeInput function. This function lets you pass internal heat sources to the
linearize function that extracts sparse linear models for use with Control System Toolbox™.

heatSource = internalHeatSource(___) returns the heat source object.

Examples

Specify Internal Heat Generation on Entire Geometry

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Import the geometry.

gm = importGeometry(thermalmodel,'SquareBeam.stl');

Set thermal conductivity to 0.2, mass density to 2700e-9, and specific heat to 920.

thermalProperties(thermalmodel,'ThermalConductivity',0.2, ...
 'MassDensity',2700e-9, ...
 'SpecificHeat',920)

5 Functions

5-516

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 0.2000
 MassDensity: 2.7000e-06
 SpecificHeat: 920

Specify that the entire geometry generates heat at the rate 2e-4.

internalHeatSource(thermalmodel,2e-4)

ans =
 HeatSourceAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 HeatSource: 2.0000e-04
 Label: []

Specify a Face of a 2-D Geometry as a Heat Source

Create a steady-state thermal model.

thermalModel = createpde('thermal','transient');

Create the geometry.

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);

geometryFromEdges(thermalModel,dl);

Set thermal conductivity to 50, mass density to 2500, and specific heat to 600.

thermalProperties(thermalModel,'ThermalConductivity',50, ...
 'MassDensity',2500, ...
 'SpecificHeat',600);

Specify that face 1 generates heat at 25.

internalHeatSource(thermalModel,25,'Face',1)

ans =
 HeatSourceAssignment with properties:

 RegionType: 'face'
 RegionID: 1

 internalHeatSource

5-517

 HeatSource: 25
 Label: []

Specify Nonconstant Internal Heat Source

Use a function handle to specify an internal heat source that depends on coordinates.

Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a
circular cross section. The 2-D model is a rectangular strip whose y-dimension extends from the axis
of symmetry to the outer surface, and whose x-dimension extends over the actual length of the rod.

thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);

The heat is generated within the rod due to the radioactive decay. Therefore, the entire geometry is
an internal nonlinear heat source and can be represented by a function of the y-coordinate, for
example, q = 2000y.

q = @(location,state)2000*location.y;

Specify the internal heat source for the transient model.

internalHeatSource(thermalmodel,q)

ans =
 HeatSourceAssignment with properties:

 RegionType: 'face'
 RegionID: 1
 HeatSource: @(location,state)2000*location.y
 Label: []

Specify Time-Dependent Internal Heat Source

Use a function handle to specify an internal heat source that depends on time.

Create a thermal model for transient analysis and include the geometry. The geometry is a
rectangular strip.

thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);

Specify the thermal properties of the rod.

thermalProperties(thermalmodel,'ThermalConductivity',40,...
 'MassDensity',7800,...
 'SpecificHeat',500);

Specify the boundary conditions and initial temperature.

5 Functions

5-518

thermalBC(thermalmodel,'Edge',2,'Temperature',100);
thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);
thermalIC(thermalmodel,0);

Specify that the entire geometry generates heat at the rate 20000t during the first 500 seconds, and
then the heat source turns off. For details, see Time-Dependent Heat Source Function on page 5-
0 .

internalHeatSource(thermalmodel,@heatSource);

Generate the mesh, solve the model using the solution times from 0 to 50000 seconds, and plot the
results.

generateMesh(thermalmodel);

tfinal = 50000;
tlist = 0:100:tfinal;
result = solve(thermalmodel,tlist);
T = result.Temperature;

figure
subplot(2,1,1)
pdeplot(thermalmodel,'XYData',T(:,6),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tlist(6)))
subplot(2,1,2)
pdeplot(thermalmodel,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tfinal))

 internalHeatSource

5-519

Always ensure that your function returns a matrix of NaN of the correct size when state.time is
NaN. The solver properly recognizes a time-dependent problem by passing NaN state values and
looking for returned NaN values. Without this condition, the solver might fail or return incorrect
results.

internalHeatSource(thermalmodel,@heatSourceInvalid);

result = solve(thermalmodel,tlist);
T = result.Temperature;

figure
subplot(2,1,1)
pdeplot(thermalmodel,'XYData',T(:,6),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tlist(6)))
subplot(2,1,2)
pdeplot(thermalmodel,'XYData',T(:,end),'Contour','on')
axis equal
title(sprintf('Temperature at %g s',tfinal))

5 Functions

5-520

Time-Dependent Heat Source Function

function Q = heatSource(location,state)
 Q = zeros(1,numel(location.x));
if(isnan(state.time))
% Returning a NaN when time=NaN tells
% the solver that the heat source is a function of time.
 Q(1,:) = NaN;
 return
end
if state.time < 500
 Q(1,:) = 20000*state.time;
end
end

function Q = heatSourceInvalid(location,state) % No checks for NaN
 Q = zeros(1,numel(location.x));
if state.time < 500
 Q(1,:) = 20000*state.time;
end
end

Input Arguments
thermalmodel — Thermal model
ThermalModel object

 internalHeatSource

5-521

Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh,
thermal properties of the material, internal heat source, boundary conditions, and initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

RegionType — Geometric region type
'Face' | 'Cell'

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example: internalHeatSource(thermalmodel,25,'Cell',1)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: internalHeatSource(thermalmodel,25,'Cell',1:3)
Data Types: double

heatSourceValue — Heat source value
number | function handle

Heat source value, specified as a number or a function handle. Use a function handle to specify the
internal heat source that depends on space, time, or temperature. For details, see “More About” on
page 5-522.
Example: internalHeatSource(thermalmodel,25)
Data Types: double | function_handle

labeltext — Label for internal heat source
character vector | string

Label for the internal heat source, specified as a character vector or a string.
Data Types: char | string

Output Arguments
heatSource — Handle to heat source
HeatSourceAssignment object

Handle to heat source, returned as a HeatSourceAssignment object. See HeatSourceAssignment
Properties.

heatSourceValue associates the heat source value with the geometric region.

More About
Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature,
and time:

5 Functions

5-522

• Thermal conductivity of the material
• Mass density of the material
• Specific heat of the material
• Internal heat source
• Temperature on the boundary
• Heat flux through the boundary
• Convection coefficient on the boundary
• Radiation emissivity coefficient on the boundary
• Initial temperature (can depend on space only)

For example, use function handles to specify the thermal conductivity, internal heat source,
convection coefficient, and initial temperature for this model.

thermalProperties(model,'ThermalConductivity', ...
 @myfunConductivity)
internalHeatSource(model,'Face',2,@myfunHeatSource)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfunBC, ...
 'AmbientTemperature',27)
thermalIC(model,@myfunIC)

For all parameters, except the initial temperature, the function must be of the form:

function thermalVal = myfun(location,state)

For the initial temperature the function must be of the form:

function thermalVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial temperature). To use additional
arguments in your function, wrap your function (that takes additional arguments) with an anonymous
function that takes only the location and state arguments. For example:

thermalVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
thermalBC(model,'Edge',3,'Temperature',thermalVal)

thermalVal = @(location) myfunWithAdditionalArgs(location,arg1,arg2...)
thermalIC(model,thermalVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

 internalHeatSource

5-523

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points
• state — A structure containing these fields for transient or nonlinear problems:

• state.u — Temperatures at the corresponding points of the location structure
• state.ux — Estimates of the x-component of temperature gradients at the corresponding

points of the location structure
• state.uy — Estimates of the y-component of temperature gradients at the corresponding

points of the location structure
• state.uz — For a 3-D or an axisymmetric geometry, estimates of the z-component of

temperature gradients at the corresponding points of the location structure
• state.ur — For an axisymmetric geometry, estimates of the r-component of temperature

gradients at the corresponding points of the location structure
• state.time — Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat
source get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID
• state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation
emissivity coefficient) get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.u, state.time

Initial temperature gets the following data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector
thermalVal with the number of columns equal to the number of evaluation points, for example, M =
length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal
to 1, Ndim, Ndim*(Ndim+1)/2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D
problems. The number of columns must equal the number of evaluation points, for example, M =
length(location.y). For details about dimensions of the matrix, see “c Coefficient for
specifyCoefficients” on page 2-76.

5 Functions

5-524

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of
the correct size when state.u or state.time are NaN. Solvers check whether a problem is time
dependent by passing NaN state values and looking for returned NaN values.

See Also
thermalBC | thermalProperties | HeatSourceAssignment Properties

Introduced in R2017a

 internalHeatSource

5-525

interpolateAcceleration
Package: pde

Interpolate acceleration at arbitrary spatial locations for all time or frequency steps for dynamic
structural model

Syntax
intrpAccel = interpolateAcceleration(structuralresults,xq,yq)
intrpAccel = interpolateAcceleration(structuralresults,xq,yq,zq)
intrpAccel = interpolateAcceleration(structuralresults,querypoints)

Description
intrpAccel = interpolateAcceleration(structuralresults,xq,yq) returns the
interpolated acceleration values at the 2-D points specified in xq and yq for all time or frequency
steps.

intrpAccel = interpolateAcceleration(structuralresults,xq,yq,zq) uses the 3-D
points specified in xq, yq, and zq.

intrpAccel = interpolateAcceleration(structuralresults,querypoints) uses the
points specified in querypoints.

Examples

Interpolate Acceleration for 3-D Structural Dynamic Problem

Interpolate acceleration at the geometric center of a beam under a harmonic excitation

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

5 Functions

5-526

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3,...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0], ...
 'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

 interpolateAcceleration

5-527

Interpolate acceleration at the geometric center of the beam.

coordsMidSpan = [0;0;0.005];
intrpAccel = interpolateAcceleration(structuralresults,coordsMidSpan);

Plot the y-component of acceleration of the geometric center of the beam.

figure
plot(structuralresults.SolutionTimes,intrpAccel.ay)
title('Y-Acceleration of the Geometric Center of the Beam')

Input Arguments
structuralresults — Solution of dynamic structural analysis problem
TransientStructuralResults object | FrequencyStructuralResults object

Solution of the dynamic structural analysis problem, specified as a TransientStructuralResults
or FrequencyStructuralResults object. Create structuralresults by using the solve
function.
Example: structuralresults = solve(structuralmodel,tlist)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. interpolateAcceleration evaluates
accelerations at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points

5 Functions

5-528

[xq(i),yq(i),zq(i)]. Therefore, xq, yq, and (if present) zq must have the same number of
entries.

interpolateAcceleration converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). The function returns accelerations as an FEStruct object with the properties
containing vectors of the same size as these column vectors. To ensure that the dimensions of the
returned solution are consistent with the dimensions of the original query points, use the reshape
function. For example, use intrpAccel = reshape(intrpAccel.ux,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateAcceleration evaluates
accelerations at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. Therefore, xq, yq, and (if present) zq must have the same number of
entries. Internally, interpolateAcceleration converts the query points to the column vector
yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateAcceleration evaluates
accelerations at the 3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, xq, yq, and zq must
have the same number of entries. Internally, interpolateAcceleration converts the query points
to the column vector zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateAcceleration evaluates accelerations at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

Output Arguments
intrpAccel — Accelerations at query points
FEStruct object

Accelerations at the query points, returned as an FEStruct object with the properties representing
spatial components of acceleration at the query points. For query points that are outside the
geometry, intrpAccel returns NaN. Properties of an FEStruct object are read-only.

See Also
StructuralModel | TransientStructuralResults | interpolateDisplacement |
interpolateVelocity | interpolateStress | interpolateStrain |

 interpolateAcceleration

5-529

interpolateVonMisesStress | evaluateStress | evaluateStrain |
evaluateVonMisesStress | evaluateReaction | evaluatePrincipalStress |
evaluatePrincipalStrain

Introduced in R2018a

5 Functions

5-530

interpolateDisplacement
Package: pde

Interpolate displacement at arbitrary spatial locations

Syntax
intrpDisp = interpolateDisplacement(structuralresults,xq,yq)
intrpDisp = interpolateDisplacement(structuralresults,xq,yq,zq)
intrpDisp = interpolateDisplacement(structuralresults,querypoints)

Description
intrpDisp = interpolateDisplacement(structuralresults,xq,yq) returns the
interpolated displacement values at the 2-D points specified in xq and yq. For transient and
frequency response structural models, interpolateDisplacement returns the interpolated
displacement values for all time- or frequency-steps, respectively.

intrpDisp = interpolateDisplacement(structuralresults,xq,yq,zq) uses 3-D points
specified in xq, yq, and zq.

intrpDisp = interpolateDisplacement(structuralresults,querypoints) uses points
specified in querypoints.

Examples

Interpolate Displacement for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.

structuralmodel = createpde('structural','static-planestrain');

Include the square geometry in the model. Plot the geometry.

geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal

 interpolateDisplacement

5-531

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify the x-component of the enforced displacement for edge 1.

structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);

Specify that edge 3 is a fixed boundary.

structuralBC(structuralmodel,'Constraint','fixed','Edge',3);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Create a grid and interpolate the x- and y-components of the displacement to the grid.

v = linspace(-1,1,21);
[X,Y] = meshgrid(v);
intrpDisp = interpolateDisplacement(structuralresults,X,Y);

Reshape the displacement components to the shape of the grid. Plot the displacement.

ux = reshape(intrpDisp.ux,size(X));
uy = reshape(intrpDisp.uy,size(Y));
quiver(X,Y,ux,uy)

5 Functions

5-532

Interpolate Displacement for 3-D Static Structural Analysis Problem

Solve a static structural model representing a bimetallic cable under tension, and interpolate the
displacement on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

 interpolateDisplacement

5-533

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

5 Functions

5-534

 Mesh: [1x1 FEMesh]

Define coordinates of a midspan cross-section of the cable.

[X,Y] = meshgrid(linspace(-0.015,0.015,50));
Z = ones(size(X))*0.025;

Interpolate the displacement and plot the result.

intrpDisp = interpolateDisplacement(structuralresults,X,Y,Z);
surf(X,Y,reshape(intrpDisp.uz,size(X)))

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:),Z(:)]';
intrpDisp = interpolateDisplacement(structuralresults,querypoints);
surf(X,Y,reshape(intrpDisp.uz,size(X)))

 interpolateDisplacement

5-535

Interpolate Displacement for Transient Structural Analysis Problem

Interpolate the displacement at the geometric center of a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

5 Functions

5-536

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

 interpolateDisplacement

5-537

Interpolate the displacement at the geometric center of the beam.

coordsMidSpan = [0;0;0.005];
intrpDisp = interpolateDisplacement(structuralresults,coordsMidSpan);

Plot the y-component of displacement of the geometric center of the beam.

figure
plot(structuralresults.SolutionTimes,intrpDisp.uy)
title('y-Displacement of the Geometric Center of the Beam')

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function. For TransientStructuralResults and
FrequencyStructuralResults objects, interpolateDisplacement returns the interpolated
displacement values for all time- and frequency-steps, respectively.
Example: structuralresults = solve(structuralmodel)

5 Functions

5-538

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. interpolateDisplacement evaluates the
displacements at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. Therefore, xq, yq, and (if present) zq must have the same number of
entries.

interpolateDisplacement converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). The function returns displacements as an FEStruct object with the properties
containing vectors of the same size as these column vectors. To ensure that the dimensions of the
returned solution are consistent with the dimensions of the original query points, use the reshape
function. For example, use intrpDisp = reshape(intrpDisp.ux,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateDisplacement evaluates the
displacements at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. Therefore, xq, yq, and (if present) zq must have the same number of
entries. Internally, interpolateDisplacement converts query points to the column vector yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateDisplacement evaluates the
displacements at the 3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, xq, yq, and zq must
have the same number of entries. Internally, interpolateDisplacement converts query points to
the column vector zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateDisplacement evaluates the displacements at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

Output Arguments
intrpDisp — Displacements at query points
FEStruct object

Displacements at the query points, returned as an FEStruct object with the properties representing
spatial components of displacement at the query points. For query points that are outside the
geometry, intrpDisp returns NaN. Properties of an FEStruct object are read-only.

 interpolateDisplacement

5-539

See Also
StructuralModel | StaticStructuralResults | TransientStructuralResults |
interpolateVelocity | interpolateAcceleration | interpolateStress |
interpolateStrain | interpolateVonMisesStress | evaluateStress | evaluateStrain |
evaluateVonMisesStress | evaluateReaction | evaluatePrincipalStress |
evaluatePrincipalStrain

Introduced in R2017b

5 Functions

5-540

interpolateElectricField
Package: pde

Interpolate electric field in electrostatic result at arbitrary spatial locations

Syntax
Eintrp = interpolateElectricField(electrostaticresults,xq,yq)
Eintrp = interpolateElectricField(electrostaticresults,xq,yq,zq)
Eintrp = interpolateElectricField(electrostaticresults,querypoints)

Description
Eintrp = interpolateElectricField(electrostaticresults,xq,yq) returns the
interpolated electric field values at the 2-D points specified in xq and yq.

Eintrp = interpolateElectricField(electrostaticresults,xq,yq,zq) uses 3-D points
specified in xq, yq, and zq.

Eintrp = interpolateElectricField(electrostaticresults,querypoints) returns the
interpolated electric field values at the points specified in querypoints.

Examples

Interpolate Electric Field in 2-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

 interpolateElectricField

5-541

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Apply the voltage boundary conditions on the edges of the square.

electromagneticBC(emagmodel,'Voltage',0,'Edge',[1 3]);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the electric field.

R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey])
axis equal

5 Functions

5-542

Interpolate the resulting electric field to a grid covering the central portion of the geometry, for x and
y from -0.5 to 0.5.

v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);

Eintrp = interpolateElectricField(R,X,Y)

Eintrp =
 FEStruct with properties:

 Ex: [2601x1 double]
 Ey: [2601x1 double]

Reshape Eintrp.Ex and Eintrp.Ey and plot the resulting electric field.

EintrpX = reshape(Eintrp.Ex,size(X));
EintrpY = reshape(Eintrp.Ey,size(Y));

figure
quiver(X,Y,EintrpX,EintrpY,'Color','red')

 interpolateElectricField

5-543

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Eintrp = interpolateElectricField(R,querypoints);

Interpolate Electric Field in 3-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

5 Functions

5-544

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Apply the voltage boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

 interpolateElectricField

5-545

 ElectricPotential: [4359x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric field.

pdeplot3D(emagmodel,'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey ...
 R.ElectricField.Ez])

Interpolate the resulting electric field to a grid covering the central portion of the geometry, for x, y,
and z.

x = linspace(3,7,7);
y = linspace(0,1,7);
z = linspace(8,12,7);
[X,Y,Z] = meshgrid(x,y,z);

Eintrp = interpolateElectricField(R,X,Y,Z)

Eintrp =
 FEStruct with properties:

 Ex: [343x1 double]
 Ey: [343x1 double]

5 Functions

5-546

 Ez: [343x1 double]

Reshape Eintrp.Ex, Eintrp.Ey, and Eintrp.Ez.

EintrpX = reshape(Eintrp.Ex,size(X));
EintrpY = reshape(Eintrp.Ey,size(Y));
EintrpZ = reshape(Eintrp.Ez,size(Z));

Plot the resulting electric field.

figure
quiver3(X,Y,Z,EintrpX,EintrpY,EintrpZ,'Color','red')
view([10 10])

Input Arguments
electrostaticresults — Solution of electrostatic problem
ElectrostaticResults object

Solution of an electrostatic problem, specified as an ElectrostaticResults object. Create
electrostaticresults using the solve function.
Example: electrostaticresults = solve(emagmodel)

xq — x-coordinate query points
real array

 interpolateElectricField

5-547

x-coordinate query points, specified as a real array. interpolateElectricField evaluates the
electric field at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i)
yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same number
of entries.

interpolateElectricField converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns electric field values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use EintrpX = reshape(Eintrp.Ex,size(xq)).
Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateElectricField evaluates the
electric field at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateElectricField converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns electric field values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use EintrpY = reshape(Eintrp.Ey,size(yq)).
Example: yq = [1 2 0 0.5]
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateElectricField evaluates the
electric field at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and zq must
have the same number of entries.

interpolateElectricField converts the query points to column vectors xq(:), yq(:), and
zq(:). It returns electric field values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use EintrpZ = reshape(Eintrp.Ez,size(zq)).
Example: zq = [1 1 0 1.5]
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateElectricField evaluates the electric field at the coordinate points
querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or 3-D
query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

5 Functions

5-548

Output Arguments
Eintrp — Electric field at query points
FEStruct

Electric field at query points, returned as an FEStruct object with the properties representing the
spatial components of the electric field at the query points. For query points that are outside the
geometry, Eintrp.Ex(i), Eintrp.Ey(i), and Eintrp.Ez(i) are NaN. Properties of an FEStruct
object are read-only.

See Also
solve | interpolateElectricFlux | interpolateElectricPotential |
ElectromagneticModel | ElectrostaticResults

Introduced in R2021a

 interpolateElectricField

5-549

interpolateElectricFlux
Package: pde

Interpolate electric flux density in electrostatic result at arbitrary spatial locations

Syntax
Dintrp = interpolateElectricFlux(electrostaticresults,xq,yq)
Dintrp = interpolateElectricFlux(electrostaticresults,xq,yq,zq)
Dintrp = interpolateElectricFlux(electrostaticresults,querypoints)

Description
Dintrp = interpolateElectricFlux(electrostaticresults,xq,yq) returns the
interpolated electric flux density at the 2-D points specified in xq and yq.

Dintrp = interpolateElectricFlux(electrostaticresults,xq,yq,zq) uses 3-D points
specified in xq, yq, and zq.

Dintrp = interpolateElectricFlux(electrostaticresults,querypoints) returns the
interpolated electric flux density at the points specified in querypoints.

Examples

Interpolate Electric Flux Density in 2-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1, 'R1', ('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

5 Functions

5-550

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Apply the voltage boundary conditions on the edges of the square.

electromagneticBC(emagmodel,'Voltage',0,'Edge',[1 3]);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the electric flux density.

R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.ElectricFluxDensity.Dx ...
 R.ElectricFluxDensity.Dy])
axis equal

 interpolateElectricFlux

5-551

Interpolate the resulting electric flux density to a grid covering the central portion of the geometry,
for x and y from -0.5 to 0.5.

v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);

Dintrp = interpolateElectricFlux(R,X,Y)

Dintrp =
 FEStruct with properties:

 Dx: [2601x1 double]
 Dy: [2601x1 double]

Reshape Dintrp.Dx and Dintrp.Dy and plot the resulting electric flux density.

DintrpX = reshape(Dintrp.Dx,size(X));
DintrpY = reshape(Dintrp.Dy,size(Y));

figure
quiver(X,Y,DintrpX,DintrpY,'Color','red')

5 Functions

5-552

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Dintrp = interpolateElectricFlux(R,querypoints);

Interpolate Electric Flux Density in 3-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

 interpolateElectricFlux

5-553

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Apply the voltage boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

5 Functions

5-554

 ElectricPotential: [4359x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric flux density.

pdeplot3D(emagmodel,'FlowData',[R.ElectricFluxDensity.Dx ...
 R.ElectricFluxDensity.Dy ...
 R.ElectricFluxDensity.Dz])

Interpolate the resulting electric flux density to a grid covering the central portion of the geometry,
for x, y, and z.

x = linspace(3,7,7);
y = linspace(0,1,7);
z = linspace(8,12,7);
[X,Y,Z] = meshgrid(x,y,z);

Dintrp = interpolateElectricFlux(R,X,Y,Z)

Dintrp =
 FEStruct with properties:

 Dx: [343x1 double]
 Dy: [343x1 double]

 interpolateElectricFlux

5-555

 Dz: [343x1 double]

Reshape Dintrp.Dx, Dintrp.Dy, and Dintrp.Dz.

DintrpX = reshape(Dintrp.Dx,size(X));
DintrpY = reshape(Dintrp.Dy,size(Y));
DintrpZ = reshape(Dintrp.Dz,size(Z));

Plot the resulting electric flux density.

figure
quiver3(X,Y,Z,DintrpX,DintrpY,DintrpZ,'Color','red')
view([10 10])

Input Arguments
electrostaticresults — Solution of electrostatic problem
ElectrostaticResults object

Solution of thermal problem, specified as an ElectrostaticResults object. Create
electrostaticresults using the solve function.
Example: electrostaticresults = solve(emagmodel)

xq — x-coordinate query points
real array

5 Functions

5-556

x-coordinate query points, specified as a real array. interpolateElectricFlux evaluates the
electric flux density at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateElectricFlux converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns electric flux density as a column vector of the same size. To ensure that
the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use DintrpX = reshape(Dintrp.Dx,size(xq)).
Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateElectricFlux evaluates the
electric flux density at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateElectricFlux converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns electric flux density as a column vector of the same size. To ensure that
the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use DintrpY = reshape(Dintrp.Dy,size(yq)).
Example: yq = [1 2 0 0.5]
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateElectricFlux evaluates the
electric flux density at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and zq
must have the same number of entries.

interpolateElectricFlux converts the query points to column vectors xq(:), yq(:), and
zq(:). It returns electric flux density values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use DintrpZ = reshape(Dintrp.Dz,size(zq)).
Example: zq = [1 1 0 1.5]
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateElectricFlux evaluates the electric flux density at the coordinate points
querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or 3-D
query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

 interpolateElectricFlux

5-557

Output Arguments
Dintrp — Electric flux density at query points
FEStruct

Electric flux density at query points, returned as an FEStruct object with the properties
representing the spatial components of the electric flux density at the query points. For query points
that are outside the geometry, Dintrp.Dx(i), Dintrp.Dy(i), and Dintrp.Dz(i) are NaN.
Properties of an FEStruct object are read-only.

See Also
solve | interpolateElectricField | interpolateElectricPotential |
ElectromagneticModel | ElectrostaticResults

Introduced in R2021a

5 Functions

5-558

interpolateElectricPotential
Package: pde

Interpolate electric potential in electrostatic result at arbitrary spatial locations

Syntax
Vintrp = interpolateElectricPotential(electrostaticresults,xq,yq)
Vintrp = interpolateElectricPotential(electrostaticresults,xq,yq,zq)
Vintrp = interpolateElectricPotential(electrostaticresults,querypoints)

Description
Vintrp = interpolateElectricPotential(electrostaticresults,xq,yq) returns the
interpolated electric potential values at the 2-D points specified in xq and yq.

Vintrp = interpolateElectricPotential(electrostaticresults,xq,yq,zq) uses 3-D
points specified in xq, yq, and zq.

Vintrp = interpolateElectricPotential(electrostaticresults,querypoints) returns
the interpolated electric potential values at the points specified in querypoints.

Examples

Interpolate Electric Potential in 2-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1, 'R1', ('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

 interpolateElectricPotential

5-559

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Apply the voltage boundary conditions on the edges of the square.

electromagneticBC(emagmodel,'Voltage',0,'Edge',[1 3]);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',[2 4]);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the electric potential.

R = solve(emagmodel);
pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
 'Contour','on')
axis equal

5 Functions

5-560

Interpolate the resulting electric potential to a grid covering the central portion of the geometry, for x
and y from -0.5 to 0.5.

v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);

Vintrp = interpolateElectricPotential(R,X,Y)

Vintrp = 2601×1

 602.2959
 616.0208
 629.0498
 641.4049
 653.0828
 664.0757
 674.4209
 684.1432
 693.2704
 701.8026
 ⋮

Reshape Vintrp and plot the resulting electric potential.

Vintrp = reshape(Vintrp,size(X));

figure

 interpolateElectricPotential

5-561

contourf(X,Y,Vintrp)
colormap(cool)
colorbar

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Vintrp = interpolateElectricPotential(R,querypoints);

Interpolate Electric Potential in 3-D Electrostatic Analysis

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

5 Functions

5-562

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Apply the voltage boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

 interpolateElectricPotential

5-563

 ElectricPotential: [4359x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric potential.

pdeplot3D(emagmodel,'ColorMapData',R.ElectricPotential)

Interpolate the resulting electric potential to a grid covering the entire geometry, for x, y, and z.

x = linspace(0,10,11);
y = linspace(0,1,5);
z = linspace(0,20,11);
[X,Y,Z] = meshgrid(x,y,z);

Vintrp = interpolateElectricPotential(R,X,Y,Z);

Reshape Vintrp.

Vintrp = reshape(Vintrp,size(X));

Plot the resulting electric potential as a contour slice plot for two values of the y-coordinate.

figure
contourslice(X,Y,Z,Vintrp,[],[0 1],[])
view([10,10,-10])

5 Functions

5-564

axis equal
colorbar

Input Arguments
electrostaticresults — Solution of electrostatic problem
ElectrostaticResults object

Solution of an electrostatic problem, specified as an ElectrostaticResults object. Create
electrostaticresults using the solve function.
Example: electrostaticresults = solve(emagmodel)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. interpolateElectricPotential evaluates
the electric potential at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateElectricPotential converts the query points to column vectors xq(:), yq(:), and
(if present) zq(:). It returns electric potential values as a column vector of the same size. To ensure
that the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use Vintrp = reshape(Vintrp,size(xq)).

 interpolateElectricPotential

5-565

Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateElectricPotential evaluates
the electric potential at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateElectricPotential converts the query points to column vectors xq(:), yq(:), and
(if present) zq(:). It returns electric potential values as a column vector of the same size. To ensure
that the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use Vintrp = reshape(Vintrp,size(yq)).
Example: yq = [1 2 0 0.5]
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateElectricPotential evaluates
the electric potential at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and zq
must have the same number of entries.

interpolateElectricPotential converts the query points to column vectors xq(:), yq(:), and
zq(:). It returns electric potential values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use Vintrp = reshape(Vintrp,size(zq)).
Example: zq = [1 1 0 1.5]
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateElectricPotential evaluates the electric potential at the coordinate
points querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or
3-D query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

Output Arguments
Vintrp — Electric potential at query points
vector

Electric potential at query points, returned as a vector. For query points that are outside the
geometry, Vintrp(i) = NaN.

5 Functions

5-566

See Also
solve | interpolateElectricField | interpolateElectricFlux | ElectromagneticModel |
ElectrostaticResults

Introduced in R2021a

 interpolateElectricPotential

5-567

interpolateMagneticField
Package: pde

Interpolate magnetic field in magnetostatic result at arbitrary spatial locations

Syntax
Hintrp = interpolateMagneticField(magnetostaticresults,xq,yq)
Hintrp = interpolateMagneticField(magnetostaticresults,xq,yq,zq)
Hintrp = interpolateMagneticField(magnetostaticresults,querypoints)

Description
Hintrp = interpolateMagneticField(magnetostaticresults,xq,yq) returns the
interpolated magnetic field values at the 2-D points specified in xq and yq.

Hintrp = interpolateMagneticField(magnetostaticresults,xq,yq,zq) uses 3-D points
specified in xq, yq, and zq.

Hintrp = interpolateMagneticField(magnetostaticresults,querypoints) returns the
interpolated magnetic field values at the points specified in querypoints.

Examples

Interpolate Magnetic Field in 2-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

5 Functions

5-568

Specify the vacuum permeability in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Apply the magnetic potential boundary conditions on the boundaries of the square.

electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',[1 3]);
electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',[2 4]);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',0.5);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the magnetic field.

R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.MagneticField.Hx ...
 R.MagneticField.Hy])
axis equal

 interpolateMagneticField

5-569

Interpolate the resulting magnetic field to a grid covering the central portion of the geometry, for x
and y from -0.5 to 0.5.

v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);

Hintrp = interpolateMagneticField(R,X,Y)

Hintrp =
 FEStruct with properties:

 Hx: [2601x1 double]
 Hy: [2601x1 double]

Reshape Hintrp.Hx and Hintrp.Hy and plot the resulting electric field.

HintrpX = reshape(Hintrp.Hx,size(X));
HintrpY = reshape(Hintrp.Hy,size(Y));

figure
quiver(X,Y,HintrpX,HintrpY,'Color','red')

5 Functions

5-570

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Hintrp = interpolateMagneticField(R,querypoints);

Interpolate Magnetic Field in 3-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

 interpolateMagneticField

5-571

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',[0;0;0.5]);

Apply the magnetic potential boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'MagneticPotential',[0;0;0],'Face',3:6);
electromagneticBC(emagmodel,'MagneticPotential',[0;0;0.01],'Face',7);

Generate the linear mesh.

generateMesh(emagmodel,'GeometricOrder','linear');

Solve the model.

R = solve(emagmodel)

R =
 MagnetostaticResults with properties:

5 Functions

5-572

 MagneticPotential: [1x1 FEStruct]
 MagneticField: [1x1 FEStruct]
 MagneticFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the magnetic field density.

pdeplot3D(emagmodel,'FlowData',[R.MagneticField.Hx ...
 R.MagneticField.Hy ...
 R.MagneticField.Hz])

Interpolate the resulting magnetic field to a grid covering the central portion of the geometry, for x,
y, and z.

x = linspace(3,7,5);
y = linspace(0,1,5);
z = linspace(8,12,5);
[X,Y,Z] = meshgrid(x,y,z);
Hintrp = interpolateMagneticField(R,X,Y,Z)

Hintrp =
 FEStruct with properties:

 Hx: [125x1 double]
 Hy: [125x1 double]
 Hz: [125x1 double]

 interpolateMagneticField

5-573

Reshape Hintrp.Hx, Hintrp.Hy, and Hintrp.Hz.

HintrpX = reshape(Hintrp.Hx,size(X));
HintrpY = reshape(Hintrp.Hy,size(Y));
HintrpZ = reshape(Hintrp.Hz,size(Z));

Plot the resulting magnetic field.

figure
quiver3(X,Y,Z,HintrpX,HintrpY,HintrpZ,'Color','red')
view([30 10])

view([10 15])

Input Arguments
magnetostaticresults — Solution of magnetostatic problem
MagnetostaticResults object

Solution of a magnetostatic problem, specified as a MagnetostaticResults object. Create
magnetostaticresults using the solve function.
Example: magnetostaticresults = solve(emagmodel)

xq — x-coordinate query points
real array

5 Functions

5-574

x-coordinate query points, specified as a real array. interpolateMagneticField evaluates the
magnetic field at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i)
yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same number
of entries.

interpolateMagneticField converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns magnetic field values as a column vector of the same size. To ensure that
the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use HintrpX = reshape(Hintrp.Hx,size(xq)).
Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateMagneticField evaluates the
magnetic field at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points [xq(i)
yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same number
of entries.

interpolateMagneticField converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns magnetic field values as a column vector of the same size. To ensure that
the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use HintrpY = reshape(Hintrp.Hy,size(yq)).
Example: yq = [1 2 0 0.5]
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateMagneticField evaluates the
magnetic field at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and zq must
have the same number of entries.

interpolateMagneticField converts the query points to column vectors xq(:), yq(:), and
zq(:). It returns magnetic field values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use HintrpZ = reshape(Hintrp.Hz,size(zq)).
Example: zq = [1 1 0 1.5]
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateMagneticField evaluates magnetic field at the coordinate points
querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or 3-D
query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

 interpolateMagneticField

5-575

Output Arguments
Hintrp — Magnetic field at query points
FEStruct

Magnetic field at query points, returned as an FEStruct object with the properties representing the
spatial components of the magnetic field at the query points. For query points that are outside the
geometry, Hintrp.Hx(i), Hintrp.Hy(i), and Hintrp.Hz(i) are NaN. Properties of an FEStruct
object are read-only.

See Also
solve | interpolateMagneticFlux | interpolateMagneticPotential |
ElectromagneticModel | MagnetostaticResults

Introduced in R2021a

5 Functions

5-576

interpolateMagneticFlux
Package: pde

Interpolate magnetic flux density in magnetostatic result at arbitrary spatial locations

Syntax
Bintrp = interpolateMagneticFlux(magnetostaticresults,xq,yq)
Bintrp = interpolateMagneticFlux(magnetostaticresults,xq,yq,zq)
Bintrp = interpolateMagneticFlux(magnetostaticresults,querypoints)

Description
Bintrp = interpolateMagneticFlux(magnetostaticresults,xq,yq) returns the
interpolated magnetic flux density at the 2-D points specified in xq and yq.

Bintrp = interpolateMagneticFlux(magnetostaticresults,xq,yq,zq) uses 3-D points
specified in xq, yq, and zq.

Bintrp = interpolateMagneticFlux(magnetostaticresults,querypoints) returns the
interpolated magnetic flux density at the points specified in querypoints.

Examples

Interpolate Magnetic Flux Density in 2-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

 interpolateMagneticFlux

5-577

Specify the vacuum permeability in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Apply the magnetic potential boundary conditions on the boundaries of the square.

electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',[1 3]);
electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',[2 4]);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',0.5);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the magnetic flux density.

R = solve(emagmodel);
pdeplot(emagmodel,'FlowData',[R.MagneticFluxDensity.Bx ...
 R.MagneticFluxDensity.By])
axis equal

5 Functions

5-578

Interpolate the resulting electric flux density to a grid covering the central portion of the geometry,
for x and y from -0.5 to 0.5.

v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);
Bintrp = interpolateMagneticFlux(R,X,Y)

Bintrp =
 FEStruct with properties:

 Bx: [2601x1 double]
 By: [2601x1 double]

Reshape Bintrp.Bx and Bintrp.By and plot the resulting magnetic flux density.

BintrpX = reshape(Bintrp.Bx,size(X));
BintrpY = reshape(Bintrp.By,size(Y));
figure
quiver(X,Y,BintrpX,BintrpY,'Color','red')

 interpolateMagneticFlux

5-579

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Bintrp = interpolateMagneticFlux(R,querypoints);

Interpolate Magnetic Flux Density in 3-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

5 Functions

5-580

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',[0;0;0.5]);

Apply the magnetic potential boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'MagneticPotential',[0;0;0],'Face',3:6);
electromagneticBC(emagmodel,'MagneticPotential',[0;0;0.01],'Face',7);

Generate a mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 MagnetostaticResults with properties:

 interpolateMagneticFlux

5-581

 MagneticPotential: [1x1 FEStruct]
 MagneticField: [1x1 FEStruct]
 MagneticFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the magnetic flux density.

pdeplot3D(emagmodel,'FlowData',[R.MagneticFluxDensity.Bx ...
 R.MagneticFluxDensity.By ...
 R.MagneticFluxDensity.Bz])

Interpolate the resulting magnetic flux density to a grid covering the central portion of the geometry,
for x, y, and z.

x = linspace(3,7,5);
y = linspace(0,1,5);
z = linspace(8,12,5);
[X,Y,Z] = meshgrid(x,y,z);
Bintrp = interpolateMagneticFlux(R,X,Y,Z)

Bintrp =
 FEStruct with properties:

 Bx: [125x1 double]
 By: [125x1 double]
 Bz: [125x1 double]

5 Functions

5-582

Reshape Bintrp.Bx, Bintrp.By, and Bintrp.Bz.

BintrpX = reshape(Bintrp.Bx,size(X));
BintrpY = reshape(Bintrp.By,size(Y));
BintrpZ = reshape(Bintrp.Bz,size(Z));

Plot the resulting magnetic flux density.

figure
quiver3(X,Y,Z,BintrpX,BintrpY,BintrpZ,'Color','red')
view([30 10])

view([10 15])

Input Arguments
magnetostaticresults — Solution of magnetostatic problem
MagnetostaticResults object

Solution of a magnetostatic problem, specified as a MagnetostaticResults object. Create
magnetostaticresults using the solve function.
Example: magnetostaticresults = solve(emagmodel)

xq — x-coordinate query points
real array

 interpolateMagneticFlux

5-583

x-coordinate query points, specified as a real array. interpolateMagneticFlux evaluates the
magnetic flux density at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateMagneticFlux converts the query points to column vectors xq(:) and yq(:). It
returns magnetic flux density as a column vector of the same size. To ensure that the dimensions of
the returned solution are consistent with the dimensions of the original query points, use reshape.
For example, use BintrpX = reshape(Bintrp.Bx,size(xq)).
Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateMagneticFlux evaluates the
magnetic flux density at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

interpolateMagneticFlux converts the query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns magnetic flux density as a column vector of the same size. To ensure that
the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use BintrpY = reshape(Bintrp.By,size(yq)).
Example: yq = [1 2 0 0.5]
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateMagneticFlux evaluates the
magnetic flux density at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and
zq must have the same number of entries.

interpolateMagneticFlux converts the query points to column vectors xq(:), yq(:), and
zq(:). It returns magnetic flux density values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use BintrpZ = reshape(Bintrp.Bz,size(zq)).
Example: zq = [1 1 0 1.5]
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with two rows for 2-D geometry or three rows for 3-D
geometry. interpolateMagneticFlux evaluates the magnetic flux density at the coordinate points
querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or 3-D
query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

5 Functions

5-584

Output Arguments
Bintrp — Magnetic flux density at query points
FEStruct

Magnetic flux density at query points, returned as an FEStruct object with the properties
representing the spatial components of the magnetic flux density at the query points. For query
points that are outside the geometry, Bintrp.Bx(i), Bintrp.By(i), and Bintrp.Bz(i) are NaN.
Properties of an FEStruct object are read-only.

See Also
solve | interpolateMagneticField | interpolateMagneticPotential |
ElectromagneticModel | MagnetostaticResults

Introduced in R2021a

 interpolateMagneticFlux

5-585

interpolateMagneticPotential
Package: pde

Interpolate magnetic potential in magnetostatic result at arbitrary spatial locations

Syntax
Aintrp = interpolateMagneticPotential(magnetostaticresults,xq,yq)
Aintrp = interpolateMagneticPotential(magnetostaticresults,xq,yq,zq)
Aintrp = interpolateMagneticPotential(magnetostaticresults,querypoints)

Description
Aintrp = interpolateMagneticPotential(magnetostaticresults,xq,yq) returns the
interpolated magnetic potential values at the 2-D points specified in xq and yq. .

Aintrp = interpolateMagneticPotential(magnetostaticresults,xq,yq,zq) uses 3-D
points specified in xq, yq, and zq.

Aintrp = interpolateMagneticPotential(magnetostaticresults,querypoints) returns
the interpolated magnetic potential values at the points specified in querypoints.

Examples

Interpolate Magnetic Potential in 2-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Create a square geometry and include it in the model. Plot the geometry with the edge labels.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1,'R1',('R1')');
geometryFromEdges(emagmodel,g);
pdegplot(emagmodel,'EdgeLabels','on')
xlim([-1.5 1.5])
axis equal

5 Functions

5-586

Specify the vacuum permeability in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Apply the magnetic potential boundary conditions on the boundaries of the square.

electromagneticBC(emagmodel,'MagneticPotential',0,'Edge',[1 3]);
electromagneticBC(emagmodel,'MagneticPotential',0.01,'Edge',[2 4]);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',0.5);

Generate the mesh.

generateMesh(emagmodel);

Solve the model and plot the magnetic potential.

R = solve(emagmodel);
pdeplot(emagmodel,'XYData',R.MagneticPotential, ...
 'Contour','on')
axis equal

 interpolateMagneticPotential

5-587

Interpolate the resulting magnetic potential to a grid covering the central portion of the geometry, for
x and y from -0.5 to 0.5.

v = linspace(-0.5,0.5,51);
[X,Y] = meshgrid(v);
Aintrp = interpolateMagneticPotential(R,X,Y)

Aintrp = 2601×1

 0.0056
 0.0057
 0.0058
 0.0059
 0.0060
 0.0061
 0.0062
 0.0063
 0.0064
 0.0065
 ⋮

Reshape Aintrp and plot the resulting magnetic potential.

Aintrp = reshape(Aintrp,size(X));
figure
contourf(X,Y,Aintrp)

5 Functions

5-588

colormap(cool)
colorbar

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Aintrp = interpolateMagneticPotential(R,querypoints);

Interpolate Magnetic Potential in 3-D Magnetostatic Analysis

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

 interpolateMagneticPotential

5-589

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',[0;0;0.5]);

Apply the magnetic potential boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'MagneticPotential',[0;0;0],'Face',3:6);
electromagneticBC(emagmodel,'MagneticPotential',[0;0;0.01],'Face',7);

Generate the linear mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 MagnetostaticResults with properties:

5 Functions

5-590

 MagneticPotential: [1×1 FEStruct]
 MagneticField: [1×1 FEStruct]
 MagneticFluxDensity: [1×1 FEStruct]
 Mesh: [1×1 FEMesh]

Plot the magnetic potential.

pdeplot3D(emagmodel,'FlowData',[R.MagneticPotential.Ax ...
 R.MagneticPotential.Ay ...
 R.MagneticPotential.Az])

Interpolate the resulting magnetic potential to a grid covering the entire geometry, for x, y, and z.

x = linspace(0,10,11);
y = linspace(0,1,5);
z = linspace(0,20,11);
[X,Y,Z] = meshgrid(x,y,z);
Aintrp = interpolateMagneticPotential(R,X,Y,Z)

Aintrp =
 FEStruct with properties:

 Ax: [605×1 double]
 Ay: [605×1 double]
 Az: [605×1 double]

Reshape Aintrp.Ax, Aintrp.Ay, and Aintrp.Az to match the shape of the input grid.

 interpolateMagneticPotential

5-591

AintrpX = reshape(Aintrp.Ax,size(X));
AintrpY = reshape(Aintrp.Ay,size(Y));
AintrpZ = reshape(Aintrp.Az,size(Z));

Plot the resulting magnetic potential.

figure
quiver3(X,Y,Z,AintrpX,AintrpY,AintrpZ,'Color','red')

Input Arguments
magnetostaticresults — Solution of magnetostatic problem
MagnetostaticResults object

Solution of a magnetostatic problem, specified as a MagnetostaticResults object. Create
magnetostaticresults using the solve function.
Example: magnetostaticresults = solve(emagmodel)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. interpolateMagneticPotential evaluates
the magnetic potential at the 2-D coordinate points [xq(i) yq(i)] or at the 3-D coordinate points
[xq(i) yq(i) zq(i)] for every i. Because of this, xq, yq, and (if present) zq must have the same
number of entries.

5 Functions

5-592

interpolateMagneticPotential converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns magnetic potential values as a column vector of the same size. To ensure
that the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use Aintrp = reshape(Aintrp,size(xq)).
Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateMagneticPotential evaluates
the magnetic potential at the coordinate points [xq(i),yq(i)] for every i. Because of this, xq and
yq must have the same number of entries.

interpolateMagneticPotential converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). It returns magnetic potential values as a column vector of the same size. To ensure
that the dimensions of the returned solution are consistent with the dimensions of the original query
points, use reshape. For example, use Aintrp = reshape(Aintrp,size(yq)).
Example: yq = [1 2 0 0.5]
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateMagneticPotential evaluates
the magnetic potential at the 3-D coordinate points [xq(i) yq(i) zq(i)]. Therefore, xq, yq, and
zq must have the same number of entries.

interpolateMagneticPotential converts the query points to column vectors xq(:), yq(:), and
zq(:). It returns magnetic potential values as a column vector of the same size. To ensure that the
dimensions of the returned solution are consistent with the dimensions of the original query points,
use reshape. For example, use Aintrp = reshape(Aintrp,size(zq)).
Example: zq = [1 1 0 1.5]
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateMagneticPotential evaluates the magnetic potential at the coordinate
points querypoints(:,i) for every i, so each column of querypoints contains exactly one 2-D or
3-D query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0 0.5]
Data Types: double

Output Arguments
Aintrp — Magnetic potential at query points
vector | FEStruct object

 interpolateMagneticPotential

5-593

Magnetic potential at query points, returned as a vector for a 2-D problem or an FEStruct object for
a 3-D problem. The properties of FEStruct contain the components of the magnetic potential at
query points. For query points i that are outside the geometry, Aintrp(i), Aintrp.Ax(i),
Aintrp.Ay(i), and Aintrp.Az(i) are NaN. Properties of an FEStruct object are read-only.

See Also
solve | interpolateMagneticField | interpolateMagneticFlux | ElectromagneticModel |
MagnetostaticResults

Introduced in R2021a

5 Functions

5-594

interpolateSolution
Package: pde

Interpolate PDE solution to arbitrary points

Syntax
uintrp = interpolateSolution(results,xq,yq)
uintrp = interpolateSolution(results,xq,yq,zq)
uintrp = interpolateSolution(results,querypoints)

uintrp = interpolateSolution(___ ,iU)

uintrp = interpolateSolution(___ ,iT)

Description
uintrp = interpolateSolution(results,xq,yq) returns the interpolated values of the
solution to the scalar stationary equation specified in results at the 2-D points specified in xq and
yq.

uintrp = interpolateSolution(results,xq,yq,zq) returns the interpolated values at the 3-
D points specified in xq, yq, and zq.

uintrp = interpolateSolution(results,querypoints) returns the interpolated values at
the points in querypoints.

uintrp = interpolateSolution(___ ,iU), for any previous syntax, returns the interpolated
values of the solution to the system of stationary equations for equation indices iU.

uintrp = interpolateSolution(___ ,iT) returns the interpolated values of the solution to the
time-dependent or eigenvalue equation or system of such equations at times or modal indices iT. For
a system of time-dependent or eigenvalue equations, specify both time/modal indices iT and equation
indices iU

Examples

Interpolate Scalar Stationary Results

Interpolate the solution to a scalar problem along a line and plot the result.

Create the solution to the problem −Δu = 1 on the L-shaped membrane with zero Dirichlet boundary
conditions.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
specifyCoefficients(model,'m',0,...

 interpolateSolution

5-595

 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);

Interpolate the solution along the straight line from (x,y) = (-1,-1) to (1,1). Plot the
interpolated solution.

xq = linspace(-1,1,101);
yq = xq;

uintrp = interpolateSolution(results,xq,yq);
plot(xq,uintrp)

xlabel('x')
ylabel('u(x)')

Interpolate Solution of Poisson's Equation

Calculate the mean exit time of a Brownian particle from a region that contains absorbing (escape)
boundaries and reflecting boundaries. Use the Poisson's equation with constant coefficients and 3-D
rectangular block geometry to model this problem.

5 Functions

5-596

Create the solution for this problem.

model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet','Face',[1,2,5],'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',2);
generateMesh(model);
results = solvepde(model);

Create a grid and interpolate the solution to the grid.

[X,Y,Z] = meshgrid(0:135,0:35,0:61);
uintrp = interpolateSolution(results,X,Y,Z);
uintrp = reshape(uintrp,size(X));

Create a contour slice plot for five fixed values of the y coordinate.

contourslice(X,Y,Z,uintrp,[],0:4:16,[])
colormap jet
xlabel('x')
ylabel('y')
zlabel('z')
xlim([0,100])
ylim([0,20])
zlim([0,50])
axis equal
view(-50,22)
colorbar

 interpolateSolution

5-597

Interpolate Scalar Stationary Results Using Query Matrix

Solve a scalar stationary problem and interpolate the solution to a dense grid.

Create the solution to the problem −Δu = 1 on the L-shaped membrane with zero Dirichlet boundary
conditions.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);
generateMesh(model,'Hmax',0.05);
results = solvepde(model);

Interpolate the solution on the grid from –1 to 1 in each direction.

v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
querypoints = [X(:),Y(:)]';
uintrp = interpolateSolution(results,querypoints);

Plot the resulting interpolation on a mesh.

5 Functions

5-598

uintrp = reshape(uintrp,size(X));
mesh(X,Y,uintrp)
xlabel('x')
ylabel('y')

Interpolate Stationary System

Create the solution to a two-component system and plot the two components along a planar slice
through the geometry.

Create a PDE model for two components. Import the geometry of a torus.

model = createpde(2);
importGeometry(model,'Torus.stl');
pdegplot(model,'FaceLabels','on');

 interpolateSolution

5-599

Set boundary conditions.

gfun = @(region,state)[0,region.z-40];
applyBoundaryCondition(model,'neumann','Face',1,'g',gfun);
ufun = @(region,state)[region.x-40,0];
applyBoundaryCondition(model,'dirichlet','Face',1,'u',ufun);

Set the problem coefficients.

specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',[1;0;1;0;0;1;0;0;1;0;1;
 0;1;0;0;1;0;1;0;0;1],...
 'a',0,...
 'f',[1;1]);

Create a mesh and solve the problem.

generateMesh(model);
results = solvepde(model);

Interpolate the results on a plane that slices the torus for each of the two components.

[X,Z] = meshgrid(0:100);
Y = 15*ones(size(X));
uintrp = interpolateSolution(results,X,Y,Z,[1,2]);

Plot the two components.

5 Functions

5-600

sol1 = reshape(uintrp(:,1),size(X));
sol2 = reshape(uintrp(:,2),size(X));
figure
surf(X,Z,sol1)
title('Component 1')

figure
surf(X,Z,sol2)
title('Component 2')

 interpolateSolution

5-601

Interpolate Scalar Eigenvalue Results

Solve a scalar eigenvalue problem and interpolate one eigenvector to a grid.

Find the eigenvalues and eigenvectors for the L-shaped membrane.

model = createpde(1);
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',1,...
 'a',0,...
 'f',0);
r = [0,100];
generateMesh(model,'Hmax',1/50);
results = solvepdeeig(model,r);

 Basis= 10, Time= 2.67, New conv eig= 0
 Basis= 11, Time= 2.78, New conv eig= 0
 Basis= 12, Time= 2.89, New conv eig= 0
 Basis= 13, Time= 2.91, New conv eig= 0
 Basis= 14, Time= 2.92, New conv eig= 0

5 Functions

5-602

 Basis= 15, Time= 3.03, New conv eig= 0
 Basis= 16, Time= 3.12, New conv eig= 0
 Basis= 17, Time= 3.14, New conv eig= 0
 Basis= 18, Time= 3.16, New conv eig= 1
 Basis= 19, Time= 3.48, New conv eig= 1
 Basis= 20, Time= 3.50, New conv eig= 1
 Basis= 21, Time= 3.52, New conv eig= 1
 Basis= 22, Time= 3.53, New conv eig= 1
 Basis= 23, Time= 3.58, New conv eig= 4
 Basis= 24, Time= 3.59, New conv eig= 4
 Basis= 25, Time= 3.61, New conv eig= 5
 Basis= 26, Time= 3.62, New conv eig= 6
 Basis= 27, Time= 3.64, New conv eig= 6
 Basis= 28, Time= 3.78, New conv eig= 6
 Basis= 29, Time= 3.80, New conv eig= 6
 Basis= 30, Time= 4.03, New conv eig= 7
 Basis= 31, Time= 4.06, New conv eig= 9
 Basis= 32, Time= 4.16, New conv eig= 10
 Basis= 33, Time= 4.17, New conv eig= 11
 Basis= 34, Time= 4.20, New conv eig= 11
 Basis= 35, Time= 4.39, New conv eig= 14
 Basis= 36, Time= 4.50, New conv eig= 14
 Basis= 37, Time= 4.62, New conv eig= 14
 Basis= 38, Time= 4.64, New conv eig= 14
 Basis= 39, Time= 4.66, New conv eig= 14
 Basis= 40, Time= 4.67, New conv eig= 14
 Basis= 41, Time= 4.80, New conv eig= 15
 Basis= 42, Time= 4.81, New conv eig= 15
 Basis= 43, Time= 4.95, New conv eig= 15
 Basis= 44, Time= 4.97, New conv eig= 15
 Basis= 45, Time= 5.14, New conv eig= 16
 Basis= 46, Time= 5.31, New conv eig= 16
 Basis= 47, Time= 5.34, New conv eig= 16
 Basis= 48, Time= 5.44, New conv eig= 16
 Basis= 49, Time= 5.48, New conv eig= 17
 Basis= 50, Time= 5.55, New conv eig= 18
 Basis= 51, Time= 5.61, New conv eig= 18
 Basis= 52, Time= 5.72, New conv eig= 18
 Basis= 53, Time= 5.83, New conv eig= 19
 Basis= 54, Time= 5.97, New conv eig= 20
 Basis= 55, Time= 6.17, New conv eig= 21
 Basis= 56, Time= 6.23, New conv eig= 22
End of sweep: Basis= 56, Time= 6.23, New conv eig= 22
 Basis= 32, Time= 6.83, New conv eig= 0
 Basis= 33, Time= 6.91, New conv eig= 0
 Basis= 34, Time= 6.94, New conv eig= 0
 Basis= 35, Time= 7.05, New conv eig= 0
 Basis= 36, Time= 7.06, New conv eig= 0
 Basis= 37, Time= 7.19, New conv eig= 0
 Basis= 38, Time= 7.41, New conv eig= 0
 Basis= 39, Time= 7.50, New conv eig= 0
 Basis= 40, Time= 7.59, New conv eig= 0
 Basis= 41, Time= 7.61, New conv eig= 0
 Basis= 42, Time= 7.67, New conv eig= 0
End of sweep: Basis= 42, Time= 7.67, New conv eig= 0

Interpolate the eigenvector corresponding to the fifth eigenvalue to a coarse grid and plot the result.

 interpolateSolution

5-603

[xq,yq] = meshgrid(-1:0.1:1);
uintrp = interpolateSolution(results,xq,yq,5);
uintrp = reshape(uintrp,size(xq));
surf(xq,yq,uintrp)

Interpolate Time-Dependent System

Solve a system of time-dependent PDEs and interpolate the solution.

Import slab geometry for a 3-D problem with three solution components. Plot the geometry.

model = createpde(3);
importGeometry(model,'Plate10x10x1.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-604

Set boundary conditions such that face 2 is fixed (zero deflection in any direction) and face 5 has a
load of 1e3 in the positive z-direction. This load causes the slab to bend upward. Set the initial
condition that the solution is zero, and its derivative with respect to time is also zero.

applyBoundaryCondition(model,'dirichlet','Face',2,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face',5,'g',[0,0,1e3]);
setInitialConditions(model,0,0);

Create PDE coefficients for the equations of linear elasticity. Set the material properties to be similar
to those of steel. See “Linear Elasticity Equations” on page 3-146.

E = 200e9;
nu = 0.3;
specifyCoefficients(model,'m',1,...
 'd',0,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]);

Generate a mesh, setting Hmax to 1.

generateMesh(model,'Hmax',1);

Solve the problem for times 0 through 5e-3 in steps of 1e-4.

tlist = 0:1e-4:5e-3;
results = solvepde(model,tlist);

 interpolateSolution

5-605

Interpolate the solution at fixed x- and z-coordinates in the centers of their ranges, 5 and 0.5
respectively. Interpolate for y from 0 through 10 in steps of 0.2. Obtain just component 3, the z-
component of the solution.

yy = 0:0.2:10;
zz = 0.5*ones(size(yy));
xx = 10*zz;
component = 3;
uintrp = interpolateSolution(results,xx,yy,zz, ...
 component,1:length(tlist));

The solution is a 51-by-1-by-51 array. Use squeeze to remove the singleton dimension. Removing the
singleton dimension transforms this array to a 51-by-51 matrix which simplifies indexing into it.

uintrp = squeeze(uintrp);

Plot the solution as a function of y and time.

[X,Y] = ndgrid(yy,tlist);
figure
surf(X,Y,uintrp)
xlabel('Y')
ylabel('Time')
title('Deflection at x = 5, z = 0.5')
zlim([0,14e-5])

5 Functions

5-606

Input Arguments
results — PDE solution
StationaryResults object (default) | TimeDependentResults object | EigenResults object

PDE solution, specified as a StationaryResults object, a TimeDependentResults object, or an
EigenResults object. Create results using solvepde, solvepdeeig, or createPDEResults.
Example: results = solvepde(model)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. interpolateSolution evaluates the solution at
the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
So xq, yq, and (if present) zq must have the same number of entries.

interpolateSolution converts query points to column vectors xq(:), yq(:), and (if present)
zq(:). The returned solution is a column vector of the same size. To ensure that the dimensions of
the returned solution is consistent with the dimensions of the original query points, use reshape. For
example, use uintrp = reshape(gradxuintrp,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateSolution evaluates the solution at
the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
So xq, yq, and (if present) zq must have the same number of entries. Internally,
interpolateSolution converts query points to the column vector yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateSolution evaluates the solution at
the 3-D coordinate points [xq(i),yq(i),zq(i)]. So xq, yq, and zq must have the same number of
entries. Internally, interpolateSolution converts query points to the column vector zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D
geometry. interpolateSolution evaluates the solution at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

iU — Equation indices
vector of positive integers

 interpolateSolution

5-607

Equation indices, specified as a vector of positive integers. Each entry in iU specifies an equation
index.
Example: iU = [1,5] specifies the indices for the first and fifth equations.
Data Types: double

iT — Time or mode indices
vector of positive integers

Time or mode indices, specified as a vector of positive integers. Each entry in iT specifies a time
index for time-dependent solutions, or a mode index for eigenvalue solutions.
Example: iT = 1:5:21 specifies the time or mode for every fifth solution up to 21.
Data Types: double

Output Arguments
uintrp — Solution at query points
array

Solution at query points, returned as an array. For query points that are outside the geometry,
uintrp = NaN. For details about dimensions of the solution, see “Dimensions of Solutions, Gradients,
and Fluxes” on page 3-329.

See Also
PDEModel | StationaryResults | TimeDependentResults | evaluateGradient

Topics
“Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-302
“3-D Solution and Gradient Plots with MATLAB® Functions” on page 3-317
“Dimensions of Solutions, Gradients, and Fluxes” on page 3-329

Introduced in R2015b

5 Functions

5-608

interpolateStrain
Package: pde

Interpolate strain at arbitrary spatial locations

Syntax
intrpStrain = interpolateStrain(structuralresults,xq,yq)
intrpStrain = interpolateStrain(structuralresults,xq,yq,zq)
intrpStrain = interpolateStrain(structuralresults,querypoints)

Description
intrpStrain = interpolateStrain(structuralresults,xq,yq) returns the interpolated
strain values at the 2-D points specified in xq and yq. For transient and frequency-response
structural models, interpolateStrain interpolates strain for all time- or frequency-steps,
respectively.

intrpStrain = interpolateStrain(structuralresults,xq,yq,zq) uses the 3-D points
specified in xq, yq, and zq.

intrpStrain = interpolateStrain(structuralresults,querypoints) uses the points
specified in querypoints.

Examples

Interpolate Strain for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.

structuralmodel = createpde('structural','static-planestrain');

Include the square geometry in the model. Plot the geometry.

geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal

 interpolateStrain

5-609

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify the x-component of the enforced displacement for edge 1.

structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);

Specify that edge 3 is a fixed boundary.

structuralBC(structuralmodel,'Constraint','fixed','Edge',3);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Create a grid and interpolate the x- and y-components of the normal strain to the grid.

v = linspace(-1,1,101);
[X,Y] = meshgrid(v);
intrpStrain = interpolateStrain(structuralresults,X,Y);

Reshape the x-component of the normal strain to the shape of the grid and plot it.

exx = reshape(intrpStrain.exx,size(X));
px = pcolor(X,Y,exx);

5 Functions

5-610

px.EdgeColor='none';
colorbar

Reshape the y-component of the normal strain to the shape of the grid and plot it.

eyy = reshape(intrpStrain.eyy,size(Y));
figure
py = pcolor(X,Y,eyy);
py.EdgeColor='none';
colorbar

 interpolateStrain

5-611

Interpolate Strain for 3-D Static Structural Analysis Problem

Solve a static structural model representing a bimetallic cable under tension, and interpolate strain
on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

5 Functions

5-612

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

 interpolateStrain

5-613

 Mesh: [1x1 FEMesh]

Define the coordinates of a midspan cross-section of the cable.

[X,Y] = meshgrid(linspace(-0.015,0.015,50));
Z = ones(size(X))*0.025;

Interpolate the strain and plot the result.

intrpStrain = interpolateStrain(structuralresults,X,Y,Z);
surf(X,Y,reshape(intrpStrain.ezz,size(X)))

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:),Z(:)]';
intrpStrain = interpolateStrain(structuralresults,querypoints);
surf(X,Y,reshape(intrpStrain.ezz,size(X)))

5 Functions

5-614

Interpolate Strain for 3-D Structural Dynamic Problem

Interpolate the strain at the geometric center of a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 interpolateStrain

5-615

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0], ...
 'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-616

Interpolate the strain at the geometric center of the beam.

coordsMidSpan = [0;0;0.005];
intrpStrain = interpolateStrain(structuralresults,coordsMidSpan);

Plot the normal strain at the geometric center of the beam.

figure
plot(structuralresults.SolutionTimes,intrpStrain.exx)
title('X-Direction Normal Strain at Beam Center')

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

xq — x-coordinate query points
real array

 interpolateStrain

5-617

x-coordinate query points, specified as a real array. interpolateStrain evaluates the strains at the
2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
Therefore, xq, yq, and (if present) zq must have the same number of entries.

interpolateStrain converts query points to column vectors xq(:), yq(:), and (if present)
zq(:). The function returns strains as an FEStruct object with the properties containing vectors of
the same size as these column vectors. To ensure that the dimensions of the returned solution are
consistent with the dimensions of the original query points, use the reshape function. For example,
use intrpStrain = reshape(intrpStrain.exx,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateStrain evaluates the strains at the
2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
Therefore, xq, yq, and (if present) zq must have the same number of entries. Internally,
interpolateStrain converts the query points to the column vector yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateStrain evaluates the strains at the
3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, xq, yq, and zq must have the same
number of entries. Internally, interpolateStrain converts the query points to the column vector
zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateStrain evaluates the strains at the coordinate points querypoints(:,i),
so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

Output Arguments
intrpStrain — Strains at query points
FEStruct object

Strains at the query points, returned as an FEStruct object with the properties representing spatial
components of strain at the query points. For query points that are outside the geometry,
intrpStrain returns NaN. Properties of an FEStruct object are read-only.

See Also
StructuralModel | StaticStructuralResults | interpolateDisplacement |
interpolateStress | interpolateVonMisesStress | evaluateReaction |
evaluatePrincipalStress | evaluatePrincipalStrain

5 Functions

5-618

Introduced in R2017b

 interpolateStrain

5-619

interpolateStress
Package: pde

Interpolate stress at arbitrary spatial locations

Syntax
intrpStress = interpolateStress(structuralresults,xq,yq)
intrpStress = interpolateStress(structuralresults,xq,yq,zq)
intrpStress = interpolateStress(structuralresults,querypoints)

Description
intrpStress = interpolateStress(structuralresults,xq,yq) returns the interpolated
stress values at the 2-D points specified in xq and yq. For transient and frequency-response
structural models, interpolateStress interpolates stress for all time- or frequency-steps,
respectively.

intrpStress = interpolateStress(structuralresults,xq,yq,zq) uses the 3-D points
specified in xq, yq, and zq.

intrpStress = interpolateStress(structuralresults,querypoints) uses the points
specified in querypoints.

Examples

Interpolate Stress for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.

structuralmodel = createpde('structural','static-planestrain');

Include the square geometry in the model. Plot the geometry.

geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal

5 Functions

5-620

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify the x-component of the enforced displacement for edge 1.

structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);

Specify that edge 3 is a fixed boundary.

structuralBC(structuralmodel,'Constraint','fixed','Edge',3);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Create a grid and interpolate the x- and y-components of the normal stress to the grid.

v = linspace(-1,1,151);
[X,Y] = meshgrid(v);
intrpStress = interpolateStress(structuralresults,X,Y);

Reshape the x-component of the normal stress to the shape of the grid and plot it.

sxx = reshape(intrpStress.sxx,size(X));
px = pcolor(X,Y,sxx);

 interpolateStress

5-621

px.EdgeColor='none';
colorbar

Reshape the y-component of the normal stress to the shape of the grid and plot it.

syy = reshape(intrpStress.syy,size(Y));
figure
py = pcolor(X,Y,syy);
py.EdgeColor='none';
colorbar

5 Functions

5-622

Interpolate Stress for 3-D Static Structural Analysis Problem

Solve a static structural model representing a bimetallic cable under tension, and interpolate stress
on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

 interpolateStress

5-623

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

5 Functions

5-624

 Mesh: [1x1 FEMesh]

Define coordinates of a midspan cross-section of the cable.

[X,Y] = meshgrid(linspace(-0.015,0.015,50));
Z = ones(size(X))*0.025;

Interpolate the stress and plot the result.

intrpStress = interpolateStress(structuralresults,X,Y,Z);
surf(X,Y,reshape(intrpStress.szz,size(X)))

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:),Z(:)]';
intrpStress = interpolateStress(structuralresults,querypoints);
surf(X,Y,reshape(intrpStress.szz,size(X)))

 interpolateStress

5-625

Interpolate Stress for 3-D Structural Dynamic Problem

Interpolate the stress at the geometric center of a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

5 Functions

5-626

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0], ...
 'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

 interpolateStress

5-627

Interpolate the stress at the geometric center of the beam.

coordsMidSpan = [0;0;0.005];
intrpStress = interpolateStress(structuralresults,coordsMidSpan);

Plot the normal stress at the geometric center of the beam.

figure
plot(structuralresults.SolutionTimes,intrpStress.sxx)
title('X-Direction Normal Stress at Beam Center')

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

xq — x-coordinate query points
real array

5 Functions

5-628

x-coordinate query points, specified as a real array. interpolateStress evaluates the stresses at
the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
Therefore, xq, yq, and (if present) zq must have the same number of entries.

interpolateStress converts the query points to column vectors xq(:), yq(:), and (if present)
zq(:). It returns stresses as an FEStruct object with the properties containing vectors of the same
size as these column vectors. To ensure that the dimensions of the returned solution are consistent
with the dimensions of the original query points, use the reshape function. For example, use
intrpStress = reshape(intrpStress.sxx,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateStress evaluates the stresses at
the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
Therefore, xq, yq, and (if present) zq must have the same number of entries. Internally,
interpolateStress converts the query points to the column vector yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateStress evaluates the stresses at
the 3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, xq, yq, and zq must have the same
number of entries. Internally, interpolateStress converts the query points to the column vector
zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateStress evaluates stresses at the coordinate points querypoints(:,i), so
each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

Output Arguments
intrpStress — Stresses at query points
FEStruct object

Stresses at the query points, returned as an FEStruct object with the properties representing
spatial components of stress at the query points. For query points that are outside the geometry,
intrpStress returns NaN. Properties of an FEStruct object are read-only.

See Also
StructuralModel | StaticStructuralResults | interpolateDisplacement |
interpolateStrain | interpolateVonMisesStress | evaluateReaction |
evaluatePrincipalStress | evaluatePrincipalStrain

 interpolateStress

5-629

Introduced in R2017b

5 Functions

5-630

interpolateTemperature
Package: pde

Interpolate temperature in a thermal result at arbitrary spatial locations

Syntax
Tintrp = interpolateTemperature(thermalresults,xq,yq)
Tintrp = interpolateTemperature(thermalresults,xq,yq,zq)
Tintrp = interpolateTemperature(thermalresults,querypoints)
Tintrp = interpolateTemperature(___ ,iT)

Description
Tintrp = interpolateTemperature(thermalresults,xq,yq) returns the interpolated
temperature values at the 2-D points specified in xq and yq. This syntax is valid for both the steady-
state and transient thermal models.

Tintrp = interpolateTemperature(thermalresults,xq,yq,zq) returns the interpolated
temperature values at the 3-D points specified in xq, yq, and zq. This syntax is valid for both the
steady-state and transient thermal models.

Tintrp = interpolateTemperature(thermalresults,querypoints) returns the
interpolated temperature values at the points in querypoints. This syntax is valid for both the
steady-state and transient thermal models.

Tintrp = interpolateTemperature(___ ,iT) returns the interpolated temperature values for
the transient thermal model at times iT.

Examples

Interpolate Temperatures in 2-D Steady-State Thermal Model

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the geometry and include it in the model.

R1 = [3,4,-1,1,1,-1,1,1,-1,-1]';
g = decsg(R1, 'R1', ('R1')');
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.5,1.5])
axis equal

 interpolateTemperature

5-631

Assuming that this is an iron plate, assign a thermal conductivity of 79.5 W/(m*K). Because this is a
steady-state model, you do not need to assign mass density or specific heat values.

thermalProperties(thermalmodel,'ThermalConductivity',79.5,'Face',1);

Apply a constant temperature of 300 K to the bottom of the plate (edge 3). Also, assume that the top
of the plate (edge 1) is insulated, and apply convection on the two sides of the plate (edges 2 and 4).

thermalBC(thermalmodel,'Edge',3,'Temperature',300);
thermalBC(thermalmodel,'Edge',1,'HeatFlux',0);
thermalBC(thermalmodel,'Edge',[2,4],...
 'ConvectionCoefficient',25,...
 'AmbientTemperature',50);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
results = solve(thermalmodel)

results =
 SteadyStateThermalResults with properties:

 Temperature: [1541x1 double]
 XGradients: [1541x1 double]
 YGradients: [1541x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

5 Functions

5-632

The solver finds the values of temperatures and temperature gradients at the nodal locations. To
access these values, use results.Temperature, results.XGradients, and so on. For example,
plot the temperatures at nodal locations.

figure;
pdeplot(thermalmodel,'XYData',results.Temperature,...
 'Contour','on','ColorMap','hot');

Interpolate the resulting temperatures to a grid covering the central portion of the geometry, for x
and y from -0.5 to 0.5.

v = linspace(-0.5,0.5,11);
[X,Y] = meshgrid(v);

Tintrp = interpolateTemperature(results,X,Y);

Reshape the Tintrp vector and plot the resulting temperatures.

Tintrp = reshape(Tintrp,size(X));

figure
contourf(X,Y,Tintrp)
colormap(hot)
colorbar

 interpolateTemperature

5-633

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:)]';
Tintrp = interpolateTemperature(results,querypoints);

Interpolate Temperature for a 3-D Steady-State Thermal Model

Create a thermal model for steady-state analysis.

thermalmodel = createpde('thermal');

Create the following 3-D geometry and include it in the model.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal

5 Functions

5-634

Assuming that this is a copper block, the thermal conductivity of the block is approximately 4 W/
(cm*K).

thermalProperties(thermalmodel,'ThermalConductivity',4);

Apply a constant temperature of 373 K to the left side of the block (edge 1) and a constant
temperature of 573 K at the right side of the block.

thermalBC(thermalmodel,'Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);

Apply a heat flux boundary condition to the bottom of the block.

thermalBC(thermalmodel,'Face',4,'HeatFlux',-20);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]

 interpolateTemperature

5-635

 Mesh: [1x1 FEMesh]

The solver finds the values of temperatures and temperature gradients at the nodal locations. To
access these values, use results.Temperature, results.XGradients, and so on. For example,
plot temperatures at nodal locations.

figure;
pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)

Create a grid specified by x, y, and z coordinates and interpolate temperatures to the grid.

[X,Y,Z] = meshgrid(1:16:100,1:6:20,1:7:50);

Tintrp = interpolateTemperature(thermalresults,X,Y,Z);

Create a contour slice plot for fixed values of the y coordinate.

figure

Tintrp = reshape(Tintrp,size(X));

contourslice(X,Y,Z,Tintrp,[],1:6:20,[])
xlabel('x')
ylabel('y')
zlabel('z')
xlim([1,100])
ylim([1,20])

5 Functions

5-636

zlim([1,50])
axis equal
view(-50,22)
colorbar

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:),Z(:)]';
Tintrp = interpolateTemperature(thermalresults,querypoints);

Create a contour slice plot for four fixed values of the z coordinate.

figure

Tintrp = reshape(Tintrp,size(X));

contourslice(X,Y,Z,Tintrp,[],[],1:7:50)
xlabel('x')
ylabel('y')
zlabel('z')
xlim([1,100])
ylim([1,20])
zlim([1,50])
axis equal
view(-50,22)
colorbar

 interpolateTemperature

5-637

Temperatures for a Transient Thermal Model on a Square

Solve a 2-D transient heat transfer problem on a square domain and compute temperatures at the
convective boundary.

Create a transient thermal model for this problem.

thermalmodel = createpde('thermal','transient');

Create the geometry and include it in the model.

g = @squareg;
geometryFromEdges(thermalmodel,g);
pdegplot(thermalmodel,'EdgeLabels','on')
xlim([-1.2,1.2])
ylim([-1.2,1.2])
axis equal

5 Functions

5-638

Assign the following thermal properties:

• Thermal conductivity is 100 W/(m*C)
• Mass density is 7800 kg/m^3
• Specific heat is 500 J/(kg*C)

thermalProperties(thermalmodel,'ThermalConductivity',100,...
 'MassDensity',7800,...
 'SpecificHeat',500);

Apply insulated boundary conditions on three edges and the free convection boundary condition on
the right edge.

thermalBC(thermalmodel,'Edge',[1,3,4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2,...
 'ConvectionCoefficient',5000,...
 'AmbientTemperature',25);

Set the initial conditions: uniform room temperature across domain and higher temperature on the
left edge.

thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',4);

Generate a mesh and solve the problem using 0:1000:200000 as a vector of times.

 interpolateTemperature

5-639

generateMesh(thermalmodel);
tlist = 0:1000:200000;
thermalresults = solve(thermalmodel,tlist);

Define a line at convection boundary and compute temperature gradients across that line.

X = -1:0.1:1;
Y = ones(size(X));

Tintrp = interpolateTemperature(thermalresults,X,Y,1:length(tlist));

Plot the interpolated temperature Tintrp along the x axis for the following values from the time
interval tlist.

figure
t = [51:50:201];
for i = t
 p(i) = plot(X,Tintrp(:,i),'DisplayName', ...
 strcat('t=',num2str(tlist(i))));
 hold on
end
legend(p(t))
xlabel('x')
ylabel('Tintrp')

5 Functions

5-640

Input Arguments
thermalresults — Solution of thermal problem
SteadyStateThermalResults object | TransientThermalResults object

Solution of thermal problem, specified as a SteadyStateThermalResults object or a
TransientThermalResults object. Create thermalresults using solve.
Example: thermalresults = solve(thermalmodel)

xq — x-coordinate query points
real array

x-coordinate query points, specified as a real array. interpolateTemperature evaluates
temperatures at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. So xq, yq, and (if present) zq must have the same number of entries.

interpolateTemperature converts query points to column vectors xq(:), yq(:), and (if present)
zq(:). It returns temperatures in the form of a column vector of the same size. To ensure that the
dimensions of the returned solution is consistent with the dimensions of the original query points, use
reshape. For example, use Tintrp = reshape(Tintrp,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateTemperature evaluates
temperatures at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. So xq, yq, and (if present) zq must have the same number of entries.
Internally, interpolateTemperature converts query points to the column vector yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateTemperature evaluates
temperatures at the 3-D coordinate points [xq(i),yq(i),zq(i)]. So xq, yq, and zq must have the
same number of entries. Internally, interpolateTemperature converts query points to the column
vector zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry, or three rows for 3-D
geometry. interpolateTemperature evaluates temperatures at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

iT — Time indices
vector of positive integers

 interpolateTemperature

5-641

Time indices, specified as a vector of positive integers. Each entry in iT specifies a time index.
Example: iT = 1:5:21 specifies every fifth time-step up to 21.
Data Types: double

Output Arguments
Tintrp — Temperatures at query points
array

Temperatures at query points, returned as an array. For query points that are outside the geometry,
Tintrp = NaN.

See Also
ThermalModel | SteadyStateThermalResults | TransientThermalResults |
evaluateHeatFlux | evaluateHeatRate | evaluateTemperatureGradient

Topics
“Dimensions of Solutions, Gradients, and Fluxes” on page 3-329

Introduced in R2017a

5 Functions

5-642

interpolateVelocity
Package: pde

Interpolate velocity at arbitrary spatial locations for all time or frequency steps for dynamic
structural model

Syntax
intrpVel = interpolateVelocity(structuralresults,xq,yq)
intrpVel = interpolateVelocity(structuralresults,xq,yq,zq)
intrpVel = interpolateVelocity(structuralresults,querypoints)

Description
intrpVel = interpolateVelocity(structuralresults,xq,yq) returns the interpolated
velocity values at the 2-D points specified in xq and yq for all time or frequency steps.

intrpVel = interpolateVelocity(structuralresults,xq,yq,zq) uses the 3-D points
specified in xq, yq, and zq.

intrpVel = interpolateVelocity(structuralresults,querypoints) uses the points
specified in querypoints.

Examples

Interpolate Velocity for 3-D Structural Dynamic Problem

Interpolate velocity at the geometric center of a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 interpolateVelocity

5-643

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0], ...
 'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-644

Interpolate velocity at the geometric center of the beam.

coordsMidSpan = [0;0;0.005];
intrpVel = interpolateVelocity(structuralresults,coordsMidSpan);

Plot the y-component of velocity of the geometric center of the beam.

figure
plot(structuralresults.SolutionTimes,intrpVel.vy)
title('Y-Velocity of the Geometric Center of the Beam')

Input Arguments
structuralresults — Solution of dynamic structural analysis problem
TransientStructuralResults object | FrequencyStructuralResults object

Solution of the dynamic structural analysis problem, specified as a TransientStructuralResults
or FrequencyStructuralResults object. Create structuralresults by using the solve
function.
Example: structuralresults = solve(structuralmodel,tlist)

xq — x-coordinate query points
real array

 interpolateVelocity

5-645

x-coordinate query points, specified as a real array. interpolateVelocity evaluates velocities at
the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
Therefore, xq, yq, and (if present) zq must have the same number of entries.

interpolateVelocity converts query points to column vectors xq(:), yq(:), and (if present)
zq(:). It returns velocities as an FEStruct object with the properties containing vectors of the
same size as these column vectors. To ensure that the dimensions of the returned solution are
consistent with the dimensions of the original query points, use the reshape function. For example,
use intrpVel = reshape(intrpVel.ux,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateVelocity evaluates velocities at
the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points [xq(i),yq(i),zq(i)].
Therefore, xq, yq, and (if present) zq must have the same number of entries. Internally,
interpolateVelocity converts query points to the column vector yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateVelocity evaluates velocities at
the 3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, xq, yq, and zq must have the same
number of entries. Internally, interpolateVelocity converts query points to the column vector
zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateVelocity evaluates velocities at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

Output Arguments
intrpVel — Velocities at query points
FEStruct object

Velocities at the query points, returned as an FEStruct object with the properties representing
spatial components of velocity at the query points. For query points that are outside the geometry,
intrpVel returns NaN. Properties of an FEStruct object are read-only.

See Also
StructuralModel | TransientStructuralResults | interpolateDisplacement |
interpolateAcceleration | interpolateStress | interpolateStrain |

5 Functions

5-646

interpolateVonMisesStress | evaluateStress | evaluateStrain |
evaluateVonMisesStress | evaluateReaction | evaluatePrincipalStress |
evaluatePrincipalStrain

Introduced in R2018a

 interpolateVelocity

5-647

interpolateVonMisesStress
Package: pde

Interpolate von Mises stress at arbitrary spatial locations

Syntax
intrpVMStress = interpolateVonMisesStress(structuralresults,xq,yq)
intrpVMStress = interpolateVonMisesStress(structuralresults,xq,yq,zq)
intrpVMStress = interpolateVonMisesStress(structuralresults,querypoints)

Description
intrpVMStress = interpolateVonMisesStress(structuralresults,xq,yq) returns the
interpolated von Mises stress values at the 2-D points specified in xq and yq. For transient and
frequency-response structural models, interpolateVonMisesStress interpolates von Mises stress
for all time- or frequency-steps, respectively.

intrpVMStress = interpolateVonMisesStress(structuralresults,xq,yq,zq) uses the 3-
D points specified in xq, yq, and zq.

intrpVMStress = interpolateVonMisesStress(structuralresults,querypoints) uses
the points specified in querypoints.

Examples

Interpolate von Mises Stress for Plane-Strain Problem

Create a structural analysis model for a plane-strain problem.

structuralmodel = createpde('structural','static-planestrain');

Include the square geometry in the model. Plot the geometry.

geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal

5 Functions

5-648

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify the x-component of the enforced displacement for edge 1.

structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);

Specify that edge 3 is a fixed boundary.

structuralBC(structuralmodel,'Constraint','fixed','Edge',3);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Create a grid and interpolate the von Mises stress to the grid.

v = linspace(-1,1,151);
[X,Y] = meshgrid(v);
intrpVMStress = interpolateVonMisesStress(structuralresults,X,Y);

Reshape the von Mises stress to the shape of the grid and plot it.

VMStress = reshape(intrpVMStress,size(X));
p = pcolor(X,Y,VMStress);

 interpolateVonMisesStress

5-649

p.EdgeColor='none';
colorbar

Interpolate Von Mises Stress for 3-D Static Structural Analysis Problem

Solve a static structural model representing a bimetallic cable under tension, and interpolate the von
Mises stress on a cross-section of the cable.

Create a static structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01,0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

5 Functions

5-650

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

 interpolateVonMisesStress

5-651

 Mesh: [1x1 FEMesh]

Define the coordinates of a midspan cross-section of the cable.

[X,Y] = meshgrid(linspace(-0.015,0.015,50));
Z = ones(size(X))*0.025;

Interpolate the von Mises stress and plot the result.

IntrpVMStress = interpolateVonMisesStress(structuralresults,X,Y,Z);
surf(X,Y,reshape(IntrpVMStress,size(X)))

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:),Y(:),Z(:)]';
IntrpVMStress = ...
 interpolateVonMisesStress(structuralresults,querypoints);
surf(X,Y,reshape(IntrpVMStress,size(X)))

5 Functions

5-652

Interpolate von Mises Stress for 3-D Structural Dynamic Problem

Interpolate the von Mises stress at the geometric center of a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 interpolateVonMisesStress

5-653

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0], ...
 'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-654

Interpolate the von Mises stress at the geometric center of the beam.

coordsMidSpan = [0;0;0.005];
intrpStress = interpolateStress(structuralresults,coordsMidSpan);

Plot the von Mises stress at the geometric center of the beam.

figure
plot(structuralresults.SolutionTimes,intrpStress.sxx)
title('von Mises Stress at Beam Center')

Input Arguments
structuralresults — Solution of structural analysis problem
StaticStructuralResults object | TransientStructuralResults object |
FrequencyStructuralResults object

Solution of the structural analysis problem, specified as a StaticStructuralResults,
TransientStructuralResults, or FrequencyStructuralResults object. Create
structuralresults by using the solve function.
Example: structuralresults = solve(structuralmodel)

xq — x-coordinate query points
real array

 interpolateVonMisesStress

5-655

x-coordinate query points, specified as a real array. interpolateVonMisesStress evaluates the
von Mises stress at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. Therefore, xq, yq, and (if present) zq must have the same number of
entries.

interpolateVonMisesStress converts query points to column vectors xq(:), yq(:), and (if
present) zq(:). The function returns von Mises stress as a column vector of the same size as the
query point column vectors. To ensure that the dimensions of the returned solution are consistent
with the dimensions of the original query points, use the reshape function. For example, use
intrpVMStress = reshape(intrpVMStress,size(xq)).
Data Types: double

yq — y-coordinate query points
real array

y-coordinate query points, specified as a real array. interpolateVonMisesStress evaluates the
von Mises stress at the 2-D coordinate points [xq(i),yq(i)] or at the 3-D coordinate points
[xq(i),yq(i),zq(i)]. Therefore, xq, yq, and (if present) zq must have the same number of
entries. Internally, interpolateVonMisesStress converts the query points to the column vector
yq(:).
Data Types: double

zq — z-coordinate query points
real array

z-coordinate query points, specified as a real array. interpolateVonMisesStress evaluates the
von Mises stress at the 3-D coordinate points [xq(i),yq(i),zq(i)]. Therefore, xq, yq, and zq
must have the same number of entries. Internally, interpolateVonMisesStress converts the
query points to the column vector zq(:).
Data Types: double

querypoints — Query points
real matrix

Query points, specified as a real matrix with either two rows for 2-D geometry or three rows for 3-D
geometry. interpolateVonMisesStress evaluates the von Mises stress at the coordinate points
querypoints(:,i), so each column of querypoints contains exactly one 2-D or 3-D query point.
Example: For 2-D geometry, querypoints = [0.5,0.5,0.75,0.75; 1,2,0,0.5]
Data Types: double

Output Arguments
intrpVMStress — von Mises stress at query points
column vector

von Mises stress at the query points, returned as a column vector.

For query points that are outside the geometry, intrpVMStress = NaN.

5 Functions

5-656

See Also
StructuralModel | StaticStructuralResults | interpolateDisplacement |
interpolateStress | interpolateStrain | evaluateReaction | evaluatePrincipalStress
| evaluatePrincipalStrain

Introduced in R2017b

 interpolateVonMisesStress

5-657

jigglemesh
Package: pde

(Not recommended) Jiggle internal points of triangular mesh

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow. For the corresponding step in the recommended workflow, see generateMesh.

Syntax
p1 = jigglemesh(p,e,t)
p1 = jigglemesh(p,e,t,Name,Value)

Description
p1 = jigglemesh(p,e,t) jiggles the triangular mesh by adjusting the node point positions.
Typically, the quality of the mesh increases after jiggling.

p1 = jigglemesh(p,e,t,Name,Value) jiggles the mesh using one or more Name,Value
arguments.

Examples

Jiggle Mesh

Create a triangular mesh of the square geometry by using initmesh. To avoid jiggling, call
initimesh with the Jiggle value set to off.

[p,e,t] = initmesh('lshapeg','Jiggle','off');

Evaluate quality of the mesh elements using the pdetriq function.

q = pdetriq(p,t);

Plot the mesh.

pdeplot(p,e,t,'XYData',q,'ColorBar','on','XYStyle','flat')

5 Functions

5-658

Jiggle the mesh using the default parameter values. Plot the result.

p1 = jigglemesh(p,e,t);
q = pdetriq(p1,t);
pdeplot(p1,e,t,'XYData',q,'ColorBar','on','XYStyle','flat')

 jigglemesh

5-659

Now jiggle the original mesh again, this time using 50000 iterations.

p2 = jigglemesh(p,e,t,'Opt','off','Iter',5e4);
q = pdetriq(p2,t);
pdeplot(p2,e,t,'XYData',q,'ColorBar','on','XYStyle','flat')

5 Functions

5-660

Input Arguments
p — Mesh points
2-by-Np matrix

Mesh points, specified as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k
of p consists of the x-coordinate of point k in p(1,k) and the y-coordinate of point k in p(2,k). For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

e — Mesh edges
7-by-Ne matrix

Mesh edges, specified as a 7-by-Ne matrix, where Ne is the number of edges in the mesh. An edge is a
pair of points in p containing a boundary between subdomains, or containing an outer boundary. For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

t — Mesh elements
4-by-Nt matrix

Mesh elements, specified as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.

The t(i,k), with i ranging from 1 through end - 1, contain indices to the corner points of element
k. For details, see “Mesh Data as [p,e,t] Triples” on page 2-150. The last row, t(end,k), contains the
subdomain number of the element.

 jigglemesh

5-661

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: p1 = jigglemesh(p,e,t,'Iter',Inf)

Opt — Optimization method
'mean' (default) | 'minimum' | 'off'

Optimization method, specified as the comma-separated pair consisting of 'Opt' and 'mean',
'minimum', or 'off'.

Jiggling a mesh moves each mesh point not located on an edge segment towards the center of mass of
the polygon formed by the adjacent triangles. The optimization method controls how many times
jigglemesh repeats this process:

• If Opt is 'off', jigglemesh repeats this process Iter times. The default value of Iter in this
case is 1.

• If Opt is 'mean', jigglemesh repeats this process until the mean triangle quality stops
increasing significantly or until the maximum number of iterations is reached. The default value of
Iter in this case is 20.

• If Opt is 'minimum', jigglemesh repeats this process until the minimum triangle quality stops
increasing significantly or until the maximum number of iterations is reached. The default value of
Iter in this case is 20.

Example: p1 = jigglemesh(p,e,t,'Opt','off','Iter',1000);
Data Types: char | string

Iter — Maximum number of iterations
1 or 20 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'Iter' and a
positive number. The default value depends on the Opt argument value. If Opt is set to 'mean'
(default) or 'minimum', the default maximum number of iterations is 20. If Opt is set to 'off', the
default maximum number of iterations is 1.
Example: p1 = jigglemesh(p,e,t,'Opt','off','Iter',1000);
Data Types: double

Output Arguments
p1 — Modified mesh points
2-by-Np matrix

Modified mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh.
Column k of p consists of the x-coordinate of point k in p(1,k) and the y-coordinate of point k in
p(2,k). For details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

See Also
initmesh | pdetriq

5 Functions

5-662

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 jigglemesh

5-663

linearize
Package: pde

Linearize structural or thermal model

Syntax
sys = linearize(model)
mx = linearize(model,'OutputType','matrices')

Description
sys = linearize(model) extracts a sparse linear model for use with Control System Toolbox. For
a structural analysis model, linearize extracts a mechss model. For a thermal analysis model, it
extracts a sparss model. For transient models, linearize uses time 0.

Use linearizeInput to specify the inputs of the linear model that correspond to external forcing,
such as loads or internal heat sources. The toolbox treats the value of each selected constraint, load,
or source as a constant, and the value becomes one input channel in the linearized model. The
remaining boundary conditions are set to zero for linearization purposes, regardless of their value in
the structural or thermal model. Ensure that you label all nonzero boundary conditions and pass them
as inputs using linearizeInput.

Use linearizeOutput to specify the outputs of the linear model in terms of regions of the
geometry, such as cells (for 3-D geometries only), faces, edges, or vertices. This includes all degrees
of freedom (DoFs) in the specified region as output values. For structural models, you can also specify
which of the x, y, and z degrees of freedom to include as outputs.

Use sys.InputName and sys.OutputGroup to locate the inputs and outputs of sys that
correspond to a particular boundary condition or to a selected region.

mx = linearize(model,'OutputType','matrices') returns the finite element matrices A, B,
C, D, E or M, K, B, F used to construct the mechss and sparss models in the previous syntax.

Examples

Extract sparss Model and Finite Element Matrices

Linearize a model for thermal analysis and return finite element matrices.

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges(thermalmodel,@crackg);

Plot the geometry with the edge labels.

5 Functions

5-664

pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

Generate a mesh.

generateMesh(thermalmodel);

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1, ...
 'MassDensity',1, ...
 'SpecificHeat',1);

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. Add a unique label to each boundary condition.

thermalBC(thermalmodel,'Edge',6,'Temperature',100,'Label','TempBC');
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10,'Label','FluxBC');

Specify that the entire geometry generates heat and add a unique label to this assignment.

internalHeatSource(thermalmodel,25,'Label','HeatSource');

Set an initial value of 0 for the temperature.

thermalIC(thermalmodel,0);

 linearize

5-665

Specify the inputs of the linearized model by calling the linearizeInput function with the
previously defined labels for the boundary conditions and the internal heat source. Add one label per
function call.

linearizeInput(thermalmodel,'HeatSource');
linearizeInput(thermalmodel,'TempBC');
linearizeInput(thermalmodel,'FluxBC');

Specify the outputs of the linearized model by calling the linearizeOutput function to set the
regions of interest for measuring temperature. Specify one region per function call. For example,
specify that the output is the temperature value at all nodes on edge 2.

linearizeOutput(thermalmodel,'Edge',2);

Measure the temperature on edge 2.

sys = linearize(thermalmodel)

Sparse continuous-time state-space model with 27 outputs, 3 inputs, and 1363 states.

Use "spy" and "showStateInfo" to inspect model structure.
Type "properties('sparss')" for a list of model properties.
Type "help sparssOptions" for available solver options for this model.

In the linearized model, use sys.InputName to check that the inputs to sys are the heat source, the
temperature on edge 6, and the heat flux on edge 1.

sys.InputName

ans = 3x1 cell
 {'HeatSource'}
 {'TempBC' }
 {'FluxBC' }

In the linearized model, use sys.OutputGroup to locate the sections associated with each
coordinate.

sys.OutputGroup

ans = struct with fields:
 Edge2: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ...]

If you do not have Control System Toolbox™, you can access the finite element matrices A, B, C, and E
as follows.

mx = linearize(thermalmodel,'OutputType','matrices')

mx = struct with fields:
 A: [1363x1363 double]
 B: [1363x3 double]
 C: [27x1363 double]
 E: [1363x1363 double]

5 Functions

5-666

Extract mechss Model and Finite Element Matrices

Linearize a structural model and return finite element matrices.

Create a structural transient analysis model.

structuralmodel = createpde('structural','transient-solid');

Import and plot the tuning fork geometry.

importGeometry(structuralmodel,'TuningFork.stl');
pdegplot(structuralmodel)

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.005);

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material
behavior. Specify all physical properties in consistent units.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure('units','normalized','outerposition',[0 0 1 1])
pdegplot(structuralmodel,'FaceLabels','on')

 linearize

5-667

view(-50,15)
title 'Geometry with Face Labels'

Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically,
you hold a tuning fork by hand or mount it on a table. A simplified approximation to this boundary
condition is fixing a region near the intersection of tines and the handle (faces 21 and 22).

structuralBC(structuralmodel,'Face',[21,22],'Constraint','fixed');

Specify the pressure loading on a tine as a short rectangular pressure pulse.

structuralBoundaryLoad(structuralmodel,'Face',11,'Pressure',5E6, ...
 'EndTime',1e-3,'Label','Pressure');

Specify acceleration due to gravity as a body load.

structuralBodyLoad(structuralmodel,'GravitationalAcceleration',[0 0 -1], ...
 'Label','Gravity');

5 Functions

5-668

Create inputs for gravity and the pressure pulse on tuning fork.

linearizeInput(structuralmodel,'Gravity');
linearizeInput(structuralmodel,'Pressure');

Measure the y-displacement of face 12 and x-displacement of face 6.

linearizeOutput(structuralmodel,'Face',12,'Component','y');
linearizeOutput(structuralmodel,'Face',6,'Component','x');

Obtain a mechss model of the tuning fork.

sys = linearize(structuralmodel)

Sparse continuous-time second-order model with 26 outputs, 4 inputs, and 3240 degrees of freedom.

Use "spy" and "showStateInfo" to inspect model structure.
Type "properties('mechss')" for a list of model properties.
Type "help mechssOptions" for available solver options for this model.

In the linearized model, use sys.InputName to check that the inputs to sys are the gravity body
load and the pressure pulse on a tine. The gravity body load produces three inputs because it has x-,
y-, and z-components.

sys.InputName

ans = 4x1 cell
 {'Gravity_x'}
 {'Gravity_y'}
 {'Gravity_z'}
 {'Pressure' }

In the linearized model, use sys.OutputGroup to locate the sections associated with each
coordinate.

sys.OutputGroup

ans = struct with fields:
 Face12_y: [1 2 3 4 5 6 7 8 9 10 11 12 13]
 Face6_x: [14 15 16 17 18 19 20 21 22 23 24 25 26]

If you do not have Control System Toolbox™, you can access the finite element matrices M, K, B, and F
as follows.

mx = linearize(structuralmodel,'OutputType','matrices')

mx = struct with fields:
 M: [3240x3240 double]
 K: [3240x3240 double]
 B: [3240x4 double]
 F: [26x3240 double]

 linearize

5-669

Input Arguments
model — Structural or thermal model
StructuralModel object | ThermalModel object

Structural or thermal model, specified as a StructuralModel object or a ThermalModel object.
The linearize function does not support nonlinear thermal analysis.
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')

Output Arguments
sys — Sparse linear models for use with Control System Toolbox
mechss model object | sparss model object

Sparse linear models for use with Control System Toolbox, returned as a mechss or sparss model
object.

mx — Finite element matrices
structure array

Finite element matrices A, B, C, D, and E or M, K, B, and F, returned as a structure array.

See Also
linearizeInput | linearizeOutput

Introduced in R2021b

5 Functions

5-670

linearizeInput
Package: pde

Specify inputs to linearized model

Syntax
linearizeInput(model,labeltext)
input = linearizeInput(model,labeltext)

Description
linearizeInput(model,labeltext) adds inputs for the boundary condition, constraint, load, or
source with the label labeltext. In the linearized model, the input value u = 1 corresponds to a unit
boundary condition acting on the entire region specified by labeltext. In other words, simulating
the linearized model with the input value u(t) = 25 is equivalent to setting the boundary condition
value to 25 in the thermal or structural model in Partial Differential Equation Toolbox. For more
information, see “Algorithms” on page 5-677.

For a structural analysis model, the following boundary conditions, constraints, and loads can become
inputs of the linearized model:

• A structural boundary constraint. Use the structuralBC function with the Constraint
argument.

• A displacement or a displacement component on the boundary. Use the structuralBC function
with the Displacement, XDisplacement, YDisplacement, or ZDisplacement argument.

• A structural boundary load. Use the structuralBoundaryLoad function with the Pressure,
Force, or SurfaceTraction argument.

• A structural body load. Use the structuralBodyLoad function with the
GravitationalAcceleration argument.

The boundary conditions, loads, or constraints with x-, y-, and z- components produce one input
channel per component.

For a thermal analysis model, the following boundary conditions and sources can become inputs of
the linearized model:

• A temperature or heat flux on the boundary. Use the thermalBC function with the Temperature
or HeatFlux argument.

• An internal heat source. Use the internalHeatSource function.

Each selected condition or source produces a single scalar input in the linearized model.

To make a condition, constraint, load, or source available as a linearization input, always label it upon
creation. For example, specify an internal heat source for a thermal model as follows:

internalHeatSource(thermalmodel,25,'Label','HeatSource');

 linearizeInput

5-671

The remaining boundary conditions are set to zero for linearization purposes, regardless of their
value in the structural or thermal model. Ensure that you label all nonzero boundary conditions and
pass them as inputs using linearizeInput.

Use linearizeInput and linearizeOutput together with the linearize function to extract
sparse linear models from structural and thermal models.

input = linearizeInput(model,labeltext) returns a structure array input with the
linearization input description.

Examples

Thermal Boundary Conditions and Internal Heat Source as Inputs for linearize Function

Use labels to pass the parameters of a 2-D thermal analysis model to the linearize function. This
function extracts sparse linear models for use with Control System Toolbox™.

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges(thermalmodel,@crackg);

Plot the geometry, displaying edge labels.

pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

5 Functions

5-672

Generate a mesh.

generateMesh(thermalmodel);

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1, ...
 'MassDensity',1, ...
 'SpecificHeat',1);

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. Add a unique label to each boundary condition.

thermalBC(thermalmodel,'Edge',6,'Temperature',100,'Label','TempBC');
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10,'Label','FluxBC');

Specify that the entire geometry generates heat and add a unique label to this assignment.

internalHeatSource(thermalmodel,25,'Label','HeatSource');

Set an initial value of 0 for the temperature.

thermalIC(thermalmodel,0);

Call the linearizeInput function with the previously defined labels for the boundary conditions
and the internal heat source to set the inputs for the linearize function. Add one label per function
call.

 linearizeInput

5-673

linearizeInput(thermalmodel,'HeatSource');
linearizeInput(thermalmodel,'TempBC');
linearizeInput(thermalmodel,'FluxBC');

The LinearizeInputs property of thermalmodel stores the inputs.

thermalmodel.LinearizeInputs

ans=1×3 struct array with fields:
 RegionType
 RegionID
 Label

Pressure and Gravity as Inputs for linearize Function

Create inputs for gravity and a short pressure pulse on tuning fork.

Create a structural transient analysis model.

structuralmodel = createpde('structural','transient-solid');

Import and plot the tuning fork geometry.

importGeometry(structuralmodel,'TuningFork.stl');
pdegplot(structuralmodel)

5 Functions

5-674

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.005);

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material
behavior. Specify all physical properties in consistent units.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure('units','normalized','outerposition',[0 0 1 1])
pdegplot(structuralmodel,'FaceLabels','on')
view(-50,15)
title 'Geometry with Face Labels'

 linearizeInput

5-675

Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically,
you hold a tuning fork by hand or mount it on a table. As a simplified approximation of this boundary
condition, fix a region near the intersection of the tines and the handle (faces 21 and 22).

structuralBC(structuralmodel,'Face',[21,22],'Constraint','fixed');

Specify the pressure loading on a tine as a short rectangular pressure pulse.

structuralBoundaryLoad(structuralmodel,'Face',11, ...
 'Pressure',5E6, ...
 'EndTime',1e-3, ...
 'Label','Pressure');

Specify the acceleration due to gravity as a body load.

structuralBodyLoad(structuralmodel, ...
 'GravitationalAcceleration',[0 0 -1], ...
 'Label','Gravity');

Create inputs for gravity and the pressure pulse on the tuning fork.

linearizeInput(structuralmodel,'Gravity');
linearizeInput(structuralmodel,'Pressure');

The LinearizeInputs property of structuralmodel stores the inputs.

structuralmodel.LinearizeInputs

ans=1×2 struct array with fields:
 RegionType
 RegionID
 Label

Input Arguments
model — Structural or linear thermal model
StructuralModel object | ThermalModel object

Structural or linear thermal model, specified as a StructuralModel object or a ThermalModel
object. The linearize function does not support nonlinear thermal analysis.

labeltext — Label for boundary condition
character vector | string

Label for boundary condition, specified as a character vector or a string.
Data Types: char | string

Output Arguments
input — Linearization input description
structure array

Linearization input description, returned as a structure array.

5 Functions

5-676

Algorithms
The linearize function constructs a linear model whose inputs are a subset of the boundary
conditions, loads, or sources applied to the thermal or structural model in Partial Differential
Equation Toolbox and whose outputs are the resulting values at the selected DoFs. For example, if
you designate the heat source

internalHeatSource(model,25,'Face',2,'Label','heatSource')

as a linearization input

linearizeInput(model,'heatSource')

and designate the temperatures on face X as linearization outputs

linearizeOutput(model,’Face’,X)

then the response of the linearized model to the constant input u(t) = 25 (the heat source value in the
thermal model) matches the Partial Differential Equation Toolbox simulation results for face X.

tlist = 1:10;
u = repmat(25,size(tlist));
ysp = lsim(linsys,uLoad,tlist);

Note that loads and boundary conditions not included as linearization inputs are assumed to be zero
in the linearized model regardless of their values in the structural or thermal model in Partial
Differential Equation Toolbox. Simulation results can differ in this case.

See Also
linearize | linearizeOutput | structuralBodyLoad | structuralBoundaryLoad |
structuralBC | internalHeatSource | thermalBC

Introduced in R2021b

 linearizeInput

5-677

linearizeOutput
Package: pde

Specify outputs of linearized model

Syntax
linearizeOutput(model,RegionType,RegionID)
linearizeOutput(model,RegionType,RegionID,'Component',xyz)
output = linearizeOutput(___)

Description
linearizeOutput(model,RegionType,RegionID) adds all degrees of freedom (DoFs) associated
with the region defined by RegionType and RegionID to the output vector of the linearized model.
For 3-D structural models, linearizeOutput adds all x-coordinates first, then all y-coordinates,
then all z-coordinates. In the linearized model sys, use sys.OutputGroup to locate the sections
associated with each coordinate.

Use linearizeInput and linearizeOutput together with the linearize function to extract
sparse linear models from structural and thermal models.

linearizeOutput(model,RegionType,RegionID,'Component',xyz) specifies which of the
coordinates to include.

output = linearizeOutput(___) returns a structure array output with the linearization
output description. Use this syntax with any of the previous arguments.

Examples

Regions for Extracting Sparse Linear Models

Specify the regions of a 2-D thermal model for which linearize extracts sparse linear models used
in Control System Toolbox™.

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges(thermalmodel,@crackg);

Plot the geometry, displaying edge labels.

pdegplot(thermalmodel,'EdgeLabels','on')
ylim([-1,1])
axis equal

5 Functions

5-678

Generate a mesh.

generateMesh(thermalmodel);

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',1, ...
 'MassDensity',1, ...
 'SpecificHeat',1);

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. Add a unique label to each boundary condition.

thermalBC(thermalmodel,'Edge',6,'Temperature',100,'Label','TempBC');
thermalBC(thermalmodel,'Edge',1,'HeatFlux',-10,'Label','FluxBC');

Specify that the entire geometry generates heat and add a unique label to this assignment.

internalHeatSource(thermalmodel,25,'Label','HeatSource');

Set an initial value of 0 for the temperature.

thermalIC(thermalmodel,0);

Call the linearizeInput function with the previously defined labels for the boundary conditions
and the internal heat source to set the inputs for the linearize function. Add one label per function
call.

 linearizeOutput

5-679

linearizeInput(thermalmodel,'HeatSource');
linearizeInput(thermalmodel,'TempBC');
linearizeInput(thermalmodel,'FluxBC');

Call the linearizeOutput function to specify the regions for which you want linearize to extract
sparse linear models. Specify one region per function call.

linearizeOutput(thermalmodel,'Edge',2)

ans = struct with fields:
 RegionType: 'Edge'
 RegionID: 2

Components of Displacement as Outputs for Linearized Model

Specify which of the x-, y-, and z- coordinates to include in a linearized model.

Create a structural transient analysis model.

structuralmodel = createpde('structural','transient-solid');

Import and plot the tuning fork geometry.

importGeometry(structuralmodel,'TuningFork.stl');
pdegplot(structuralmodel)

5 Functions

5-680

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.005);

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material
behavior. Specify all physical properties in consistent units.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure('units','normalized','outerposition',[0 0 1 1])
pdegplot(structuralmodel,'FaceLabels','on')
view(-50,15)
title 'Geometry with Face Labels'

 linearizeOutput

5-681

Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically,
you hold a tuning fork by hand or mount it on a table. As a simplified approximation of this boundary
condition, fix a region near the intersection of the tines and the handle (faces 21 and 22).

structuralBC(structuralmodel,'Face',[21,22],'Constraint','fixed');

Specify the pressure loading on a tine as a short rectangular pressure pulse.

structuralBoundaryLoad(structuralmodel,'Face',11,...
 'Pressure',5E6, ...
 'EndTime',1e-3, ...
 'Label','Pressure');

Specify acceleration due to gravity as a body load.

structuralBodyLoad(structuralmodel, ...
 'GravitationalAcceleration',[0 0 -1], ...
 'Label','Gravity');

Create inputs for gravity and the pressure pulse on tuning fork.

linearizeInput(structuralmodel,'Gravity');
linearizeInput(structuralmodel,'Pressure');

Measure the y-displacement of face 12 and x-displacement of face 6.

linearizeOutput(structuralmodel,'Face',12,'Component','y')

ans = struct with fields:
 RegionType: 'Face'
 RegionID: 12
 Component: 'y'

linearizeOutput(structuralmodel,'Face',6,'Component','x')

ans = struct with fields:
 RegionType: 'Face'
 RegionID: 6
 Component: 'x'

Input Arguments
model — Structural or linear thermal model
StructuralModel object | ThermalModel object

Structural or linear thermal model, specified as a StructuralModel object or a ThermalModel
object. The linearize function does not support nonlinear thermal analysis.

RegionType — Geometric region type
'Cell' | 'Face' | 'Edge' | 'Vertex'

Geometric region type, specified as 'Cell' (for a 3-D model only), 'Face', 'Edge', or 'Vertex'.
Data Types: char

5 Functions

5-682

RegionID — Geometric region ID
positive integer

Geometric region ID, specified as a positive integer. Find the region IDs by using pdegplot with the
'CellLabels', 'FaceLabels', 'EdgeLabels', or 'VertexLabels' value set to 'on'.
Data Types: double

xyz — Coordinates to include
character vector | string

Coordinates to include, specified as a character vector or a string of x-, y-, and z-coordinates to
include.
Example: linearizeOutput(pdemodel,'Face',10,'Component','xz') selects the x and z
DoFs for face 10
Data Types: char | string

Output Arguments
output — Linearization output description
structure array

Linearization output description, returned as a structure array.

See Also
linearize | linearizeInput

Introduced in R2021b

 linearizeOutput

5-683

meshQuality
Package: pde

Evaluate shape quality of mesh elements

Syntax
Q = meshQuality(mesh)
Q = meshQuality(mesh,elemIDs)
Q = meshQuality(___ ,'aspect-ratio')

Description
Q = meshQuality(mesh) returns a row vector of numbers from 0 through 1 representing shape
quality of all elements of the mesh. Here, 1 corresponds to the optimal shape of the element.

Q = meshQuality(mesh,elemIDs) returns the shape quality of the specified elements.

Q = meshQuality(___ ,'aspect-ratio') determines the shape quality by using the ratio of
minimal to maximal dimensions of an element. The quality values are numbers from 0 through 1,
where 1 corresponds to the optimal shape of the element. Specify 'aspect-ratio' after any of the
previous syntaxes.

Examples

Element Quality of 3-D Mesh

Evaluate the shape quality of the elements of a 3-D mesh.

Create a PDE model.

model = createpde;

Include and plot the following geometry.

importGeometry(model,'PlateSquareHoleSolid.stl');
pdegplot(model)

5 Functions

5-684

Create and plot a coarse mesh.

mesh = generateMesh(model,'Hmax',35)

mesh =
 FEMesh with properties:

 Nodes: [3x487 double]
 Elements: [10x213 double]
 MaxElementSize: 35
 MinElementSize: 17.5000
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

pdemesh(model)

 meshQuality

5-685

Evaluate the shape quality of all mesh elements. Display the first five values.

Q = meshQuality(mesh);
Q(1:5)

ans = 1×5

 0.3079 0.2917 0.6189 0.6688 0.5571

Find the elements with the quality values less than 0.2.

elemIDs = find(Q < 0.2);

Highlight these elements in blue on the mesh plot.

pdemesh(mesh,'FaceAlpha',0.5)
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs), ...
 'FaceColor','blue', ...
 'EdgeColor','blue')

5 Functions

5-686

Plot the element quality in a histogram.

figure
hist(Q)
xlabel('Element Shape Quality','fontweight','b')
ylabel('Number of Elements','fontweight','b')

 meshQuality

5-687

Find the worst quality value.

Qworst = min(Q)

Qworst = 0.1691

Find the corresponding element IDs.

elemIDs = find(Q==Qworst)

elemIDs = 1×2

 10 136

Element Quality of 2-D Mesh

Evaluate the shape quality of the elements of a 2-D mesh.

Create a PDE model.

model = createpde;

Include and plot the following geometry.

5 Functions

5-688

importGeometry(model,'PlateSquareHolePlanar.stl');
pdegplot(model)

Create and plot a coarse mesh.

mesh = generateMesh(model,'Hmax',20)

mesh =
 FEMesh with properties:

 Nodes: [2x286 double]
 Elements: [6x126 double]
 MaxElementSize: 20
 MinElementSize: 10
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

pdemesh(model)

 meshQuality

5-689

Find the IDs of the elements within a box enclosing the center of the plate.

elemIDs = findElements(mesh,'box',[25,75],[80,120]);

Evaluate the shape quality of these elements. Display the result as a column vector.

Q = meshQuality(mesh,elemIDs);
Q.'

ans = 12×1

 0.2980
 0.8253
 0.2994
 0.6581
 0.7838
 0.6104
 0.3992
 0.6921
 0.2948
 0.5726
 ⋮

Find the elements with the quality values less than 0.4.

elemIDs04 = elemIDs(Q < 0.4)

5 Functions

5-690

elemIDs04 = 1×4

 9 19 69 83

Highlight these elements in green on the mesh plot. Zoom in to see the details.

pdemesh(mesh,'ElementLabels','on')
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs04),'EdgeColor','green')
zoom(10)

Element Quality Determined by Aspect Ratio

Determine the shape quality of mesh elements by using the ratios of minimal to maximal dimensions.

Create a PDE model and include the L-shaped geometry.

model = createpde(1);
geometryFromEdges(model,@lshapeg);

Generate the default mesh for the geometry.

mesh = generateMesh(model);

View the mesh.

 meshQuality

5-691

pdeplot(model)

Evaluate the shape quality of mesh elements by using the minimal to maximal dimensions ratio.
Display the first five values.

Q = meshQuality(mesh,'aspect-ratio');
Q(1:5)

ans = 1×5

 0.8339 0.7655 0.7755 0.8301 0.8969

Evaluate the shape quality of mesh elements by using the default setting. Display the first five values.

Q = meshQuality(mesh);
Q(1:5)

ans = 1×5

 0.9837 0.9605 0.9654 0.9829 0.9913

Input Arguments
mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

5 Functions

5-692

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

elemIDs — Element IDs
positive integer | matrix of positive integers

Element IDs, specified as a positive integer or a matrix of positive integers.
Example: [10 68 81 97 113 130 136 164]

Output Arguments
Q — Shape quality of mesh elements
row vector of numbers from 0 through 1

Shape quality of mesh elements, returned as a row vector of numbers from 0 through 1. The value 0
corresponds to a deflated element with zero area or volume. The value 1 corresponds to an element
of optimal shape.
Example: [0.9150 0.7787 0.9417 0.2744 0.9843 0.9181]
Data Types: double

References
[1] Knupp, Patrick M. "Matrix Norms & the Condition Number: A General Framework to Improve

Mesh Quality via Node-Movement." In Proceedings, 8th International Meshing Roundtable.
Lake Tahoe, CA, October 1999: 13-22.

See Also
findElements | findNodes | area | volume | FEMesh Properties

Topics
“Finite Element Method Basics” on page 1-11

Introduced in R2018a

 meshQuality

5-693

meshToPet
Package: pde

[p,e,t] representation of FEMesh data

Note This page describes the legacy workflow. New features might not be compatible with the
[p,e,t] representation of FEMesh data.

Syntax
[p,e,t] = meshToPet(mesh)

Description
[p,e,t] = meshToPet(mesh) extracts the legacy [p,e,t] mesh representation from a FEMesh
object.

Examples

Convert 2-D Mesh to [p,e,t] Form

This example shows how to convert a mesh in object form to [p,e,t] form.

Create a 2-D PDE geometry and incorporate it into a model object. View the geometry.

model = createpde(1);

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]';
C1 = [1,.5,0,.2]';
% Pad C1 with zeros to enable concatenation with R1
C1 = [C1;zeros(length(R1)-length(C1),1)];
geom = [R1,C1];
ns = (char('R1','C1'))';
sf = 'R1-C1';
gd = decsg(geom,sf,ns);

geometryFromEdges(model,gd);
pdegplot(model,'EdgeLabels','on')
xlim([-1.1 1.1])
axis equal

5 Functions

5-694

Create a mesh for the geometry. View the mesh.

generateMesh(model);
pdemesh(model)
axis equal

 meshToPet

5-695

Convert the mesh to [p,e,t] form.

[p,e,t] = meshToPet(model.Mesh);

View the sizes of the [p,e,t] matrices.

size(p)

ans = 1×2

 2 956

size(e)

ans = 1×2

 7 160

size(t)

ans = 1×2

 7 438

5 Functions

5-696

Input Arguments
mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

Output Arguments
p — Mesh points
2-by-Np matrix | 3-by-Np matrix

Mesh points, returned as a 2-by-Np matrix (2-D geometry) or a 3-by-Np matrix (3-D geometry). Np is
the number of points (nodes) in the mesh. Column k of p consists of the x-coordinate of point k in
p(1,k), the y-coordinate of point k in p(2,k), and, for 3-D, the z-coordinate of point k in p(3,k).
For details, see “Mesh Data” on page 2-153.

e — Mesh edges
7-by-Ne matrix | mesh associativity object

Mesh edges, returned as a 7-by-Ne matrix (2-D), or a mesh associativity object (3-D). Ne is the
number of edges in the mesh. An edge is a pair of points in p containing a boundary between
subdomains, or containing an outer boundary. For details, see “Mesh Data” on page 2-153.

t — Mesh elements
4-by-Nt matrix | 7-by-Nt matrix | 5-by-Nt matrix | 11-by-Nt matrix

Mesh elements, returned as a 4-by-Nt matrix (2-D with linear elements), a 7-by-Nt matrix (2-D with
quadratic elements), a 5-by-Nt matrix (3-D with linear elements), or an 11-by-Nt matrix (3-D with
quadratic elements). Nt is the number of triangles or tetrahedra in the mesh.

The t(i,k), with i ranging from 1 through end - 1, contain indices to the corner points and
possibly edge centers of element k. For details, see “Mesh Data” on page 2-153. The last row,
t(end,k), contains the subdomain number of the element.

Tips
• Use meshToPet to obtain the p and t data for interpolation using pdeInterpolant.

See Also
FEMesh | generateMesh

Topics
“Mesh Data” on page 2-153

Introduced in R2015a

 meshToPet

5-697

multicuboid
Create geometry formed by several cubic cells

Syntax
gm = multicuboid(W,D,H)
gm = multicuboid(W,D,H,Name,Value)

Description
gm = multicuboid(W,D,H) creates a geometry by combining several cubic cells.

When creating each cuboid, multicuboid uses the following coordinate system.

gm = multicuboid(W,D,H,Name,Value) creates a multi-cuboid geometry using one or more
Name,Value pair arguments.

Examples

Nested Cuboids of Same Height

Create a geometry that consists of three nested cuboids of the same height and include this geometry
in a PDE model.

Create the geometry by using the multicuboid function. The resulting geometry consists of three
cells.

5 Functions

5-698

gm = multicuboid([2 3 5],[4 6 10],3)

gm =
 DiscreteGeometry with properties:

 NumCells: 3
 NumFaces: 18
 NumEdges: 36
 NumVertices: 24
 Vertices: [24x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

 multicuboid

5-699

Stacked Cuboids

Create a geometry that consists of four stacked cuboids and include this geometry in a PDE model.

Create the geometry by using the multicuboid function with the ZOffset argument. The resulting
geometry consists of four cells stacked on top of each other.

gm = multicuboid(5,10,[1 2 3 4],'ZOffset',[0 1 3 6])

gm =
 DiscreteGeometry with properties:

 NumCells: 4
 NumFaces: 21
 NumEdges: 36
 NumVertices: 20
 Vertices: [20x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

5 Functions

5-700

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

 multicuboid

5-701

Single Cuboid

Create a geometry that consists of a single cuboid and include this geometry in a PDE model.

Use the multicuboid function to create a single cuboid. The resulting geometry consists of one cell.

gm = multicuboid(5,10,7)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 6
 NumEdges: 12
 NumVertices: 8
 Vertices: [8x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

5 Functions

5-702

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on')

 multicuboid

5-703

Hollow Cube

Create a hollow cube and include it as a geometry in a PDE model.

Create a hollow cube by using the multicuboid function with the Void argument. The resulting
geometry consists of one cell.

gm = multicuboid([6 10],[6 10],10,'Void',[true,false])

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 10
 NumEdges: 24
 NumVertices: 16
 Vertices: [16x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

5 Functions

5-704

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

 multicuboid

5-705

Input Arguments
W — Cell width
positive real number | vector of positive real numbers

Cell width, specified as a positive real number or a vector of positive real numbers. If W is a vector,
then W(i) specifies the width of the ith cell.

Width W, depth D, and height H can be scalars or vectors of the same length. For a combination of
scalar and vector inputs, multicuboid replicates the scalar arguments into vectors of the same
length.

Note All cells in the geometry either must have the same height, or must have both the same width
and the same depth.

Example: gm = multicuboid([1 2 3],[2.5 4 5.5],5)

D — Cell depth
positive real number | vector of positive real numbers

Cell depth, specified as a positive real number or a vector of positive real numbers. If D is a vector,
then D(i) specifies the depth of the ith cell.

5 Functions

5-706

Width W, depth D, and height H can be scalars or vectors of the same length. For a combination of
scalar and vector inputs, multicuboid replicates the scalar arguments into vectors of the same
length.

Note All cells in the geometry either must have the same height, or must have both the same width
and the same depth.

Example: gm = multicuboid([1 2 3],[2.5 4 5.5],5)

H — Cell height
positive real number | vector of positive real numbers

Cell height, specified as a positive real number or a vector of positive real numbers. If H is a vector,
then H(i) specifies the height of the ith cell.

Width W, depth D, and height H can be scalars or vectors of the same length. For a combination of
scalar and vector inputs, multicuboid replicates the scalar arguments into vectors of the same
length.

Note All cells in the geometry either must have the same height, or must have both the same width
and the same depth.

Example: gm = multicuboid(4,5,[1 2 3],'ZOffset',[0 1 3])

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: gm = multicuboid([1 2],[1 2],[3 3],'Void',[true,false])

ZOffset — Z offset for each cell
vector of 0 values (default) | vector of real numbers

Z offset for each cell, specified as a vector of real numbers. ZOffset(i) specifies the Z offset of the
ith cell. This vector must have the same length as the width vector W, depth vector D, or height
vector H.

Note The ZOffset argument is valid only if the width and depth are constant for all cells in the
geometry.

Example: gm = multicuboid(20,30,[10 10],'ZOffset',[0 10])
Data Types: double

Void — Empty cell indicator
vector of logical false values (default) | vector of logical true or false values

Empty cell indicator, specified as a vector of logical true or false values. This vector must have the
same length as the width vector W, depth vector D, or the height vector H.

 multicuboid

5-707

The value true corresponds to an empty cell. By default, multicuboid assumes that all cells are not
empty.
Example: gm = multicuboid([1 2],[1 2],[3 3],'Void',[true,false])
Data Types: double

Output Arguments
gm — Geometry object
DiscreteGeometry object

Geometry object, returned as a DiscreteGeometry object.

Limitations
• multicuboid lets you create only geometries consisting of stacked or nested cuboids. For nested

cuboids, the height must be the same for all cells in the geometry. For stacked cuboids, the width
and depth must be the same for all cells in the geometry. Use the ZOffset argument to stack the
cells on top of each other without overlapping them.

• multicuboid does not let you create nested cuboids of the same width and depth. The call
multicuboid(w,d,[h1,h2,...]) is not supported.

See Also
multicylinder | multisphere | DiscreteGeometry

Introduced in R2017a

5 Functions

5-708

multicylinder
Create geometry formed by several cylindrical cells

Syntax
gm = multicylinder(R,H)
gm = multicylinder(R,H,Name,Value)

Description
gm = multicylinder(R,H) creates a geometry by combining several cylindrical cells.

When creating each cylinder, multicylinder uses the following coordinate system.

gm = multicylinder(R,H,Name,Value) creates a multi-cylinder geometry using one or more
Name,Value pair arguments.

Examples

Nested Cylinders of Same Height

Create a geometry that consists of three nested cylinders of the same height and include this
geometry in a PDE model.

Create the geometry by using the multicylinder function. The resulting geometry consists of three
cells.

gm = multicylinder([5 10 15],2)

gm =
 DiscreteGeometry with properties:

 multicylinder

5-709

 NumCells: 3
 NumFaces: 9
 NumEdges: 6
 NumVertices: 6
 Vertices: [6x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-710

Stacked Cylinders

Create a geometry that consists of three stacked cylinders and include this geometry in a PDE model.

Create the geometry by using the multicylinder function with the ZOffset argument. The
resulting geometry consists of four cells stacked on top of each other.

gm = multicylinder(10,[1 2 3 4],'ZOffset',[0 1 3 6])

gm =
 DiscreteGeometry with properties:

 NumCells: 4
 NumFaces: 9
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 multicylinder

5-711

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-712

Single Cylinder

Create a geometry that consists of a single cylinder and include this geometry in a PDE model.

Use the multicylinder function to create a single cylinder. The resulting geometry consists of one
cell.

gm = multicylinder(5,10)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 3
 NumEdges: 2
 NumVertices: 2
 Vertices: [2x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 multicylinder

5-713

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on')

5 Functions

5-714

Hollow Cylinder

Create a hollow cylinder and include it as a geometry in a PDE model.

Create a hollow cylinder by using the multicylinder function with the Void argument. The
resulting geometry consists of one cell.

gm = multicylinder([9 10],10,'Void',[true,false])

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 4
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x3 double]

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 multicylinder

5-715

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.5)

5 Functions

5-716

Input Arguments
R — Cell radius
positive real number | vector of positive real numbers

Cell radius, specified as a positive real number or a vector of positive real numbers. If R is a vector,
then R(i) specifies the radius of the ith cell.

Radius R and height H can be scalars or vectors of the same length. For a combination of scalar and
vector inputs, multicylinder replicates the scalar arguments into vectors of the same length.

Note Either radius or height must be the same for all cells in the geometry.

Example: gm = multicylinder([1 2 3],1)

H — Cell height
positive real number | vector of positive real numbers

Cell height, specified as a positive real number or a vector of positive real numbers. If H is a vector,
then H(i) specifies the height of the ith cell.

Radius R and height H can be scalars or vectors of the same length. For a combination of scalar and
vector inputs, multicylinder replicates the scalar arguments into vectors of the same length.

 multicylinder

5-717

Note Either radius or height must be the same for all cells in the geometry.

Example: gm = multicylinder(1,[1 2 3],'Zoffset',[0 1 3])

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: gm = multicylinder([1 2],1,'Void',[true,false])

ZOffset — Z-offset for each cell
vector of 0 values (default) | vector of real numbers

Z-offset for each cell, specified as a vector of real numbers. ZOffset(i) specifies the Z-offset of the
ith cell. This vector must have the same length as the radius vector R or height vector H.

Note The ZOffset argument is valid only if the radius is the same for all cells in the geometry.

Example: gm = multicylinder(20,[10 10],'ZOffset',[0 10])
Data Types: double

Void — Empty cell indicator
vector of logical false values (default) | vector of logical true or false values

Empty cell indicator, specified as a vector of logical true or false values. This vector must have the
same length as the radius vector R or the height vector H.

The value true corresponds to an empty cell. By default, multicylinder assumes that all cells are
not empty.
Example: gm = multicylinder([1 2],1,'Void',[true,false])
Data Types: double

Output Arguments
gm — Geometry object
DiscreteGeometry object

Geometry object, returned as a DiscreteGeometry object.

Tip A cylinder has one cell, three faces, and two edges. Also, since every edge has a start and an end
vertex, a cylinder has vertices. Both edges are circles, their start and end vertices coincide. Thus, a
cylinder has two vertices - one for each edge.

Limitations
• multicylinder lets you create only geometries consisting of stacked or nested cylinders. For

nested cylinders, the height must be the same for all cells in the geometry. For stacked cylinders,

5 Functions

5-718

the radius must be the same for all cells in the geometry. Use the ZOffset argument to stack the
cells on top of each over without overlapping them.

• multicylinder does not let you create nested cylinders of the same radius. The call
multicylinder(r,[h1,h2,...]) is not supported.

See Also
multicuboid | multisphere | DiscreteGeometry

Introduced in R2017a

 multicylinder

5-719

multisphere
Create geometry formed by several spherical cells

Syntax
gm = multisphere(R)
gm = multisphere(R,'Void',eci)

Description
gm = multisphere(R) creates a geometry by combining several spherical cells.

When creating each sphere, multisphere uses the following coordinate system.

gm = multisphere(R,'Void',eci) creates a multi-sphere geometry with empty cells.

Examples

Nested Spheres

Create a geometry that consists of three nested spheres and include this geometry in a PDE model.

Create the geometry by using the multisphere function. The resulting geometry consists of three
cells.

gm = multisphere([5 10 15])

gm =
 DiscreteGeometry with properties:

 NumCells: 3

5 Functions

5-720

 NumFaces: 3
 NumEdges: 0
 NumVertices: 0
 Vertices: []

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on','FaceAlpha',0.2)

 multisphere

5-721

Single Sphere

Create a geometry that consists of a single sphere and include this geometry in a PDE model.

Use the multisphere function to create a single sphere. The resulting geometry consists of one cell.

gm = multisphere(5)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 1
 NumEdges: 0
 NumVertices: 0
 Vertices: []

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

5 Functions

5-722

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model,'CellLabels','on')

 multisphere

5-723

Hollow Sphere

Create a hollow sphere and include it as a geometry in a PDE model.

Create a hollow sphere by using the multisphere function with the Void argument. The resulting
geometry consists of one cell.

gm = multisphere([9 10],'Void',[true,false])

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 2
 NumEdges: 0
 NumVertices: 0
 Vertices: []

Create a PDE model.

model = createpde

model =
 PDEModel with properties:

5 Functions

5-724

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.

model.Geometry = gm

model =
 PDEModel with properties:

 PDESystemSize: 1
 IsTimeDependent: 0
 Geometry: [1x1 DiscreteGeometry]
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Input Arguments
R — Cell radius
positive real number | vector of positive real numbers

Cell radius, specified as a positive real number or a vector of positive real numbers. If R is a vector,
then R(i) specifies the radius of the ith cell.
Example: gm = multisphere([1,2,3])

eci — Empty cell indicator
vector of logical true or false values

Empty cell indicator, specified as a vector of logical true and false values. This vector must have
the same length as the radius vector R.

The value true corresponds to an empty cell. By default, multisphere assumes that all cells are not
empty.
Example: gm = multisphere([1,2,3],'Void',[false,true,false])

Output Arguments
gm — Geometry object
DiscreteGeometry object

Geometry object, returned as a DiscreteGeometry object.

 multisphere

5-725

See Also
multicuboid | multicylinder | DiscreteGeometry

Topics
“Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux” on page 3-243

Introduced in R2017a

5 Functions

5-726

nearestEdge
Find edges nearest to specified point

Syntax
EdgeID = nearestEdge(g,Coords)

Description
EdgeID = nearestEdge(g,Coords) finds edges nearest to the point with the coordinates Coords.

Examples

Edges of 3-D Geometry Closest to Specified Points

Find edges of a block nearest to the specified points.

Create a block geometry.

gm = multicuboid(3,2,1)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 6
 NumEdges: 12
 NumVertices: 8
 Vertices: [8x3 double]

Plot the geometry with the edge labels. Add the points with the coordinates (0 0 0), (1 0.9 1), and (1.5
-1 0) to the plot.

pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.2)
hold on
scatter3([0 1 1.5],[0 0.9 -1],[0 1 0],'filled','MarkerFaceColor','g')

 nearestEdge

5-727

Find edges closest to the points with the coordinates (0 0 0), (1 0.9 1), and (1.5 -1 0). If several edges
are equally close (within the tolerance) to the point, nearestEdge returns the ID of one of the edges.

edgeIDs = nearestEdge(gm,[0 0 0; 1 0.9 1; 1.5 -1 0])

edgeIDs = 1×3

 1 7 1

Edges of 2-D Geometry Closest to Specified Points

Find edges of the L-shaped membrane nearest to the specified points.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in
the file lshapeg.

model = createpde();
gm = geometryFromEdges(model,@lshapeg)

gm =
 AnalyticGeometry with properties:

 NumCells: 0
 NumFaces: 3

5 Functions

5-728

 NumEdges: 10
 NumVertices: 8
 Vertices: [8x2 double]

Plot the geometry with the edge labels. Add the points with the coordinates (0 0), (0.1 0.2), and (-0.5
0.5) to the plot.

pdegplot(gm,'EdgeLabels','on')
hold on
scatter([0 0.1 -0.5],[0 0.2 0.5],'filled')

Find edges closest to the points with the coordinates (0 0), (0.1 0.2), and (-0.5 0.5). If several edges
are equally close (within the tolerance) to the point, nearestEdge returns the ID of one of the edges.

edgeIDs = nearestEdge(gm,[0 0; 0.1 0.2; -0.5 0.5])

edgeIDs = 1×3

 9 10 10

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

 nearestEdge

5-729

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

Coords — Edge ID
2-element vector | 3-element vector

Coordinates of the point, specified as a vector of 2 or 3 elements for a 2-D or 3-D geometry,
respectively.
Data Types: double

Output Arguments
EdgeID — IDs of edges nearest to specified point
positive number | vector of positive numbers

IDs of edges nearest to the specified point, returned as a positive number or a vector of positive
numbers.

See Also
cellEdges | cellFaces | faceEdges | facesAttachedToEdges | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

5 Functions

5-730

nearestFace
Find faces nearest to specified point

Syntax
FaceID = nearestFace(g,Coords)

Description
FaceID = nearestFace(g,Coords) finds faces nearest to the point with the coordinates Coords.

Examples

Faces of 3-D Geometry Closest to Specified Points

Find faces of a block nearest to the specified points.

Create a block geometry.

gm = multicuboid(3,2,1)

gm =
 DiscreteGeometry with properties:

 NumCells: 1
 NumFaces: 6
 NumEdges: 12
 NumVertices: 8
 Vertices: [8x3 double]

Plot the geometry with the face labels. Add the points with the coordinates (0 0 0.1), (2 0.9 1), and
(1.5 -1 1) to the plot.

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.2)
hold on
scatter3([0 2 1.5],[0 0.9 -1],[0.1 1 1],'filled','MarkerFaceColor','g')

 nearestFace

5-731

Find faces closest to the points with the coordinates (0 0 0.1), (2 0.9 1), and (1.5 -1 1). If several faces
are equally close (within the tolerance) to the point, nearestFace returns the ID of one of the faces.

faceIDs = nearestFace(gm,[0 0 0; 2 0.9 1; 1.5 -1 1])

faceIDs = 1×3

 1 3 2

Faces of 2-D Geometry Closest to Specified Points

Find faces of the L-shaped membrane nearest to the specified points.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in
the file lshapeg.

model = createpde();
gm = geometryFromEdges(model,@lshapeg)

gm =
 AnalyticGeometry with properties:

 NumCells: 0
 NumFaces: 3

5 Functions

5-732

 NumEdges: 10
 NumVertices: 8
 Vertices: [8x2 double]

Plot the geometry with the face labels. Add the points with the coordinates (0 0), (1.1 -0.2), and (-0.5
0.5) to the plot.

pdegplot(gm,'FaceLabels','on')
hold on
scatter([0 1.1 -0.5],[0 -0.2 0.5],'filled')

Find faces closest to the points with the coordinates (0 0), (1.1 -0.2), and (-0.5 0.5). If several faces
are equally close (within the tolerance) to the point, nearestFace returns the ID of one of the faces.

faceIDs = nearestFace(gm,[0 0; 1.1 -0.2; -0.5 0.5])

faceIDs = 1×3

 2 3 1

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

 nearestFace

5-733

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

Coords — Edge ID
2-element vector | 3-element vector

Coordinates of the point, specified as a vector of 2 or 3 elements for a 2-D or 3-D geometry,
respectively.
Data Types: double

Output Arguments
FaceID — IDs of faces nearest to specified point
positive number | vector of positive numbers

IDs of faces nearest to the specified point, returned as a positive number or a vector of positive
numbers.

See Also
cellEdges | cellFaces | faceEdges | facesAttachedToEdges | nearestEdge | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

5 Functions

5-734

parabolic
(Not recommended) Solve parabolic PDE problem

Note parabolic is not recommended. Use solvepde instead.

Syntax
u = parabolic(u0,tlist,model,c,a,f,d)
u = parabolic(u0,tlist,b,p,e,t,c,a,f,d)
u = parabolic(u0,tlist,Kc,Fc,B,ud,M)
u = parabolic(___ ,rtol)
u = parabolic(___ ,rtol,atol)
u = parabolic(___ ,'Stats','off')

Description
Parabolic equation solver

Solves PDE problems of the type

d∂u∂t − ∇ ⋅ c∇u + au = f

on a 2-D or 3-D region Ω, or the system PDE problem

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

The variables c, a, f, and d can depend on position, time, and the solution u and its gradient.

u = parabolic(u0,tlist,model,c,a,f,d) produces the solution to the FEM formulation of the
scalar PDE problem

d∂u∂t − ∇ ⋅ c∇u + au = f

on a 2-D or 3-D region Ω, or the system PDE problem

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

with geometry, mesh, and boundary conditions specified in model, and with initial value u0. The
variables c, a, f, and d in the equation correspond to the function coefficients c, a, f, and d
respectively.

u = parabolic(u0,tlist,b,p,e,t,c,a,f,d) solves the problem using boundary conditions b
and finite element mesh specified in [p,e,t].

u = parabolic(u0,tlist,Kc,Fc,B,ud,M) solves the problem based on finite element matrices
that encode the equation, mesh, and boundary conditions.

 parabolic

5-735

u = parabolic(___ ,rtol) and u = parabolic(___ ,rtol,atol), for any of the previous
input arguments, modify the solution process by passing to the ODE solver a relative tolerance rtol,
and optionally an absolute tolerance atol.

u = parabolic(___ ,'Stats','off'), for any of the previous input arguments, turns off the
display of internal ODE solver statistics during the solution process.

Examples

Parabolic Equation

Solve the parabolic equation

∂u
∂t = Δu

on the square domain specified by squareg.

Create a PDE model and import the geometry.

model = createpde;
geometryFromEdges(model,@squareg);
pdegplot(model,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal

5 Functions

5-736

Set Dirichlet boundary conditions u = 0 on all edges.

applyBoundaryCondition(model,'dirichlet',...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Generate a relatively fine mesh.

generateMesh(model,'Hmax',0.02,'GeometricOrder','linear');

Set the initial condition to have u(0) = 1 on the disk x2 + y2 ≤ 0 . 42 and u(0) = 0 elsewhere.

p = model.Mesh.Nodes;
u0 = zeros(size(p,2),1);
ix = find(sqrt(p(1,:).^2 + p(2,:).^2) <= 0.4);
u0(ix) = ones(size(ix));

Set solution times to be from 0 to 0.1 with step size 0.005.

tlist = linspace(0,0.1,21);

Create the PDE coefficients.

c = 1;
a = 0;
f = 0;
d = 1;

Solve the PDE.

u = parabolic(u0,tlist,model,c,a,f,d);

133 successful steps
0 failed attempts
268 function evaluations
1 partial derivatives
26 LU decompositions
267 solutions of linear systems

Plot the initial condition, the solution at the final time, and two intermediate solutions.

figure
subplot(2,2,1)
pdeplot(model,'XYData',u(:,1));
axis equal
title('t = 0')
subplot(2,2,2)
pdeplot(model,'XYData',u(:,5))
axis equal
title('t = 0.02')
subplot(2,2,3)
pdeplot(model,'XYData',u(:,11))
axis equal
title('t = 0.05')
subplot(2,2,4)
pdeplot(model,'XYData',u(:,end))
axis equal
title('t = 0.1')

 parabolic

5-737

Parabolic Equation Using Legacy Syntax

Solve the parabolic equation

∂u
∂t = Δu

on the square domain specified by squareg, using a geometry function to specify the geometry, a
boundary function to specify the boundary conditions, and using initmesh to create the finite
element mesh.

Specify the geometry as @squareg and plot the geometry.

g = @squareg;
pdegplot(g,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal

5 Functions

5-738

Set Dirichlet boundary conditions u = 0 on all edges. The squareb1 function specifies these
boundary conditions.

b = @squareb1;

Generate a relatively fine mesh.

[p,e,t] = initmesh(g,'Hmax',0.02);

Set the initial condition to have u(0) = 1 on the disk x2 + y2 ≤ 0 . 42 and u(0) = 0 elsewhere.

u0 = zeros(size(p,2),1);
ix = find(sqrt(p(1,:).^2 + p(2,:).^2) <= 0.4);
u0(ix) = ones(size(ix));

Set solution times to be from 0 to 0.1 with step size 0.005.

tlist = linspace(0,0.1,21);

Create the PDE coefficients.

c = 1;
a = 0;
f = 0;
d = 1;

Solve the PDE.

 parabolic

5-739

u = parabolic(u0,tlist,b,p,e,t,c,a,f,d);

147 successful steps
0 failed attempts
296 function evaluations
1 partial derivatives
28 LU decompositions
295 solutions of linear systems

Plot the initial condition, the solution at the final time, and two intermediate solutions.

figure
subplot(2,2,1)
pdeplot(p,e,t,'XYData',u(:,1));
axis equal
title('t = 0')
subplot(2,2,2)
pdeplot(p,e,t,'XYData',u(:,5))
axis equal
title('t = 0.02')
subplot(2,2,3)
pdeplot(p,e,t,'XYData',u(:,11))
axis equal
title('t = 0.05')
subplot(2,2,4)
pdeplot(p,e,t,'XYData',u(:,end))
axis equal
title('t = 0.1')

5 Functions

5-740

Parabolic Problem Using Matrix Coefficients

Create finite element matrices that encode a parabolic problem, and solve the problem.

The problem is the evolution of temperature in a conducting block. The block is a rectangular slab.

model = createpde(1);
importGeometry(model,'Block.stl');
handl = pdegplot(model,'FaceLabels','on');
view(-42,24)
handl(1).FaceAlpha = 0.5;

Faces 1, 4, and 6 of the slab are kept at 0 degrees. The other faces are insulated. Include the
boundary condition on faces 1, 4, and 6. You do not need to include the boundary condition on the
other faces because the default condition is insulated.

applyBoundaryCondition(model,'dirichlet','Face',[1,4,6],'u',0);

The initial temperature distribution in the block has the form

u0 = 10−3xyz .

generateMesh(model);
p = model.Mesh.Nodes;

 parabolic

5-741

x = p(1,:);
y = p(2,:);
z = p(3,:);
u0 = x.*y.*z*1e-3;

The parabolic equation in toolbox syntax is

d∂u∂t − ∇ ⋅ (c∇u) + au = f .

Suppose the thermal conductivity of the block leads to a c coefficient value of 1. The values of the
other coefficients in this problem are d = 1, a = 0, and f = 0.

d = 1;
c = 1;
a = 0;
f = 0;

Create the finite element matrices that encode the problem.

[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);

Solve the problem at time steps of 1 for times ranging from 0 to 40.

tlist = linspace(0,40,41);
u = parabolic(u0,tlist,Kc,Fc,B,ud,M);

35 successful steps
0 failed attempts
72 function evaluations
1 partial derivatives
11 LU decompositions
71 solutions of linear systems

Plot the solution on the outside of the block at times 0, 10, 25, and 40. Ensure that the coloring is the
same for all plots.

umin = min(min(u));
umax = max(max(u));
subplot(2,2,1)
pdeplot3D(model,'ColorMapData',u(:,1))
colorbar off
view(125,22)
title 't = 0'
caxis([umin umax]);
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',u(:,11))
colorbar off
view(125,22)
title 't = 10'
caxis([umin umax]);
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',u(:,26))
colorbar off
view(125,22)
title 't = 25'
caxis([umin umax]);

5 Functions

5-742

subplot(2,2,4)
pdeplot3D(model,'ColorMapData',u(:,41))
colorbar off
view(125,22)
title 't = 40'
caxis([umin umax]);

Input Arguments
u0 — Initial condition
vector | character vector | character array | string scalar | string vector

Initial condition, specified as a scalar, vector of nodal values, character vector, character array, string
scalar, or string vector. The initial condition is the value of the solution u at the initial time, specified
as a column vector of values at the nodes. The nodes are either p in the [p,e,t] data structure, or
are model.Mesh.Nodes.

• If the initial condition is a constant scalar v, specify u0 as v.
• If there are Np nodes in the mesh, and N equations in the system of PDEs, specify u0 as a column

vector of Np*N elements, where the first Np elements correspond to the first component of the
solution u, the second Np elements correspond to the second component of the solution u, etc.

• Give a text expression of a function, such as 'x.^2 + 5*cos(x.*y)'. If you have a system of
N > 1 equations, give a text array such as

 parabolic

5-743

char('x.^2 + 5*cos(x.*y)',...
 'tanh(x.*y)./(1+z.^2)')

Example: x.^2+5*cos(y.*x)
Data Types: double | char | string
Complex Number Support: Yes

tlist — Solution times
real vector

Solution times, specified as a real vector. The solver returns the solution to the PDE at the solution
times.
Example: 0:0.2:4
Data Types: double

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

d∂u∂t − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

d∂u∂t − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

Example: 2*eye(3)

5 Functions

5-744

Data Types: double | char | string | function_handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

d∂u∂t − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string | function_handle
Complex Number Support: Yes

d — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. d represents the d coefficient in the scalar PDE

d∂u∂t − ∇ ⋅ c∇u + au = f

or in the system of PDEs

d∂u∂t − ∇ ⋅ c⊗ ∇u + au = f

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler
app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

 parabolic

5-745

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Kc — Stiffness matrix
sparse matrix | full matrix

Stiffness matrix, specified as a sparse matrix or as a full matrix. See “Elliptic Equations” on page 5-
93. Typically, Kc is the output of assempde.

Fc — Load vector
vector

Load vector, specified as a vector. See “Elliptic Equations” on page 5-93. Typically, Fc is the output of
assempde.

B — Dirichlet nullspace
sparse matrix

Dirichlet nullspace, returned as a sparse matrix. See “Algorithms” on page 5-93. Typically, B is the
output of assempde.

ud — Dirichlet vector
vector

Dirichlet vector, returned as a vector. See “Algorithms” on page 5-93. Typically, ud is the output of
assempde.

5 Functions

5-746

M — Mass matrix
sparse matrix | full matrix

Mass matrix. specified as a sparse matrix or a full matrix. See “Elliptic Equations” on page 5-93.

To obtain the input matrices for pdeeig, hyperbolic or parabolic, run both assema and
assempde:

[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);

Note Create the M matrix using assema with d, not a, as the argument before f.

Data Types: double
Complex Number Support: Yes

rtol — Relative tolerance for ODE solver
1e-3 (default) | positive real

Relative tolerance for ODE solver, specified as a positive real.
Example: 2e-4
Data Types: double

atol — Absolute tolerance for ODE solver
1e-6 (default) | positive real

Absolute tolerance for ODE solver, specified as a positive real.
Example: 2e-7
Data Types: double

Output Arguments
u — PDE solution
matrix

PDE solution, returned as a matrix. The matrix is Np*N-by-T, where Np is the number of nodes in the
mesh, N is the number of equations in the PDE (N = 1 for a scalar PDE), and T is the number of
solution times, meaning the length of tlist. The solution matrix has the following structure.

• The first Np elements of each column in u represent the solution of equation 1, then next Np
elements represent the solution of equation 2, etc. The solution u is the value at the corresponding
node in the mesh.

• Column i of u represents the solution at time tlist(i).

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.

To plot the solution, use pdeplot for 2-D geometry, or see “3-D Solution and Gradient Plots with
MATLAB® Functions” on page 3-317.

 parabolic

5-747

Algorithms
Reducing Parabolic Equations to Elliptic Equations

parabolic internally calls assema, assemb, and assempde to create finite element matrices
corresponding to the problem. It calls ode15s to solve the resulting system of ordinary differential
equations.

Partial Differential Equation Toolbox solves equations of the form

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

When the m coefficient is 0, but d is not, the documentation refers to the equation as parabolic,
whether or not it is mathematically in parabolic form.

A parabolic problem is to solve the equation

d∂u∂t − ∇ ⋅ c∇u + au = f in Ω

with the initial condition

u(x,0) = u0(x) for x∊Ω

where x represents a 2-D or 3-D point and there are boundary conditions of the same kind as for the
elliptic equation on ∂Ω.

The heat equation reads

ρC∂u∂t − ∇ · k∇u + h u− u∞ = f

in the presence of distributed heat loss to the surroundings. ρ is the density, C is the thermal capacity,
k is the thermal conductivity, h is the film coefficient, u∞ is the ambient temperature, and f is the heat
source.

For time-independent coefficients, the steady-state solution of the equation is the solution to the
standard elliptic equation

–∇ · (c∇u) + au = f.

Assuming a mesh on Ω and t ≥ 0, expand the solution to the PDE (as a function of x) in the Finite
Element Method basis:

u(x, t) = ∑
i

Ui(t)ϕi(x)

Plugging the expansion into the PDE, multiplying with a test function ϕj, integrating over Ω, and
applying Green's formula and the boundary conditions yield

∑
i
∫
Ω

dϕ jϕi
dUi t

dt dx + ∑
i
∫
Ω

∇ϕ j ⋅ c∇ϕi + aϕ jϕi dx + ∫
∂Ω

qϕ jϕi ds Ui(t)

= ∫
Ω

fϕ j dx + ∫
∂Ω

gϕ j ds ∀ j

5 Functions

5-748

In matrix notation, we have to solve the linear, large and sparse ODE system

MdU
dt + KU = F

This method is traditionally called method of lines semidiscretization.

Solving the ODE with the initial value

Ui(0) = u0(xi)

yields the solution to the PDE at each node xi and time t. Note that K and F are the stiffness matrix
and the right-hand side of the elliptic problem

–∇ · (c∇u) + au = f in Ω

with the original boundary conditions, while M is just the mass matrix of the problem

–∇ · (0∇u) + du = 0 in Ω.

When the Dirichlet conditions are time dependent, F contains contributions from time derivatives of h
and r. These derivatives are evaluated by finite differences of the user-specified data.

The ODE system is ill conditioned. Explicit time integrators are forced by stability requirements to
very short time steps while implicit solvers can be expensive since they solve an elliptic problem at
every time step. The numerical integration of the ODE system is performed by the MATLAB ODE
Suite functions, which are efficient for this class of problems. The time step is controlled to satisfy a
tolerance on the error, and factorizations of coefficient matrices are performed only when necessary.
When coefficients are time dependent, the necessity of reevaluating and refactorizing the matrices
each time step may still make the solution time consuming, although parabolic reevaluates only
that which varies with time. In certain cases a time-dependent Dirichlet matrix h(t) may cause the
error control to fail, even if the problem is mathematically sound and the solution u(t) is smooth. This
can happen because the ODE integrator looks only at the reduced solution v with u = Bv + ud. As h
changes, the pivoting scheme employed for numerical stability may change the elimination order
from one step to the next. This means that B, v, and ud all change discontinuously, although u itself
does not.

See Also
solvepde

Introduced before R2006a

 parabolic

5-749

pdearcl
Interpolation between parametric representation and arc length

Syntax
pp = pdearcl(p,xy,s,s0,s1)

Description
pp = pdearcl(p,xy,s,s0,s1) returns parameter values for a parametrized curve corresponding
to a given set of arc length values.

p is a monotone row vector of parameter values and xy is a matrix with two rows giving the
corresponding points on the curve.

The first point of the curve is given the arc length value s0 and the last point the value s1.

On return, pp contains parameter values corresponding to the arc length values specified in s.

The arc length values s, s0, and s1 can be an affine transformation of the arc length.

Introduced before R2006a

5 Functions

5-750

pdecgrad
(Not recommended) Flux of PDE solution

Note pdecgrad is not recommended. Use evaluateCGradient instead.

Syntax
[cgxu,cgyu] = pdecgrad(p,t,u,c)
[cgxu,cgyu] = pdecgrad(p,t,u,c,time)
[cgxu,cgyu] = pdecgrad(___ ,FaceID)

Description
[cgxu,cgyu] = pdecgrad(p,t,u,c) computes the flux of the solution c⊗ ∇u evaluated at the
center of each mesh triangle.

The gradient is the same everywhere in the triangle interior because pdecgrad uses only linear basis
functions. However, the flux can vary inside a triangle because the coefficient c can vary.

[cgxu,cgyu] = pdecgrad(p,t,u,c,time) uses time for parabolic and hyperbolic problems if c
is time-dependent.

[cgxu,cgyu] = pdecgrad(___ ,FaceID) uses the arguments from the previous syntaxes and
restricts the computation to the faces listed in FaceID.

Examples

Flux of PDE solution

Create a [p,e,t] mesh on the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

Solve the equation using the Dirichlet boundary condition u = 0 on ∂Ω.

c = 1;
a = 0;
f = 1;
u = assempde('lshapeb',p,e,t,c,a,f);

Compute the flux of the solution and plot the results.

[cgradx,cgrady] = pdecgrad(p,t,c,u);
pdeplot(p,e,t,'XYData',u,'FlowData',[cgradx;cgrady])

 pdecgrad

5-751

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

u — Data at nodes
column vector

Data at nodes, specified as a column vector.

For a PDE system of N equations and a mesh with Np node points, the first Np values of u describe
the first component, the following Np values of u describe the second component, and so on.

5 Functions

5-752

Data Types: double

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle
Complex Number Support: Yes

time — Time for parabolic and hyperbolic problems
nonnegative number

Time for parabolic and hyperbolic problems with a time-dependent coefficient c, specified as a
nonnegative number.
Data Types: double

FaceID — Face IDs
vector of integers

Face IDs, specified as a vector of integers.
Data Types: double

Output Arguments
cgxu — x-component of flux of u evaluated at the center of each triangle
row vector | matrix

x-component of the flux of u evaluated at the center of each triangle, returned as a row vector for a
scalar PDE or a matrix for a system of PDEs. The number of elements in a row vector or columns in a
matrix corresponds to the number Nt of mesh triangles. For a PDE system of N equations, each row i

from 1 to N contains ∑
j = 1

N
ci j11

∂u j
∂x + ci j12

∂u j
∂y .

cgyu — y-component of flux of u evaluated at the center of each triangle
row vector | matrix

y-component of the flux of u evaluated at the center of each triangle, returned as a row vector for a
scalar PDE or a matrix for a system of PDEs. The number of elements in a row vector or columns in a
matrix corresponds to the number Nt of mesh triangles. For a PDE system of N equations, each row i

from 1 to N contains ∑
j = 1

N
ci j21

∂u j
∂x + ci j22

∂u j
∂y .

 pdecgrad

5-753

See Also
evaluateCGradient | pdegrad

Introduced before R2006a

5 Functions

5-754

pdecirc
Package: pde

Draw circle in PDE Modeler app

Syntax
pdecirc(xc,yc,R)
pdecirc(xc,yc,R,label)

Description
pdecirc(xc,yc,R) draws a circle with the center at (xc,yc) and the radius R. The pdecirc
command opens the PDE Modeler app with the specified circle already drawn in it. If the app is
already open, pdecirc adds the specified circle to the app window without deleting any existing
shapes.

pdecirc updates the state of the geometry description matrix inside the PDE Modeler app to include
the circle. You can export the geometry description matrix from the PDE Modeler app to the MATLAB
Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For details
on the format of the geometry description matrix, see decsg.

pdecirc(xc,yc,R,label) assigns a name to the circle. Otherwise, pdecirc uses a default name,
such as C1, C2, and so on.

Examples

Draw Circle in PDE Modeler App

Open the PDE Modeler app window containing a circle with the center at (0,0) and the radius 1.

pdecirc(0,0,1)

Call the pdecirc command again to draw a circle with the center at (0,0.25) and the radius 0.5. The
pdecirc command adds the second circle to the app window without deleting the first.

pdecirc(0,0.25,0.5)

 pdecirc

5-755

Assign Name to Circle in PDE Modeler App

Open the PDE Modeler app window containing a circle with the center at (0,0) and the radius 1.
Assign the name circle1 to this circle.

pdecirc(0,0,1,'circle1')

5 Functions

5-756

Input Arguments
xc — x-coordinate of center
real number

x-coordinate of the center of the circle, specified as a real number.
Data Types: double

 pdecirc

5-757

yc — y-coordinate of center
real number

y-coordinate of the center of the circle, specified as a real number.
Data Types: double

R — Radius
positive number

Radius of the circle, specified as a positive number.
Data Types: double

label — Name
character vector | string scalar

Name of the circle, specified as a character vector or string scalar.
Data Types: char | string

Tips
pdecirc opens the PDE Modeler app and draws a circle. If, instead, you want to draw circles in a
MATLAB figure window, choose one of these approaches:

• Use the plot command, for example:

t = linspace(0,2*pi);
plot(cos(t),sin(t))

• Use the rectangle function with the Curvature name-value pair set to [1 1].
• Use the Image Processing Toolbox™ viscircles function.

See Also
pdeellip | pdepoly | pderect | PDE Modeler

Introduced before R2006a

5 Functions

5-758

pdecont
Contour plot of PDE node or triangle data

Note This page describes the legacy workflow. Use it when you work with legacy code and do not
plan to convert it to use the recommended approach. Otherwise, use pdeplot.

Syntax
pdecont(p,t,u)
pdecont(p,t,u,n)
pdecont(p,t,u,v)
h = pdecont(___)

Description
pdecont(p,t,u) creates a contour plot of node data or triangle data. By default, pdecont uses 10
levels for a contour plot. The p and t arguments specify the geometry of the PDE problem.

If u is a column vector, pdecont treats it as a node data. If u is a row vector, pdesurf treats it as a
triangle data.

pdecont(p,t,u,n) plots n levels.

pdecont(p,t,u,v) plots levels at the solution heights specified by v.

h = pdecont(___) uses any of the previous syntaxes and returns handles to the drawn axes
objects.

Examples

Contour Plot of PDE Solution

Plot contours of the solution to the equation −Δu = 1 on the L-shaped membrane using the pdecont
function.

First, create and refine a [p,e,t] mesh on the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');
[p,e,t] = refinemesh('lshapeg',p,e,t);

Solve the equation using the Dirichlet boundary conditions u = 0 on ∂Ω.

u = assempde('lshapeb',p,e,t,1,0,1);

Plot the solution using the pdesurf function.

pdesurf(p,t,u)

 pdecont

5-759

Plot contours of the solution using the pdecont function. By default, there are 10 levels.

pdecont(p,t,u)

5 Functions

5-760

Now plot the contours using three levels.

pdecont(p,t,u,3)

 pdecont

5-761

Plot the contours of the solution at the heights 0, 0.05, 0.1, and 0.14.

pdecont(p,t,u,[0 0.05 0.1 0.14])

5 Functions

5-762

Input Arguments
p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

u — PDE solution
vector

PDE solution, specified as a vector.

The pdesurf function treats a column vector as node data and uses continuous style and
interpolated shading. The function treats a row vector as triangle data and uses discontinuous style
and flat shading.

 pdecont

5-763

Data Types: double

n — Number of levels
positive integer

Number of levels, specified as a positive integer.
Data Types: double

v — Levels to plot
vector of heights

Levels to plot, specified as a vector of heights.
Data Types: double

Output Arguments
h — Handles to graphics objects
vector

Handles to graphics objects, returned as a vector.

Tips
• For more control over a contour plot, use the pdeplot function.

See Also
pdemesh | pdeplot | pdesurf

Introduced before R2006a

5 Functions

5-764

pdeeig
(Not recommended) Solve eigenvalue PDE problem

Note pdeeig is not recommended. Use solvepdeeig instead.

Syntax
[v,l] = pdeeig(model,c,a,d,r)
[v,l] = pdeeig(b,p,e,t,c,a,d,r)
[v,l] = pdeeig(Kc,B,M,r)

Description
[v,l] = pdeeig(model,c,a,d,r) produces the solution to the FEM formulation of the scalar
PDE eigenvalue problem

−∇ ⋅ (c∇u) + au = λdu on Ω

or the system PDE eigenvalue problem

−∇ ⋅ (c⊗ ∇u) + au = λdu on Ω

with geometry, boundary conditions, and mesh specified in model, a PDEModel object.

The eigenvalue PDE problem is a homogeneous problem, i.e., only boundary conditions where g = 0
and r = 0 can be used. The nonhomogeneous part is removed automatically.

[v,l] = pdeeig(b,p,e,t,c,a,d,r) solves for boundary conditions described in b, and the finite
element mesh in [p,e,t].

[v,l] = pdeeig(Kc,B,M,r) produces the solution to the generalized sparse matrix eigenvalue
problem

Kc ui = λB´MBui
u = Bui

with Real(λ) in the interval r.

Examples

Eigenvalues and Eigenvectors of L-Shaped Membrane

Compute the eigenvalues that are less than 100, and compute the corresponding eigenmodes for
−∇u = λu on the geometry of the L-shaped membrane.

model = createpde;
geometryFromEdges(model,@lshapeg);
applyBoundaryCondition(model,'edge',1:model.Geometry.NumEdges,'u',0);
generateMesh(model,'GeometricOrder','linear','Hmax',0.02);

 pdeeig

5-765

c = 1;
a = 0;
d = 1;
r = [-Inf 100];
[v,l] = pdeeig(model,c,a,d,r);

 Basis= 10, Time= 0.69, New conv eig= 0
 Basis= 11, Time= 0.73, New conv eig= 0
 Basis= 12, Time= 0.80, New conv eig= 0
 Basis= 13, Time= 0.80, New conv eig= 0
 Basis= 14, Time= 0.83, New conv eig= 0
 Basis= 15, Time= 0.84, New conv eig= 0
 Basis= 16, Time= 0.84, New conv eig= 1
 Basis= 17, Time= 0.86, New conv eig= 4
 Basis= 18, Time= 0.86, New conv eig= 4
 Basis= 19, Time= 0.88, New conv eig= 4
 Basis= 20, Time= 0.88, New conv eig= 4
 Basis= 21, Time= 0.91, New conv eig= 4
 Basis= 22, Time= 0.97, New conv eig= 4
 Basis= 23, Time= 1.05, New conv eig= 4
 Basis= 24, Time= 1.05, New conv eig= 4
 Basis= 25, Time= 1.06, New conv eig= 5
 Basis= 26, Time= 1.06, New conv eig= 5
 Basis= 27, Time= 1.08, New conv eig= 5
 Basis= 28, Time= 1.08, New conv eig= 6
 Basis= 29, Time= 1.09, New conv eig= 7
 Basis= 30, Time= 1.09, New conv eig= 7
 Basis= 31, Time= 1.11, New conv eig= 7
 Basis= 32, Time= 1.11, New conv eig= 8
 Basis= 33, Time= 1.25, New conv eig= 8
 Basis= 34, Time= 1.31, New conv eig= 8
 Basis= 35, Time= 1.33, New conv eig= 9
 Basis= 36, Time= 1.34, New conv eig= 9
 Basis= 37, Time= 1.34, New conv eig= 9
 Basis= 38, Time= 1.36, New conv eig= 9
 Basis= 39, Time= 1.44, New conv eig= 9
 Basis= 40, Time= 1.44, New conv eig= 9
 Basis= 41, Time= 1.44, New conv eig= 9
 Basis= 42, Time= 1.45, New conv eig= 11
 Basis= 43, Time= 1.45, New conv eig= 11
 Basis= 44, Time= 1.47, New conv eig= 9
 Basis= 45, Time= 1.62, New conv eig= 12
 Basis= 46, Time= 1.73, New conv eig= 14
 Basis= 47, Time= 1.73, New conv eig= 14
 Basis= 48, Time= 1.78, New conv eig= 15
 Basis= 49, Time= 1.81, New conv eig= 17
 Basis= 50, Time= 1.91, New conv eig= 17
 Basis= 51, Time= 2.02, New conv eig= 18
 Basis= 52, Time= 2.05, New conv eig= 19
 Basis= 53, Time= 2.05, New conv eig= 19
 Basis= 54, Time= 2.19, New conv eig= 20
 Basis= 55, Time= 2.25, New conv eig= 21
 Basis= 56, Time= 2.31, New conv eig= 24
 Basis= 57, Time= 2.42, New conv eig= 27
 Basis= 58, Time= 2.50, New conv eig= 28
End of sweep: Basis= 58, Time= 2.52, New conv eig= 28
 Basis= 38, Time= 2.80, New conv eig= 0
 Basis= 39, Time= 2.86, New conv eig= 0

5 Functions

5-766

 Basis= 40, Time= 2.88, New conv eig= 0
End of sweep: Basis= 40, Time= 2.88, New conv eig= 0

l(1) % first eigenvalue

ans = 9.6506

Display the first eigenmode, and compare it to the built-in membrane plot.

pdeplot(model,'XYData',v(:,1),'ZData',v(:,1))

figure
membrane(1,20,9,9) % the MATLAB function

 pdeeig

5-767

Compute the sixteenth eigenvalue, and plot the sixteenth eigenmode.

l(16) % sixteenth eigenvalue

ans = 92.5248

figure
pdeplot(model,'XYData',v(:,16),'ZData',v(:,16)) % sixteenth eigenmode

5 Functions

5-768

Eigenvalues and Eigenvectors of the L-Shaped Membrane Using Legacy Syntax

Compute the eigenvalues that are less than 100, and compute the corresponding eigenmodes for
−∇u = λu on the geometry of the L-shaped membrane, using the legacy syntax.

Use the geometry in lshapeg. For more information about this syntax, see “Parametrized Function
for 2-D Geometry Creation” on page 2-10.

g = @lshapeg;
pdegplot(g,'EdgeLabels','on')
axis equal
ylim([-1.1,1.1])

 pdeeig

5-769

Set zero Dirichlet boundary conditions using the lshapeb function.

b = @lshapeb;

Set coefficients c = 1, a = 0, and d = 1. Collect eigenvalues up to 100.

c = 1;
a = 0;
d = 1;
r = [-Inf 100];

Generate a mesh and solve the eigenvalue problem.

[p,e,t] = initmesh(g,'Hmax',0.02);
[v,l] = pdeeig(b,p,e,t,c,a,d,r);

 Basis= 10, Time= 1.44, New conv eig= 0
 Basis= 11, Time= 1.48, New conv eig= 0
 Basis= 12, Time= 1.69, New conv eig= 0
 Basis= 13, Time= 1.92, New conv eig= 0
 Basis= 14, Time= 2.08, New conv eig= 0
 Basis= 15, Time= 2.17, New conv eig= 1
 Basis= 16, Time= 2.25, New conv eig= 1
 Basis= 17, Time= 2.38, New conv eig= 3
 Basis= 18, Time= 2.59, New conv eig= 4
 Basis= 19, Time= 2.70, New conv eig= 4
 Basis= 20, Time= 2.84, New conv eig= 4
 Basis= 21, Time= 3.06, New conv eig= 4

5 Functions

5-770

 Basis= 22, Time= 3.23, New conv eig= 4
 Basis= 23, Time= 3.52, New conv eig= 4
 Basis= 24, Time= 3.72, New conv eig= 5
 Basis= 25, Time= 3.88, New conv eig= 5
 Basis= 26, Time= 4.09, New conv eig= 5
 Basis= 27, Time= 4.19, New conv eig= 6
 Basis= 28, Time= 4.45, New conv eig= 7
 Basis= 29, Time= 4.56, New conv eig= 7
 Basis= 30, Time= 4.72, New conv eig= 7
 Basis= 31, Time= 4.80, New conv eig= 7
 Basis= 32, Time= 4.95, New conv eig= 8
 Basis= 33, Time= 5.08, New conv eig= 8
 Basis= 34, Time= 5.22, New conv eig= 8
 Basis= 35, Time= 5.30, New conv eig= 9
 Basis= 36, Time= 5.47, New conv eig= 9
 Basis= 37, Time= 5.58, New conv eig= 9
 Basis= 38, Time= 5.66, New conv eig= 9
 Basis= 39, Time= 5.83, New conv eig= 9
 Basis= 40, Time= 5.95, New conv eig= 9
 Basis= 41, Time= 6.06, New conv eig= 9
 Basis= 42, Time= 6.08, New conv eig= 10
 Basis= 43, Time= 6.08, New conv eig= 11
 Basis= 44, Time= 6.14, New conv eig= 12
 Basis= 45, Time= 6.30, New conv eig= 12
 Basis= 46, Time= 6.38, New conv eig= 14
 Basis= 47, Time= 6.56, New conv eig= 15
 Basis= 48, Time= 6.78, New conv eig= 16
 Basis= 49, Time= 6.88, New conv eig= 17
 Basis= 50, Time= 7.00, New conv eig= 17
 Basis= 51, Time= 7.14, New conv eig= 18
 Basis= 52, Time= 7.34, New conv eig= 18
 Basis= 53, Time= 7.45, New conv eig= 19
 Basis= 54, Time= 7.88, New conv eig= 19
 Basis= 55, Time= 8.12, New conv eig= 22
 Basis= 56, Time= 8.42, New conv eig= 24
 Basis= 57, Time= 8.66, New conv eig= 28
End of sweep: Basis= 57, Time= 8.67, New conv eig= 28
 Basis= 38, Time= 10.16, New conv eig= 0
 Basis= 39, Time= 10.27, New conv eig= 0
 Basis= 40, Time= 10.36, New conv eig= 0
 Basis= 41, Time= 10.56, New conv eig= 0
 Basis= 42, Time= 10.67, New conv eig= 0
End of sweep: Basis= 42, Time= 10.69, New conv eig= 0

Find the first eigenvalue.

l(1)

ans = 9.6481

Eigenvalues and Eigenvectors Using Finite Element Matrices

Import a simple 3-D geometry and find eigenvalues and eigenvectors from the associated finite
element matrices.

Create a model and import the BracketWithHole.stl geometry.

 pdeeig

5-771

model = createpde();
importGeometry(model,'BracketWithHole.stl');
figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

5 Functions

5-772

Set coefficients c = 1, a = 0, and d = 1. Collect eigenvalues that are less than 100.

c = 1;
a = 0;
d = 1;
r = [-Inf 100];

Generate a mesh for the model.

generateMesh(model);

Create the associated finite element matrices.

[Kc,~,B,~] = assempde(model,c,a,0);
[~,M,~] = assema(model,0,d,0);

Solve the eigenvalue problem.

[v,l] = pdeeig(Kc,B,M,r);

 Basis= 10, Time= 1.08, New conv eig= 0
 Basis= 11, Time= 1.14, New conv eig= 0
 Basis= 12, Time= 1.20, New conv eig= 0
 Basis= 13, Time= 1.20, New conv eig= 1
 Basis= 14, Time= 1.30, New conv eig= 1
 Basis= 15, Time= 1.30, New conv eig= 1
 Basis= 16, Time= 1.31, New conv eig= 2
 Basis= 17, Time= 1.31, New conv eig= 3

 pdeeig

5-773

End of sweep: Basis= 17, Time= 1.44, New conv eig= 3
 Basis= 13, Time= 1.48, New conv eig= 0
End of sweep: Basis= 13, Time= 1.62, New conv eig= 0

Look at the first two eigenvalues.

l([1,2])

ans = 2×1

 0.0000
 42.8670

Plot the solution corresponding to eigenvalue 2.

pdeplot3D(model,'ColorMapData',v(:,2))

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

5 Functions

5-774

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

−∇ ⋅ (c∇u) + au = λdu on Ω

or the system PDE eigenvalue problem

−∇ ⋅ (c⊗ ∇u) + au = λdu on Ω

Example: 'cosh(x+y.^2)'
Data Types: double | char | string | function_handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

−∇ ⋅ (c∇u) + au = λdu on Ω

or the system PDE eigenvalue problem

−∇ ⋅ (c⊗ ∇u) + au = λdu on Ω

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

d — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. d represents the d coefficient in the scalar PDE

−∇ ⋅ (c∇u) + au = λdu on Ω

or the system PDE eigenvalue problem

−∇ ⋅ (c⊗ ∇u) + au = λdu on Ω

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

r — Eigenvalue range
two-element real vector

Eigenvalue range, specified as a two-element real vector. Real parts of eigenvalues λ fall in the range
r(1) ≤ λ ≤ r(2). r(1) can be -Inf. The algorithm returns all eigenvalues in this interval in the l
output, up to a maximum of 99 eigenvalues.

 pdeeig

5-775

Example: [-Inf,100]
Data Types: double

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler
app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Kc — Stiffness matrix
sparse matrix | full matrix

Stiffness matrix, specified as a sparse matrix or as a full matrix. See “Elliptic Equations” on page 5-
93. Typically, Kc is the output of assempde.

5 Functions

5-776

B — Dirichlet nullspace
sparse matrix

Dirichlet nullspace, returned as a sparse matrix. See “Algorithms” on page 5-93. Typically, B is the
output of assempde.

M — Mass matrix
sparse matrix | full matrix

Mass matrix. specified as a sparse matrix or a full matrix. See “Elliptic Equations” on page 5-93.

To obtain the input matrices for pdeeig, hyperbolic or parabolic, run both assema and
assempde:

[Kc,Fc,B,ud] = assempde(model,c,a,f);
[~,M,~] = assema(model,0,d,f);

Note Create the M matrix using assema with d, not a, as the argument before f.

Data Types: double
Complex Number Support: Yes

Output Arguments
v — Eigenvectors
matrix

Eigenvectors, returned as a matrix. Suppose

• Np is the number of mesh nodes
• N is the number of equations
• ev is the number of eigenvalues returned in l

Then v has size Np*N-by-ev. Each column of v corresponds to the eigenvectors of one eigenvalue. In
each column, the first Np elements correspond to the eigenvector of equation 1 evaluated at the mesh
nodes, the next Np elements correspond to equation 2, etc.

Note Eigenvectors are determined only up to multiple by a scalar, including a negative scalar.

l — Eigenvalues
vector

Eigenvalues, returned as a vector. The real parts of l are in the interval r. The real parts of l are
monotone increasing.

Limitations
In the standard case c and d are positive in the entire region. All eigenvalues are positive, and 0 is a
good choice for a lower bound of the interval. The cases where either c or d is zero are discussed
next.

 pdeeig

5-777

• If d = 0 in a subregion, the mass matrix M becomes singular. This does not cause any trouble,
provided that c > 0 everywhere. The pencil (K,M) has a set of infinite eigenvalues.

• If c = 0 in a subregion, the stiffness matrix K becomes singular, and the pencil (K,M) has many
zero eigenvalues. With an interval containing zero, pdeeig goes on for a very long time to find all
the zero eigenvalues. Choose a positive lower bound away from zero but below the smallest
nonzero eigenvalue.

• If there is a region where both c = 0 and d = 0, we get a singular pencil. The whole eigenvalue
problem is undetermined, and any value is equally plausible as an eigenvalue.

Some of the awkward cases are detected by pdeeig. If the shifted matrix is singular, another shift is
attempted. If the matrix with the new shift is still singular a good guess is that the entire pencil (K,M)
is singular.

If you try any problem not belonging to the standard case, you must use your knowledge of the
original physical problem to interpret the results from the computation.

Tips
• The equation coefficients cannot depend on the solution u or its gradient.

Algorithms
Eigenvalue Equations

Partial Differential Equation Toolbox software handles the following basic eigenvalue problem:

−∇ ⋅ c∇u + au = λdu

where λ is an unknown complex number. In solid mechanics, this is a problem associated with wave
phenomena describing, e.g., the natural modes of a vibrating membrane. In quantum mechanics λ is
the energy level of a bound state in the potential well a(x), where x represents a 2-D or 3-D point.

The numerical solution is found by discretizing the equation and solving the resulting algebraic
eigenvalue problem. Let us first consider the discretization. Expand u in the FEM basis, multiply with
a basis element, and integrate on the domain Ω. This yields the generalized eigenvalue equation

KU = λMU

where the mass matrix corresponds to the right side, i.e.,

Mi, j = ∫
Ω

d(x)ϕ j(x)ϕi(x) dx

The matrices K and M are produced by calling assema for the equations

–∇ · (c∇u) + au = 0 and –∇ · (0∇u) + du = 0

In the most common case, when the function d(x) is positive, the mass matrix M is positive definite
symmetric. Likewise, when c(x) is positive and we have Dirichlet boundary conditions, the stiffness
matrix K is also positive definite.

5 Functions

5-778

The generalized eigenvalue problem, KU = λMU, is now solved by the Arnoldi algorithm applied to a
shifted and inverted matrix with restarts until all eigenvalues in the user-specified interval have been
found.

Let us describe how this is done in more detail. You may want to look at the examples “Eigenvalues
and Eigenmodes of L-Shaped Membrane” on page 3-278 or “Eigenvalues and Eigenmodes of Square”
on page 3-290, where actual runs are reported.

First a shift µ is determined close to where we want to find the eigenvalues. When both K and M are
positive definite, it is natural to take µ = 0, and get the smallest eigenvalues; in other cases take any
point in the interval [lb,ub] where eigenvalues are sought. Subtract µM from the eigenvalue equation
and get (K - µM)U = (λ - µ)MU. Then multiply with the inverse of this shifted matrix and get

1
λ− μU = K − μM −1MU

This is a standard eigenvalue problem AU = θU, with the matrix A = (K – µM)-1M and eigenvalues

θi = 1
λi− μ

where i = 1, . . ., n. The largest eigenvalues θi of the transformed matrix A now correspond to the
eigenvalues λi = µ + 1/θi of the original pencil (K,M) closest to the shift µ.

The Arnoldi algorithm computes an orthonormal basis V where the shifted and inverted operator A is
represented by a Hessenberg matrix H,

AVj = VjHj,j + Ej.

(The subscripts mean that Vj and Ej have j columns and Hj,j has j rows and columns. When no
subscripts are used we deal with vectors and matrices of size n.)

Some of the eigenvalues of this Hessenberg matrix Hj,j eventually give good approximations to the
eigenvalues of the original pencil (K,M) when the basis grows in dimension j, and less and less of the
eigenvector is hidden in the residual matrix Ej.

The basis V is built one column vj at a time. The first vector v1 is chosen at random, as n normally
distributed random numbers. In step j, the first j vectors are already computed and form the n ×j
matrix Vj. The next vector vj+1 is computed by first letting A operate on the newest vector vj, and then
making the result orthogonal to all the previous vectors.

This is formulated as h j + 1v j + 1 = Av j− V jh j, where the column vector hj consists of the Gram-
Schmidt coefficients, and hj+1,j is the normalization factor that gives vj+1 unit length. Put the
corresponding relations from previous steps in front of this and get

AV j = V jH j, j + v j + 1h j + 1, je j
T

where Hj,j is a j×j Hessenberg matrix with the vectors hj as columns. The second term on the right-
hand side has nonzeros only in the last column; the earlier normalization factors show up in the
subdiagonal of Hj,j.

The eigensolution of the small Hessenberg matrix H gives approximations to some of the eigenvalues
and eigenvectors of the large matrix operator Aj,j in the following way. Compute eigenvalues θi and
eigenvectors si of Hj,j,

 pdeeig

5-779

H j, jsi = siθi, i = 1, ..., j

Then yi = Vjsi is an approximate eigenvector of A, and its residual is

ri = Ayi− yiθi = AV jsi− V jsiθi = (AV j− V jH j, j)si = v j + 1h j + 1, jsi, j

This residual has to be small in norm for θi to be a good eigenvalue approximation. The norm of the
residual is

ri = h j + 1, js j, i

the product of the last subdiagonal element of the Hessenberg matrix and the last element of its
eigenvector. It seldom happens that hj+1,j gets particularly small, but after sufficiently many steps j
there are always some eigenvectors si with small last elements. The long vector Vj+1 is of unit norm.

It is not necessary to actually compute the eigenvector approximation yi to get the norm of the
residual; we only need to examine the short vectors si, and flag those with tiny last components as
converged. In a typical case n may be 2000, while j seldom exceeds 50, so all computations that
involve only matrices and vectors of size j are much cheaper than those involving vectors of length n.

This eigenvalue computation and test for convergence is done every few steps j, until all
approximations to eigenvalues inside the interval [lb,ub] are flagged as converged. When n is much
larger than j, this is done very often, for smaller n more seldom. When all eigenvalues inside the
interval have converged, or when j has reached a prescribed maximum, the converged eigenvectors,
or more appropriately Schur vectors, are computed and put in the front of the basis V.

After this, the Arnoldi algorithm is restarted with a random vector, if all approximations inside the
interval are flagged as converged, or else with the best unconverged approximate eigenvector yi. In
each step j of this second Arnoldi run, the vector is made orthogonal to all vectors in V including the
converged Schur vectors from the previous runs. This way, the algorithm is applied to a projected
matrix, and picks up a second copy of any double eigenvalue there may be in the interval. If anything
in the interval converges during this second run, a third is attempted and so on, until no more
approximate eigenvalues θi show up inside. Then the algorithm signals convergence. If there are still
unconverged approximate eigenvalues after a prescribed maximum number of steps, the algorithm
signals nonconvergence and reports all solutions it has found.

This is a heuristic strategy that has worked well on both symmetric, nonsymmetric, and even
defective eigenvalue problems. There is a tiny theoretical chance of missing an eigenvalue, if all the
random starting vectors happen to be orthogonal to its eigenvector. Normally, the algorithm restarts
p times, if the maximum multiplicity of an eigenvalue is p. At each restart a new random starting
direction is introduced.

The shifted and inverted matrix A = (K – µM)–1M is needed only to operate on a vector vj in the
Arnoldi algorithm. This is done by computing an LU factorization,

P(K – µM)Q = LU

using the sparse MATLAB command lu (P and Q are permutations that make the triangular factors L
and U sparse and the factorization numerically stable). This factorization needs to be done only once,
in the beginning, then x = Avj is computed as,

x = QU–1L–1PMvj

with one sparse matrix vector multiplication, a permutation, sparse forward- and back-substitutions,
and a final renumbering.

5 Functions

5-780

See Also
solvepdeeig

Introduced before R2006a

 pdeeig

5-781

pdeellip
Package: pde

Draw ellipse in PDE Modeler app

Syntax
pdeellip(xc,yc,a,b,phi)
pdeellip(xc,yc,a,b,phi,label)

Description
pdeellip(xc,yc,a,b,phi) draws an ellipse with the center at (xc,yc), the semiaxes a and b, and
the rotation phi (in radians). The pdeellip command opens the PDE Modeler app with the specified
ellipse drawn in it. If the app is already open, pdeellip adds the specified ellipse to the app window
without deleting any existing shapes.

pdeellip updates the state of the geometry description matrix inside the PDE Modeler app to
include the ellipse. You can export the geometry description matrix from the PDE Modeler app to the
MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For
details on the format of the geometry description matrix, see decsg.

pdeellip(xc,yc,a,b,phi,label) assigns a name to the ellipse. Otherwise, pdeellip uses a
default name, such as E1, E2, and so on.

Examples

Draw Ellipse in PDE Modeler App

Open the PDE Modeler app window containing an ellipse with the center at (0,0) and the semiaxes 1
and 0.3. Rotate the ellipse by π/4 counterclockwise.

pdeellip(0,0,1,0.3,pi/4)

Call the pdeellip command again to draw an ellipse with the same center and semiaxes, but rotate
it by π/2 counterclockwise. The pdeellip command adds the second ellipse to the app window
without deleting the first.

pdeellip(0,0,1,0.3,pi/2)

5 Functions

5-782

Assign Name to Ellipse in PDE Modeler App

Open the PDE Modeler app window containing an ellipse with the center at (0,0) and the semiaxes 1
and 0.3. Rotate the ellipse by π/4 counterclockwise. Assign the name ellipse1 to this ellipse.

pdeellip(0,0,1,0.3,pi/4,'ellipse1')

 pdeellip

5-783

Input Arguments
xc — x-coordinate of center
real number

x-coordinate of the center of the ellipse, specified as a real number.
Data Types: double

5 Functions

5-784

yc — y-coordinate of center
real number

y-coordinate of the center of the ellipse, specified as a real number.
Data Types: double

a — Semiaxis
positive number

Semiaxis of the ellipse, specified as a positive number.
Data Types: double

b — Semiaxis
positive number

Semiaxis of the ellipse, specified as a positive number.
Data Types: double

phi — Rotation
real number

Rotation of the ellipse, specified as a real number. The rotation value is measured in radians.
Data Types: double

label — Name
character vector | string scalar

Name of the ellipse, specified as a character vector or string scalar.
Data Types: char | string

See Also
pdecirc | pdepoly | pderect | PDE Modeler

Introduced before R2006a

 pdeellip

5-785

pdegplot
Plot PDE geometry

Syntax
pdegplot(g)
pdegplot(g,Name,Value)
h = pdegplot(___)

Description
pdegplot(g) plots the geometry of a PDE problem, as described in g.

pdegplot(g,Name,Value) plots with additional options specified by one or more Name,Value pair
arguments.

h = pdegplot(___) returns handles to the graphics, using any of the previous syntaxes.

Examples

Plot 2-D Geometry with and Without Labels

Plot the geometry of a region defined by a few simple shapes.

g = [2 1 1 1 1 1 1 1 1 4 4;
 -1 -0.6 -0.5 -0.4 -0.5 0.4 0.5 0.6 0.5 -1 0.17;
 1 -0.5 -0.4 -0.5 -0.6 0.5 0.6 0.5 0.4 0.17 1;
 0 -0.25 -0.35 -0.25 -0.15 -0.25 -0.35 -0.25 -0.15 0 -0.74;
 0 -0.35 -0.25 -0.15 -0.25 -0.35 -0.25 -0.15 -0.25 -0.74 0;
 0 0 0 0 0 0 0 0 0 1 1;
 1 1 1 1 1 1 1 1 1 0 0;
 0 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5 0 0;
 0 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 0 0;
 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 1;
 0 0 0 0 0 0 0 0 0 0.75 0.75;
 0 0 0 0 0 0 0 0 0 0 0];
 pdegplot(g)

5 Functions

5-786

View the vertex labels, edge labels, and the face label. Add space at the top of the plot to see the top
edge clearly.

pdegplot(g,'VertexLabels','on','EdgeLabels','on','FaceLabels','on')
ylim([-.8,.1])

 pdegplot

5-787

Plot 3-D Geometry

Import a 3-D geometry file. Plot the geometry and turn on face labels. To see the labels on all faces of
the geometry, set the transparency to 0.5.

model = createpde;
importGeometry(model,'BracketWithHole.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-788

Plot Multi-Cellular 3-D Geometry

Import a 3-D geometry file. Plot the geometry and turn on cell labels.

model = createpde;
importGeometry(model,'DampingMounts.stl');
pdegplot(model,'CellLabels','on')

 pdegplot

5-789

Input Arguments
g — Geometry description
PDEModel object | output of decsg | decomposed geometry matrix | name of geometry file | function
handle to geometry file

Geometry description, specified by one of the following:

• PDEModel object
• Output of decsg
• Decomposed geometry matrix (see “Decomposed Geometry Data Structure” on page 2-8)
• Name of geometry file (see “Parametrized Function for 2-D Geometry Creation” on page 2-10)
• Function handle to geometry file (see “Parametrized Function for 2-D Geometry Creation” on page

2-10)

Data Types: double | char | string | function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

5 Functions

5-790

The argument SubdomainLabels is not recommended. Use FaceLabels for both 2-D and 3-D
geometries instead.
Example: pdegplot(g,'FaceLabels','on')

VertexLabels — Vertex labels for 2-D or 3-D geometry
'off' (default) | 'on'

Vertex labels for 2-D or 3-D geometry, specified as 'off' or 'on'.
Example: 'VertexLabels','on'
Data Types: char | string

EdgeLabels — Boundary edge labels for 2-D or 3-D geometry
'off' (default) | 'on'

Boundary edge labels for 2-D or 3-D geometry, specified as 'off' or 'on'.
Example: 'EdgeLabels','on'
Data Types: char | string

FaceLabels — Boundary face labels for 2-D or 3-D geometry
'off' (default) | 'on'

Boundary face labels for 2-D or 3-D geometry, specified as 'off' or 'on'.
Example: 'FaceLabels','on'
Data Types: char | string

CellLabels — Cell labels for 3-D geometry
'off' (default) | 'on'

Cell labels for 3-D geometry, specified as 'off' or 'on'.
Example: 'CellLabels','on'
Data Types: char | string

FaceAlpha — Surface transparency for 3-D geometry
1 (default) | real number from 0 through 1

Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of
'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency.
The value 0 indicates complete transparency.
Example: 'FaceAlpha',0.5
Data Types: double

Output Arguments
h — Handles to graphics objects
vector

Handles to graphics objects, returned as a vector.

 pdegplot

5-791

Alternative Functionality
App

If you create 2-D geometry in the PDE Modeler app, you can view the geometry from Boundary Mode.
To see the edge labels, select Boundary > Show Edge Labels. To see the face labels, select PDE >
Show Subdomain Labels.

See Also
pdeplot | pdeplot3D | pdemesh | decsg | importGeometry | PDE Modeler

Topics
“STL File Import” on page 2-31
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced before R2006a

5 Functions

5-792

pdegrad
(Not recommended) Gradient of PDE solution

Note pdegrad is not recommended. Use evaluateGradient instead.

Syntax
[ux,uy] = pdegrad(p,t,u)
[ux,uy] = pdegrad(p,t,u,FaceID)

Description
[ux,uy] = pdegrad(p,t,u) returns the gradient of u evaluated at the center of each mesh
triangle.

The gradient is the same everywhere in the triangle interior because pdegrad uses only linear basis
functions. The derivatives at the boundaries of the triangles can be discontinuous.

[ux,uy] = pdegrad(p,t,u,FaceID) restricts the computation to the faces listed in FaceID.

Examples

Gradient of PDE Solution

Create a [p,e,t] mesh on the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

Solve the equation using the Dirichlet boundary condition u = 0 on ∂Ω.

c = 1;
a = 0;
f = 1;
u = assempde('lshapeb',p,e,t,c,a,f);

Compute the gradient of the solution and plot the results.

[gradx,grady] = pdegrad(p,t,u);
pdeplot(p,e,t,'XYData',u,'FlowData',[gradx;grady])

 pdegrad

5-793

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

u — Data at nodes
column vector

Data at nodes, specified as a column vector.

For a PDE system of N equations and a mesh with Np node points, the first Np values of u describe
the first component, the following Np values of u describe the second component, and so on.

5 Functions

5-794

Data Types: double

FaceID — Face IDs
vector of integers

Face IDs, specified as a vector of integers.
Data Types: double

Output Arguments
ux — x-component of the gradient of u evaluated at the center of each triangle
row vector | matrix

x-component of the gradient of u evaluated at the center of each triangle, returned as a row vector
for a scalar PDE or a matrix for a system of PDEs. The number of elements in a row vector or columns
in a matrix corresponds to the number Nt of mesh triangles. For a PDE system of N equations, each

row i from 1 to N contains
∂ui
∂x .

uy — y-component of the gradient of u evaluated at the center of each triangle
row vector | matrix

y-component of the gradient of u evaluated at the center of each triangle, returned as a row vector
for a scalar PDE or a matrix for a system of PDEs. The number of elements in a row vector or columns
in a matrix corresponds to the number Nt of mesh triangles. For a PDE system of N equations, each

row i from 1 to N contains
∂ui
∂y .

See Also
evaluateGradient | pdecgrad

Introduced before R2006a

 pdegrad

5-795

pdeInterpolant
Interpolant for nodal data to selected locations

Note pdeInterpolant and [p,e,t] representation of FEMesh data are not recommended. Use
interpolateSolution and evaluateGradient to interpolate a PDE solution and its gradient to
arbitrary points without switching to a [p,e,t] representation.

Description
An interpolant allows you to evaluate a PDE solution at any point within the geometry.

Partial Differential Equation Toolbox solvers return solution values at the nodes, meaning the mesh
points. To evaluate an interpolated solution at other points within the geometry, create a
pdeInterpolant object, and then call the evaluate function.

Creation
Syntax
F = pdeInterpolant(p,t,u)

Description

F = pdeInterpolant(p,t,u) returns an interpolant F based on the data points p, elements t, and
data values at the points, u.

Use meshToPet to obtain the p and t data for interpolation using pdeInterpolant.

Input Arguments

p — Data point locations
matrix with two or three rows

Data point locations, specified as a matrix with two or three rows. Each column of p is a 2-D or 3-D
point. For details, see “Mesh Data” on page 2-153.

For 2-D problems, construct p using the initmesh function, or export from the Mesh menu of the
PDE Modeler app. For 2-D or 3-D geometry using a PDEModel object, obtain p using the meshToPet
function on model.Mesh. For example, [p,e,t] = initmesh(g) or [p,e,t] =
meshToPet(model.Mesh).

t — Triangulation elements
matrix

Triangulation elements, specified as a matrix. For details, see “Mesh Data” on page 2-153.

For 2-D problems, construct t using the initmesh function, or export from the Mesh menu of the
PDE Modeler app. For 2-D or 3-D geometry using a PDEModel object, obtain t using the meshToPet

5 Functions

5-796

function on model.Mesh. For example, [p,e,t] = initmesh(g) or [p,e,t] =
meshToPet(model.Mesh).

u — Data values to interpolate
vector | matrix

Data values to interpolate, specified as a vector or matrix. Typically, u is the solution of a PDE
problem returned by assempde, parabolic, hyperbolic, or another solver. For example, u =
assempde(b,p,e,t,c,a,f). You can also export u from the Solve menu of the PDE Modeler app.

The dimensions of the matrix u depend on the problem. If np is the number of columns of p, and N is
the number of equations in the PDE system, then u has N*np rows. The first np rows correspond to
equation 1, the next np rows correspond to equation 2, etc. For parabolic or hyperbolic problems, u
has one column for each solution time; otherwise, u is a column vector.

Object Functions
evaluate Interpolate data to selected locations

Examples

Create Interpolant

This example shows how to create a pdeInterpolant from the solution to a scalar PDE.

Solve the equation −Δu = 1 on the unit disk with zero Dirichlet conditions.

g0 = [1;0;0;1]; % circle centered at (0,0) with radius 1
sf = 'C1';
g = decsg(g0,sf,sf'); % decomposed geometry matrix
model = createpde;
gm = geometryFromEdges(model,g);
% Zero Dirichlet conditions
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',(1:gm.NumEdges), ...
 'u',0);
[p,e,t] = initmesh(gm);
c = 1;
a = 0;
f = 1;
u = assempde(model,p,e,t,c,a,f);

Construct an interpolant for the solution.

F = pdeInterpolant(p,t,u);

Evaluate the interpolant at the four corners of a square.

pOut = [0,1/2,1/2,0;
 0,0,1/2,1/2];
uOut = evaluate(F,pOut)

uOut = 4×1

 0.2485

 pdeInterpolant

5-797

 0.1854
 0.1230
 0.1852

The values uOut(2) and uOut(4) are nearly equal, as they should be for symmetric points in this
symmetric problem.

See Also
evaluate | tri2grid

Topics
“Mesh Data” on page 2-153

Introduced in R2014b

5 Functions

5-798

pdeintrp
(Not recommended) Interpolate mesh nodal data to triangle midpoints

Note pdeintrp is not recommended. Use interpolateSolution and evaluateGradient
instead.

Syntax
ut = pdeintrp(p,t,un)

Description
ut = pdeintrp(p,t,un) uses the data un at mesh nodes to linearly interpolate data at mesh
triangle midpoints.

pdeintrp and pdeprtni are not inverse functions because the interpolation introduces some
averaging.

Examples

Data at Mesh Nodes and Triangle Midpoints

Solve the equation −Δu = 1 on the L-shaped membrane and interpolate the solution from nodes to
triangle midpoints.

First, create a [p,e,t] mesh on the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

Solve the equation using the Dirichlet boundary condition u = 0 on ∂Ω. The result is the solution at
the mesh nodes.

un = assempde('lshapeb',p,e,t,1,0,1);

Interpolate the solution from the mesh nodes to the triangle midpoints.

ut = pdeintrp(p,t,un);

Interpolate the solution back to nodes by using the pdeprtni function. Compare the result and the
original solution at the mesh nodes. The pdeprtni and pdeintrp functions are not inverse.

un2 = pdeprtni(p,t,ut);
isequal(un,un2)

ans = logical
 0

 pdeintrp

5-799

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

un — Data at nodes
column vector

Data at nodes, specified as a column vector.

For a PDE system of N equations and a mesh with Np node points, the first Np values of un describe
the first component, the following Np values of un describe the second component, and so on.
Data Types: double

Output Arguments
ut — Data at triangle midpoints
row vector

Data at triangle midpoints, returned as a row vector.

For a PDE system of N equations and a mesh with Nt elements, the first Nt values of ut describe the
first component, the following Nt values of ut describe the second component, and so on.

See Also
pdeprtni | evaluate | pdeInterpolant

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

5 Functions

5-800

pdejmps
(Not recommended) Error estimates for adaptation

Note pdejmps is not recommended.

Syntax
errf = pdejmps(p,t,c,a,f,u,alfa,beta,m)

Description
errf = pdejmps(p,t,c,a,f,u,alfa,beta,m) calculates the error indication function used for
adaptation. The columns of errf correspond to triangles, and the rows correspond to the different
equations in the PDE system.

p andt are mesh data. For details, see initmesh.

c, a, and f are PDE coefficients. c, a, and f must be expanded, so that columns correspond to
triangles.

The formula for computing the error indicator E(K) for each triangle K is

E K = α hm f − au K + β 1
2 ∑

τ ∈ ∂K
hτ

2m[nτ ⋅ (c∇uh)]2
1/2

where nτ is the unit normal of edge τ and the braced term is the jump in flux across the element edge,
where α and β are weight indices and m is an order parameter. The norm is an L2 norm computed
over the element K. The error indicator is stored in errf as column vectors, one for each triangle in
t. For more details, see the "Algorithms" section on the adaptmesh page.

Introduced before R2006a

 pdejmps

5-801

pdemesh
Plot PDE mesh

Syntax
pdemesh(model)
pdemesh(mesh)
pdemesh(nodes,elements)
pdemesh(model,u)
pdemesh(___ ,Name,Value)

pdemesh(p,e,t)
pdemesh(p,e,t,u)

h = pdemesh(___)

Description
pdemesh(model) plots the mesh contained in a 2-D or 3-D model object of type PDEModel.

pdemesh(mesh) plots the mesh defined as a Mesh property of a 2-D or 3-D model object of type
PDEModel.

pdemesh(nodes,elements) plots the mesh defined by nodes and elements.

pdemesh(model,u) plots solution data u as a 3-D plot. This syntax is valid only for 2-D geometry.

pdemesh(___ ,Name,Value) plots the mesh or solution data using any of the arguments in the
previous syntaxes and one or more Name,Value pair arguments.

pdemesh(p,e,t) plots the mesh specified by the mesh data p,e,t.

pdemesh(p,e,t,u) plots PDE node or triangle data u using a mesh plot. The function plots the node
data if u is a column vector , and triangle data if u is a row vector.

If you want to have more control over your mesh plot, use pdeplot or pdeplot3D instead of
pdemesh.

h = pdemesh(___) returns handles to the graphics, using any of the arguments of the previous
syntaxes.

Examples

Mesh Plot for L-Shaped Membrane

Create a mesh plot and display the node and element labels of the mesh.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.

5 Functions

5-802

model = createpde;
geometryFromEdges(model,@lshapeg);
mesh = generateMesh(model);

Plot the mesh.

pdemesh(model)

Alternatively, you can plot a mesh by using mesh as an input argument.

pdemesh(mesh)

 pdemesh

5-803

Another approach is to use the nodes and elements of the mesh as input arguments for pdemesh.

pdemesh(mesh.Nodes,mesh.Elements)

5 Functions

5-804

Display node labels.

pdemesh(model,'NodeLabels','on')

 pdemesh

5-805

Use xlim and ylim to zoom in on particular nodes.

xlim([-0.4,0.4])
ylim([-0.4,0.4])

5 Functions

5-806

Display element labels.

pdemesh(model,'ElementLabels','on')
xlim([-0.4,0.4])
ylim([-0.4,0.4])

 pdemesh

5-807

Apply boundary conditions, specify coefficients, and solve the PDE.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model);
results = solvepde(model)

results =
 StationaryResults with properties:

 NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

u = results.NodalSolution;

Plot the solution at nodal locations by using pdemesh.

pdemesh(model,u)

5 Functions

5-808

The pdemesh function ignores NodeLabels and ElementLabels when you plot solution data as a 3-
D plot.

Transparency for 3-D Mesh

Create a PDE model, include the geometry and mesh it.

model = createpde;
importGeometry(model,'Plate10x10x1.stl');
generateMesh(model,'Hmax',5);

Plot the mesh setting the transparency to 0.5.

pdemesh(model,'FaceAlpha',0.5)

 pdemesh

5-809

Elements Associated with Particular Face

Find the elements associated with a geometric region.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function lshapeg. Plot the geometry.

geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on','EdgeLabels','on')

5 Functions

5-810

Generate a mesh.

mesh = generateMesh(model,'Hmax',0.5);

Find the elements associated with face 2.

Ef2 = findElements(mesh,'region','Face',2);

Highlight these elements in green on the mesh plot.

figure
pdemesh(mesh,'ElementLabels','on')
hold on
pdemesh(mesh.Nodes,mesh.Elements(:,Ef2),'EdgeColor','green')

 pdemesh

5-811

[p,e,t] Mesh Plot

Plot the mesh for the geometry of the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');
[p,e,t] = refinemesh('lshapeg',p,e,t);
pdemesh(p,e,t)

5 Functions

5-812

Now solve Poisson's equation −Δu = 1 over the geometry defined by the L-shaped membrane. Use
Dirichlet boundary conditions u = 0 on δΩ, and plot the result.

u = assempde('lshapeb',p,e,t,1,0,1);
pdemesh(p,e,t,u)

 pdemesh

5-813

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

u — PDE solution
vector | matrix

PDE solution, specified as a vector or matrix.
Example: results = solvepde(model); u = results.NodalSolution; or u =
assempde(model,c,a,f);

mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

5 Functions

5-814

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

nodes — Nodal coordinates
2-by-NumNodes matrix | 3-by-NumNodes matrix

Nodal coordinates, specified as a 2-by-NumNodes matrix for a 2-D mesh and 3-by-NumNodes matrix
for a 3-D mesh. NumNodes is the number of nodes.

elements — Element connectivity matrix in terms of node IDs
NodesPerElem-by-NumElements matrix

Element connectivity matrix in terms of node IDs, specified as an NodesPerElem-by-NumElements
matrix. NodesPerElem is the number of nodes per element. Linear meshes contain only corner nodes,
so there are three nodes per a 2-D element and four nodes per a 3-D element. Quadratic meshes
contain corner nodes and nodes in the middle of each edge of an element. For quadratic meshes,
there are six nodes per a 2-D element and 10 nodes per a 3-D element.

 pdemesh

5-815

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

5 Functions

5-816

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: pdemesh(model,'NodeLabels','on')

NodeLabels — Node labels
'off' (default) | 'on'

Node labels, specified as the comma-separated pair consisting of 'NodeLabels' and 'off' or 'on'.

pdemesh ignores NodeLabels when you plot solution data as a 3-D plot.
Example: 'NodeLabels','on'
Data Types: char | string

ElementLabels — Element labels
'off' (default) | 'on'

Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off'
or 'on'.

pdemesh ignores ElementLabels when you plot solution data as a 3-D plot.
Example: 'ElementLabels','on'
Data Types: char | string

FaceAlpha — Surface transparency for 3-D geometry
1 (default) | real number from 0 through 1

Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of
'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency.
The value 0 indicates complete transparency.
Example: 'FaceAlpha',0.5
Data Types: double

EdgeColor — Color of mesh edges
short color name | long color name | RGB triplet

Color of mesh edges, specified as a short or long color name or an RGB triplet. By default, for 2-D
meshes the edges within one face are blue (RGB triplet [0 0 1]) and the edges between faces are
red (RGB triplet [1 0 0]). For 3-D meshes, the default edge color is black (RGB triplet [0 0 0]).

The short names and long names are character vectors that specify one of eight predefined colors.
The RGB triplet is a three-element row vector whose elements specify the intensities of the red,

 pdemesh

5-817

green, and blue components of the color; the intensities must be in the range [0 1]. The following
table lists the predefined colors and their RGB triplet equivalents.

RGB Triplet Short Name Long Name
[1 1 0] y yellow
[1 0 1] m magenta
[0 1 1] c cyan
[1 0 0] r red
[0 1 0] g green
[0 0 1] b blue
[1 1 1] w white
[0 0 0] k black

Example: 'EdgeColor','green'
Data Types: double | char | string

FaceColor — Color of mesh faces for 3-D meshes
[0 1 1] | short color name | long color name | RGB triplet

Color of mesh faces for 3-D meshes, specified as a short or long color name or an RGB triplet. The
default face color is cyan (RGB triplet [0 1 1]). For details about available colors, see “EdgeColor”
on page 5-0 .
Example: 'FaceColor','green'
Data Types: double | char | string

Output Arguments
h — Handles to graphics objects
vector

Handles to graphics objects, returned as a vector.

See Also
pdeplot | pdeplot3D | pdegplot

Topics
“Mesh Data” on page 2-153

Introduced before R2006a

5 Functions

5-818

PDEModel
PDE model object

Description
A PDEModel object contains information about a PDE problem: the number of equations, geometry,
mesh, and boundary conditions.

Creation
Create a PDEModel object using createpde. Initially, the only nonempty property is
PDESystemSize. It is 1 for scalar problems.

Properties
PDESystemSize — Number of equations
1 (default) | positive integer

Number of equations, N, returned as a positive integer. See “Equations You Can Solve Using PDE
Toolbox” on page 1-3.
Example: 1
Data Types: double

BoundaryConditions — PDE boundary conditions
vector of BoundaryCondition objects

PDE boundary conditions, returned as a vector of BoundaryCondition objects. You create boundary
conditions using the applyBoundaryCondition function

Geometry — Geometry description
AnalyticGeometry | DiscreteGeometry

Geometry description, returned as AnalyticGeometry for a 2-D geometry or DiscreteGeometry
for a 2-D or 3-D geometry.

Mesh — Mesh for solution
FEMesh object

Mesh for solution, returned as an FEMesh object. You create the mesh using the generateMesh
function.

IsTimeDependent — Indicator if model is time-dependent
0 (false) (default) | 1 (true)

Indicator if model is time-dependent, returned as 1 (true) or 0 (false). The property is true when
the m or d coefficient is nonzero, and is false otherwise.

 PDEModel

5-819

EquationCoefficients — PDE coefficients
vector of CoefficientAssignment objects

PDE coefficients, returned as a vector of CoefficientAssignment objects. See
specifyCoefficients.

InitialConditions — Initial conditions or initial solution
GeometricInitialConditions object | NodalInitialConditions object

Initial conditions or initial solution, returned as a GeometricInitialConditions or
NodalInitialConditions object.

In case of GeometricInitialConditions, for time-dependent problems, you must give one or two
initial conditions: one if the m coefficient is zero, and two if the m coefficient is nonzero. For nonlinear
stationary problems, you can optionally give an initial solution that solvepde uses to start its
iterations. See setInitialConditions.

In case of NodalInitialConditions, you use the results of previous analysis to set the initial
conditions or initial guess. The geometry and mesh of the previous analysis and current model must
be the same.

SolverOptions — Algorithm options for PDE solvers
PDESolverOptions object

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of
PDESolverOptions include absolute and relative tolerances for internal ODE solvers, maximum
solver iterations, and so on.

Object Functions
applyBoundaryCondition Add boundary condition to PDEModel container
generateMesh Create triangular or tetrahedral mesh
geometryFromEdges Create 2-D geometry from decomposed geometry matrix
geometryFromMesh Create 2-D or 3-D geometry from mesh
importGeometry Import 2-D or 3-D geometry from STL data
setInitialConditions Give initial conditions or initial solution
specifyCoefficients Specify coefficients in a PDE model
solvepde Solve PDE specified in a PDEModel
solvepdeeig Solve PDE eigenvalue problem specified in a PDEModel

Examples

Create and Populate a PDE Model

Create and populate a PDEModel object.

Create a container for a scalar PDE (N = 1).

model = createpde()

model =
 PDEModel with properties:

 PDESystemSize: 1

5 Functions

5-820

 IsTimeDependent: 0
 Geometry: []
 EquationCoefficients: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Include a torus geometry, zero Dirichlet boundary conditions, coefficients for Poisson's equation, and
the default mesh.

importGeometry(model,'Torus.stl');
applyBoundaryCondition(model,'dirichlet','face',1,'u',0);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);
generateMesh(model);

Solve the PDE.

results = solvepde(model)

results =
 StationaryResults with properties:

 NodalSolution: [12913x1 double]
 XGradients: [12913x1 double]
 YGradients: [12913x1 double]
 ZGradients: [12913x1 double]
 Mesh: [1x1 FEMesh]

See Also
createpde | applyBoundaryCondition | generateMesh | geometryFromEdges |
geometryFromMesh | importGeometry | pdegplot | pdeplot | pdeplot3D |
setInitialConditions | specifyCoefficients

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

 PDEModel

5-821

pdenonlin
(Not recommended) Solve nonlinear elliptic PDE problem

Note pdenonlin is not recommended. Use solvepde instead.

Syntax
u = pdenonlin(model,c,a,f)
u = pdenonlin(b,p,e,t,c,a,f)
u = pdenonlin(___ ,Name,Value)
[u,res] = pdenonlin(___)

Description
u = pdenonlin(model,c,a,f) solves the nonlinear PDE

−∇ ⋅ c∇u + au = f

with geometry, boundary conditions, and finite element mesh in model, and coefficients c, a, and f.
In this context, “nonlinear” means some coefficient in c, a, or f depends on the solution u or its
gradient. If the PDE is a system of equations (model.PDESystemSize > 1), then pdenonlin solves
the system of equations

−∇ ⋅ c⊗ ∇u + au = f

u = pdenonlin(b,p,e,t,c,a,f) solves the PDE with boundary conditions b, and finite element
mesh (p,e,t).

u = pdenonlin(___ ,Name,Value), for any previous arguments, modifies the solution process
with Name, Value pairs.

[u,res] = pdenonlin(___) also returns the norm of the Newton step residuals res.

Examples

Minimal Surface Problem

Solve a minimal surface problem. Because this problem has a nonlinear c coefficient, use pdenonlin
to solve it.

Create a model and include circular geometry using the built-in circleg function.

model = createpde;
geometryFromEdges(model,@circleg);

Set the coefficients.

5 Functions

5-822

a = 0;
f = 0;
c = '1./sqrt(1+ux.^2+uy.^2)';

Set a Dirichlet boundary condition with value x2.

boundaryfun = @(region,state)region.x.^2;
applyBoundaryCondition(model,'edge',1:model.Geometry.NumEdges,...
 'u',boundaryfun,'Vectorized','on');

Generate a mesh and solve the problem.

generateMesh(model,'GeometricOrder','linear','Hmax',0.1);
u = pdenonlin(model,c,a,f);
pdeplot(model,'XYData',u,'ZData',u)

Minimal Surface Problem Using [p,e,t] Mesh

Solve the minimal surface problem using the legacy approach for creating boundary conditions and
geometry.

Create the geometry using the built-in circleg function. Plot the geometry to see the edge labels.

 pdenonlin

5-823

g = @circleg;
pdegplot(g,'EdgeLabels','on')
axis equal

Create Dirichlet boundary conditions with value x2.Create the following file and save it on your
MATLAB path.

function [qmatrix,gmatrix,hmatrix,rmatrix] = pdex2bound(p,e,u,time)

ne = size(e,2); % number of edges
qmatrix = zeros(1,ne);
gmatrix = qmatrix;
hmatrix = zeros(1,2*ne);
rmatrix = hmatrix;

for k = 1:ne
 x1 = p(1,e(1,k)); % x at first point in segment
 x2 = p(1,e(2,k)); % x at second point in segment
 xm = (x1 + x2)/2; % x at segment midpoint
 y1 = p(2,e(1,k)); % y at first point in segment
 y2 = p(2,e(2,k)); % y at second point in segment
 ym = (y1 + y2)/2; % y at segment midpoint
 switch e(5,k)
 case {1,2,3,4}
 hmatrix(k) = 1;
 hmatrix(k+ne) = 1;
 rmatrix(k) = x1^2;
 rmatrix(k+ne) = x2^2;

5 Functions

5-824

 end
end

Set the coefficients and boundary conditions.

a = 0;
f = 0;
c = '1./sqrt(1+ux.^2+uy.^2)';
b = @pdex2bound;

Generate a mesh and solve the problem.

[p,e,t] = initmesh(g,'Hmax',0.1);
u = pdenonlin(b,p,e,t,c,a,f);
pdeplot(p,e,t,'XYData',u,'ZData',u)

Nonlinear Problem with 3-D Geometry

Solve a nonlinear 3-D problem with nontrivial geometry.

Import the geometry from the BracketWithHole.stl file. Plot the geometry and face labels.

model = createpde();
importGeometry(model,'BracketWithHole.stl');
figure

 pdenonlin

5-825

pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(30,30)
title('Bracket with Face Labels')

figure
pdegplot(model,'FaceLabels','on','FaceAlpha',0.5)
view(-134,-32)
title('Bracket with Face Labels, Rear View')

5 Functions

5-826

Set a Dirichlet boundary condition with value 1000 on the back face, which is face 4. Set the large
faces 1 and 7, and also the circular face 11, to have Neumann boundary conditions with value g =
-10. Do not set boundary conditions on the other faces. Those faces default to Neumann boundary
conditions with value g = 0.

applyBoundaryCondition(model,'Face',4,'u',1000);
applyBoundaryCondition(model,'Face',[1,7,11],'g',-10);

Set the c coefficient to 1, f to 0.1, and a to the nonlinear value '0.1 + 0.001*u.^2'.

c = 1;
f = 0.1;
a = '0.1 + 0.001*u.^2';

Generate the mesh and solve the PDE. Start from the initial guess u0 = 1000, which matches the
value you set on face 4. Turn on the Report option to observe the convergence during the solution.

generateMesh(model);
u = pdenonlin(model,c,a,f,'U0',1000,'Report','on');

Iteration Residual Step size Jacobian: full
 0 7.2059e-01
 1 1.3755e-01 1.0000000
 2 4.0799e-02 1.0000000
 3 1.1344e-02 1.0000000
 4 2.2737e-03 1.0000000
 5 1.7764e-04 1.0000000
 6 1.4190e-06 1.0000000

 pdenonlin

5-827

Plot the solution on the geometry boundary.

pdeplot3D(model,'ColorMapData',u)

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

c — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. c represents the c coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: 'cosh(x+y.^2)'

5 Functions

5-828

Data Types: double | char | string | function_handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: 2*eye(3)
Data Types: double | char | string | function_handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

−∇ ⋅ c∇u + au = f

or in the system of PDEs

−∇ ⋅ c⊗ ∇u + au = f

Example: char('sin(x)';'cos(y)';'tan(z)')
Data Types: double | char | string | function_handle
Complex Number Support: Yes

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler
app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)

 pdenonlin

5-829

Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Jacobian','full'

Jacobian — Approximation of Jacobian
'full' (3-D default) | 'fixed' (2-D default) | 'lumped'

Approximation of Jacobian, specified as 'full', 'fixed', or 'lumped'.

• 'full' means numerical evaluation of the full Jacobian based on the sparse version of the
numjac function. 3-D geometry uses only 'full', any other specification yields an error.

• 'fixed' specifies a fixed-point iteration matrix where the Jacobian is approximated by the
stiffness matrix. This is the 2-D geometry default.

• 'lumped' specifies a “lumped” approximation as described in “Nonlinear Equations” on page 5-
832. This approximation is based on the numerical differentiation of the coefficients.

Example: u = pdenonlin(model,c,a,f,'Jacobian','full')
Data Types: char | string

U0 — Initial solution guess
0 (default) | scalar | vector of characters | vector of numbers

Initial solution guess, specified as a scalar, a vector of characters, or a vector of numbers. A scalar
specifies a constant initial condition for either a scalar or PDE system.

5 Functions

5-830

For systems of N equations, and a mesh with Np nodes, give a column vector with N*Np components.
The nodes are either model.Mesh.Nodes, or the p data from initmesh or meshToPet. See “Mesh
Data as [p,e,t] Triples” on page 2-150.

The first Np elements contain the values of component 1, where the value of element k corresponds to
node p(k). The next Np points contain the values of component 2, etc. It can be convenient to first
represent the initial conditions u0 as an Np-by-N matrix, where the first column contains entries for
component 1, the second column contains entries for component 2, etc. The final representation of
the initial conditions is u0(:).
Example: u = pdenonlin(model,c,a,f,'U0','x.^2-y.^2')
Data Types: double | char | string
Complex Number Support: Yes

Tol — Residual size at termination
1e-4 (default) | positive scalar

Residual size at termination, specified as a positive scalar. pdenonlin iterates until the residual size
is less than 'Tol'.
Example: u = pdenonlin(model,c,a,f,'Tol',1e-6)
Data Types: double

MaxIter — Maximum number of Gauss-Newton iterations
25 (default) | positive integer

Maximum number of Gauss-Newton iterations, specified as a positive integer.
Example: u = pdenonlin(model,c,a,f,'MaxIter',12)
Data Types: double

MinStep — Minimum damping of search direction
1/2^16 (default) | positive scalar

Minimum damping of search direction, specified as a positive scalar.
Example: u = pdenonlin(model,c,a,f,'MinStep',1e-3)
Data Types: double

Report — Print convergence information
'off' (default) | 'on'

Print convergence information, specified as 'off' or 'on'.
Example: u = pdenonlin(model,c,a,f,'Report','on')
Data Types: char | string

Norm — Residual norm
Inf (default) | p value for Lp norm | 'energy'

Residual norm, specified as the p value for Lp norm, or as 'energy'. p can be any positive real value,
Inf, or -Inf. The p norm of a vector v is sum(abs(v)^p)^(1/p). See norm.
Example: u = pdenonlin(model,c,a,f,'Norm',2)

 pdenonlin

5-831

Data Types: double | char | string

Output Arguments
u — PDE solution
vector

PDE solution, returned as a vector.

• If the PDE is scalar, meaning only one equation, then u is a column vector representing the
solution u at each node in the mesh. u(i) is the solution at the ith column of
model.Mesh.Nodes or the ith column of p.

• If the PDE is a system of N > 1 equations, then u is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u represent the solution of
equation 1, then next Np elements represent the solution of equation 2, etc.

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.

To plot the solution, use pdeplot for 2-D geometry, or see “3-D Solution and Gradient Plots with
MATLAB® Functions” on page 3-317.

res — Norm of Newton step residuals
scalar

Norm of Newton step residuals, returned as a scalar. For information about the algorithm, see
“Nonlinear Equations” on page 5-832.

Tips
• If the Newton iteration does not converge, pdenonlin displays the error message Too many

iterations or Stepsize too small.
• If the initial guess produces matrices containing NaN or Inf elements, pdenonlin displays the

error message Unsuitable initial guess U0 (default: U0 = 0).
• If you have very small coefficients, or very small geometric dimensions, pdenonlin can fail to

converge, or can converge to an incorrect solution. If so, you can sometimes obtain better results
by scaling the coefficients or geometry dimensions to be of order one.

Algorithms
Nonlinear Equations

The basic idea is to use Gauss-Newton iterations to solve the nonlinear equations. Say you are trying
to solve the equation

r(u) = –∇ · (c(u)∇u) + a(u)u - f(u) = 0.

In the FEM setting you solve the weak form of r(u) = 0. Set as usual

u(x) = ∑U jϕ j

where x represents a 2-D or 3-D point. Then multiply the equation by an arbitrary test function ϕi,
integrate on the domain Ω, and use Green's formula and the boundary conditions to obtain

5 Functions

5-832

0 = ρ U = ∑
j
∫
Ω

c x, U ∇ϕ j(x) ⋅ ∇ϕ j(x) + a x, U ϕ j(x)ϕi(x) dx

+ ∫
∂Ω

q x, U ϕ j(x)ϕi(x) ds U j

− ∫
Ω

f x, U ϕi(x) dx − ∫
∂Ω

g x, U ϕi(x) ds

which has to hold for all indices i.

The residual vector ρ(U) can be easily computed as

ρ(U) = (K + M + Q)U – (F + G)

where the matrices K, M, Q and the vectors F and G are produced by assembling the problem

–∇ · (c(U)∇u) + a(U)u = f(U).

Assume that you have a guess U(n) of the solution. If U(n) is close enough to the exact solution, an
improved approximation U(n+1) is obtained by solving the linearized problem

∂ρ U(n)

∂U U(n + 1)−U(n) = − αρ U(n)

where α is a positive number. (It is not necessary that ρ(U) = 0 have a solution even if ρ(u) = 0 has.)
In this case, the Gauss-Newton iteration tends to be the minimizer of the residual, i.e., the solution of
minU ρ(U) .

It is well known that for sufficiently small α

ρ U(n + 1) < ρ U(n)

and

pn =
∂ρ U(n)

∂U

−1

ρ U(n)

is called a descent direction for ρ(U) , where ⋅ is the L2-norm. The iteration is

U(n + 1) = U(n) + αpn,

where α ≤ 1 is chosen as large as possible such that the step has a reasonable descent.

The Gauss-Newton method is local, and convergence is assured only when U(0) is close enough to the
solution. In general, the first guess may be outside the region of convergence. To improve
convergence from bad initial guesses, a damping strategy is implemented for choosing α, the Armijo-
Goldstein line search. It chooses the largest damping coefficient α out of the sequence 1, 1/2, 1/4, . . .
such that the following inequality holds:

ρ U(n) − ρ U(n) + αpn ≥ α
2 ρ U(n)

 pdenonlin

5-833

which guarantees a reduction of the residual norm by at least 1 – α/2. Each step of the line-search
algorithm requires an evaluation of the residual ρ U(n) + αpn .

An important point of this strategy is that when U(n) approaches the solution, then α→1 and thus the
convergence rate increases. If there is a solution to ρ(U) = 0, the scheme ultimately recovers the
quadratic convergence rate of the standard Newton iteration.

Closely related to the preceding problem is the choice of the initial guess U(0). By default, the solver
sets U(0) and then assembles the FEM matrices K and F and computes

U(1) = K–1F

The damped Gauss-Newton iteration is then started with U(1), which should be a better guess than
U(0). If the boundary conditions do not depend on the solution u, then U(1) satisfies them even if U(0)

does not. Furthermore, if the equation is linear, then U(1) is the exact FEM solution and the solver
does not enter the Gauss-Newton loop.

There are situations where U(0) = 0 makes no sense or convergence is impossible.

In some situations you may already have a good approximation and the nonlinear solver can be
started with it, avoiding the slow convergence regime. This idea is used in the adaptive mesh
generator. It computes a solution U on a mesh, evaluates the error, and may refine certain triangles.
The interpolant of U is a very good starting guess for the solution on the refined mesh.

In general the exact Jacobian

Jn =
∂ρ U(n)

∂U

is not available. Approximation of Jn by finite differences in the following way is expensive but
feasible. The ith column of Jn can be approximated by

ρ U(n) + εϕi − ρ U(n)

ε

which implies the assembling of the FEM matrices for the triangles containing grid point i. A very
simple approximation to Jn, which gives a fixed point iteration, is also possible as follows. Essentially,
for a given U(n), compute the FEM matrices K and F and set

U(n+1) = K–1F .

This is equivalent to approximating the Jacobian with the stiffness matrix. Indeed, since ρ(U(n)) =
KU(n) – F, putting Jn = K yields

U(n + 1) = U(n)− Jn
−1ρ U(n) = U(n)− K−1 KU(n)− F = K−1F

In many cases the convergence rate is slow, but the cost of each iteration is cheap.

The Partial Differential Equation Toolbox nonlinear solver also provides for a compromise between
the two extremes. To compute the derivative of the mapping U→KU, proceed as follows. The a term
has been omitted for clarity, but appears again in the final result.

5 Functions

5-834

∂ KU i
∂U j

= lim
ε 0

1
ε∑l ∫Ω c U + εϕ j ∇ϕl∇ϕi dx Ul + εδl, j

− ∫
Ω

c U ∇ϕl∇ϕi dxUl

= ∫
Ω

c U ∇ϕ j∇ϕi dx + ∑
l
∫
Ω

ϕ j
∂c
∂u ∇ϕl∇ϕi dxUl

The first integral term is nothing more than Ki,j.

The second term is “lumped,” i.e., replaced by a diagonal matrix that contains the row sums. Since
Σjϕj = 1, the second term is approximated by

δi, j∑
l
∫
Ω

∂c
∂u ∇ϕl∇ϕi dxUl

which is the ith component of K(c')U, where K(c') is the stiffness matrix associated with the coefficient
∂c/∂u rather than c. The same reasoning can be applied to the derivative of the mapping U→MU. The
derivative of the mapping U→ –F is exactly

− ∫
Ω

∂ f
∂uϕiϕ j dx

which is the mass matrix associated with the coefficient ∂f/∂u. Thus the Jacobian of the residual ρ(U)
is approximated by

J = K(c) + M(a− f ′) + diag K(c′) + M(a′) U

where the differentiation is with respect to u, K and M designate stiffness and mass matrices, and
their indices designate the coefficients with respect to which they are assembled. At each Gauss-
Newton iteration, the nonlinear solver assembles the matrices corresponding to the equations

−∇ ⋅ (c∇u) + (a− f ′)u = 0
−∇ ⋅ (c′∇u) + a′u = 0

and then produces the approximate Jacobian. The differentiations of the coefficients are done
numerically.

In the general setting of elliptic systems, the boundary conditions are appended to the stiffness
matrix to form the full linear system:

KU =
K H′
H 0

U
μ

=
F
R

= F

where the coefficients of K and F may depend on the solution U. The “lumped” approach
approximates the derivative mapping of the residual by

J H′
H 0

The nonlinearities of the boundary conditions and the dependencies of the coefficients on the
derivatives of U are not properly linearized by this scheme. When such nonlinearities are strong, the

 pdenonlin

5-835

scheme reduces to the fix-point iteration and may converge slowly or not at all. When the boundary
conditions are linear, they do not affect the convergence properties of the iteration schemes. In the
Neumann case they are invisible (H is an empty matrix) and in the Dirichlet case they merely state
that the residual is zero on the corresponding boundary points.

See Also
solvepde

Introduced before R2006a

5 Functions

5-836

pdeplot
Plot solution or mesh for 2-D problem

Syntax
pdeplot(model,'XYData',results.NodalSolution)
pdeplot(model,'XYData',results.Temperature,'ColorMap','hot')
pdeplot(
model,'XYData',results.VonMisesStress,'Deformation',results.Displacement)
pdeplot(model,'XYData',results.ModeShapes.ux)
pdeplot(model,'XYData',results.ElectricPotential)

pdeplot(model)
pdeplot(mesh)
pdeplot(nodes,elements)

pdeplot(p,e,t)

pdeplot(___ ,Name,Value)
h = pdeplot(___)

Description
pdeplot(model,'XYData',results.NodalSolution) plots the solution of a model at nodal
locations as a colored surface plot using the default 'jet' colormap.

pdeplot(model,'XYData',results.Temperature,'ColorMap','hot') plots the temperature
at nodal locations for a 2-D thermal analysis model. This syntax creates a colored surface plot using
the 'hot' colormap.

pdeplot(
model,'XYData',results.VonMisesStress,'Deformation',results.Displacement) plots
the von Mises stress and shows the deformed shape for a 2-D structural analysis model.

pdeplot(model,'XYData',results.ModeShapes.ux) plots the x-component of the modal
displacement for a 2-D structural modal analysis model.

pdeplot(model,'XYData',results.ElectricPotential) plots the electric potential at nodal
locations for a 2-D electrostatic analysis model.

pdeplot(model) plots the mesh specified in model.

pdeplot(mesh) plots the mesh defined as a Mesh property of a 2-D model object of type PDEModel.

pdeplot(nodes,elements) plots the mesh defined by its nodes and elements.

pdeplot(p,e,t) plots the mesh described by p,e, and t.

pdeplot(___ ,Name,Value) plots the mesh, the data at the nodal locations, or both the mesh and
the data, depending on the Name,Value pair arguments. Use any arguments from the previous
syntaxes.

 pdeplot

5-837

Specify at least one of the FlowData (vector field plot), XYData (colored surface plot), or ZData (3-D
height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no data. You can combine any
number of plot types.

• For a thermal model, you can plot temperature or gradient of temperature.
• For a structural model, you can plot displacement, stress, strain, and von Mises stress. In addition,

you can show the deformed shape and specify the scaling factor for the deformation plot.

h = pdeplot(___) returns a handle to a plot, using any of the previous syntaxes.

Examples

2-D Mesh Plot

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry and
plot it.

model = createpde;
geometryFromEdges(model,@lshapeg);
mesh = generateMesh(model);
pdeplot(model)

Alternatively, you can plot a mesh by using mesh as an input argument.

pdeplot(mesh)

5 Functions

5-838

Another approach is to use the nodes and elements of the mesh as input arguments for pdeplot.

pdeplot(mesh.Nodes,mesh.Elements)

 pdeplot

5-839

Display the node labels. Use xlim and ylim to zoom in on particular nodes.

pdeplot(model,'NodeLabels','on')
xlim([-0.2,0.2])
ylim([-0.2,0.2])

5 Functions

5-840

Display the element labels.

pdeplot(model,'ElementLabels','on')
xlim([-0.2,0.2])
ylim([-0.2,0.2])

 pdeplot

5-841

Solution Plots

Create colored 2-D and 3-D plots of a solution to a PDE model.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.

model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model);

Set the zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Specify the coefficients and solve the PDE.

specifyCoefficients(model,'m',0, ...
 'd',0, ...
 'c',1, ...
 'a',0, ...
 'f',1);
results = solvepde(model)

5 Functions

5-842

results =
 StationaryResults with properties:

 NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Access the solution at the nodal locations.

u = results.NodalSolution;

Plot the 2-D solution.

pdeplot(model,'XYData',u)

Plot the 3-D solution.

pdeplot(model,'XYData',u,'ZData',u)

 pdeplot

5-843

Solution Quiver Plot

Plot the gradient of a PDE solution as a quiver plot.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.

model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model);

Set the zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Specify coefficients and solve the PDE.

specifyCoefficients(model,'m',0, ...
 'd',0, ...
 'c',1, ...
 'a',0, ...
 'f',1);
results = solvepde(model)

5 Functions

5-844

results =
 StationaryResults with properties:

 NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Access the gradient of the solution at the nodal locations.

ux = results.XGradients;
uy = results.YGradients;

Plot the gradient as a quiver plot.

pdeplot(model,'FlowData',[ux,uy])

Composite Plot

Plot the solution of a 2-D PDE in 3-D with the 'jet' coloring and a mesh, and include a quiver plot.
Get handles to the axes objects.

Create a PDE model. Include the geometry of the built-in function lshapeg. Mesh the geometry.

 pdeplot

5-845

model = createpde;
geometryFromEdges(model,@lshapeg);
generateMesh(model);

Set zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Specify coefficients and solve the PDE.

specifyCoefficients(model,'m',0, ...
 'd',0, ...
 'c',1, ...
 'a',0, ...
 'f',1);
results = solvepde(model)

results =
 StationaryResults with properties:

 NodalSolution: [1177x1 double]
 XGradients: [1177x1 double]
 YGradients: [1177x1 double]
 ZGradients: []
 Mesh: [1x1 FEMesh]

Access the solution and its gradient at the nodal locations.

u = results.NodalSolution;
ux = results.XGradients;
uy = results.YGradients;

Plot the solution in 3-D with the 'jet' coloring and a mesh, and include the gradient as a quiver
plot.

h = pdeplot(model,'XYData',u,'ZData',u, ...
 'FaceAlpha',0.5, ...
 'FlowData',[ux,uy], ...
 'ColorMap','jet', ...
 'Mesh','on')

5 Functions

5-846

h =
 3x1 graphics array:

 Patch
 Quiver
 ColorBar

Solution to Transient Thermal Model

Solve a 2-D transient thermal problem.

Create a transient thermal model for this problem.

thermalmodel = createpde('thermal','transient');

Create the geometry and include it in the model.

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);

 pdeplot

5-847

geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal

For the square region, assign these thermal properties:

• Thermal conductivity is 10 W/ m ⋅∘ C
• Mass density is 2 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅ ∘C

thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);

For the diamond region, assign these thermal properties:

• Thermal conductivity is 2 W/ m ⋅∘ C
• Mass density is 1 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅ ∘C

thermalProperties(thermalmodel,'ThermalConductivity',2, ...
 'MassDensity',1, ...

5 Functions

5-848

 'SpecificHeat',0.1, ...
 'Face',2);

Assume that the diamond-shaped region is a heat source with a density of 4 W/m2.

internalHeatSource(thermalmodel,4,'Face',2);

Apply a constant temperature of 0 ∘C to the sides of the square plate.

thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);

Set the initial temperature to 0 °C.

thermalIC(thermalmodel,0);

Generate the mesh.

generateMesh(thermalmodel);

The dynamics for this problem are very fast. The temperature reaches a steady state in about 0.1
seconds. To capture the interesting part of the dynamics, set the solution time to
logspace(-2,-1,10). This command returns 10 logarithmically spaced solution times between
0.01 and 0.1.

tlist = logspace(-2,-1,10);

Solve the equation.

thermalresults = solve(thermalmodel,tlist);

Plot the solution with isothermal lines by using a contour plot.

T = thermalresults.Temperature;
pdeplot(thermalmodel,'XYData',T(:,10),'Contour','on','ColorMap','hot')

 pdeplot

5-849

Plot Deformed Shape for Static Plane-Strain Problem

Create a structural analysis model for a static plane-strain problem.

structuralmodel = createpde('structural','static-planestrain');

Create the geometry and include it in the model. Plot the geometry.

geometryFromEdges(structuralmodel,@squareg);
pdegplot(structuralmodel,'EdgeLabels','on')
axis equal

5 Functions

5-850

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify the x-component of the enforced displacement for edge 1.

structuralBC(structuralmodel,'XDisplacement',0.001,'Edge',1);

Specify that edge 3 is a fixed boundary.

structuralBC(structuralmodel,'Constraint','fixed','Edge',3);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Plot the deformed shape using the default scale factor. By default, pdeplot internally determines the
scale factor based on the dimensions of the geometry and the magnitude of deformation.

pdeplot(structuralmodel, ...
 'XYData',structuralresults.VonMisesStress, ...
 'Deformation',structuralresults.Displacement, ...
 'ColorMap','jet')

 pdeplot

5-851

Plot the deformed shape with the scale factor 500.

pdeplot(structuralmodel, ...
 'XYData',structuralresults.VonMisesStress, ...
 'Deformation',structuralresults.Displacement, ...
 'DeformationScaleFactor',500,...
 'ColorMap','jet')

5 Functions

5-852

Plot the deformed shape without scaling.

pdeplot(structuralmodel,'XYData',structuralresults.VonMisesStress, ...
 'ColorMap','jet')

 pdeplot

5-853

Solution to Modal Analysis Structural Model

Find the fundamental (lowest) mode of a 2-D cantilevered beam, assuming prevalence of the plane-
stress condition.

Specify the following geometric and structural properties of the beam, along with a unit plane-stress
thickness.

length = 5;
height = 0.1;
E = 3E7;
nu = 0.3;
rho = 0.3/386;

Create a model plane-stress model, assign a geometry, and generate a mesh.

structuralmodel = createpde('structural','modal-planestress');
gdm = [3;4;0;length;length;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(structuralmodel,g);

Define a maximum element size (five elements through the beam thickness).

hmax = height/5;
msh=generateMesh(structuralmodel,'Hmax',hmax);

5 Functions

5-854

Specify the structural properties and boundary constraints.

structuralProperties(structuralmodel,'YoungsModulus',E, ...
 'MassDensity',rho, ...
 'PoissonsRatio',nu);
structuralBC(structuralmodel,'Edge',4,'Constraint','fixed');

Compute the analytical fundamental frequency (Hz) using the beam theory.

I = height^3/12;
analyticalOmega1 = 3.516*sqrt(E*I/(length^4*(rho*height)))/(2*pi)

analyticalOmega1 = 126.9498

Specify a frequency range that includes an analytically computed frequency and solve the model.

modalresults = solve(structuralmodel,'FrequencyRange',[0,1e6])

modalresults =
 ModalStructuralResults with properties:

 NaturalFrequencies: [32x1 double]
 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

The solver finds natural frequencies and modal displacement values at nodal locations. To access
these values, use modalresults.NaturalFrequencies and modalresults.ModeShapes.

modalresults.NaturalFrequencies/(2*pi)

ans = 32×1
105 ×

 0.0013
 0.0079
 0.0222
 0.0433
 0.0711
 0.0983
 0.1055
 0.1462
 0.1930
 0.2455
 ⋮

modalresults.ModeShapes

ans =
 FEStruct with properties:

 ux: [6511x32 double]
 uy: [6511x32 double]
 Magnitude: [6511x32 double]

Plot the y-component of the solution for the fundamental frequency.

 pdeplot

5-855

pdeplot(structuralmodel,'XYData',modalresults.ModeShapes.uy(:,1))
title(['First Mode with Frequency ', ...
 num2str(modalresults.NaturalFrequencies(1)/(2*pi)),' Hz'])
axis equal

Solution to 2-D Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 2-D
geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(emagmodel,'EdgeLabels','on')

5 Functions

5-856

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Apply the voltage boundary conditions on the edges framing the rectangle and the circle.

electromagneticBC(emagmodel,'Voltage',0,'Edge',1:4);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',5);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

 pdeplot

5-857

 ElectricPotential: [1218x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric potential and field.

pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
 'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey])
axis equal

[p,e,t] Mesh and Solution Plots

Plot the p,e,t mesh. Display the solution using 2-D and 3-D colored plots.

Create the geometry, mesh, boundary conditions, PDE coefficients, and solution.

[p,e,t] = initmesh('lshapeg');
u = assempde('lshapeb',p,e,t,1,0,1);

Plot the mesh.

pdeplot(p,e,t)

5 Functions

5-858

Plot the solution as a 2-D colored plot.

pdeplot(p,e,t,'XYData',u)

 pdeplot

5-859

Plot the solution as a 3-D colored plot.

pdeplot(p,e,t,'XYData',u,'ZData',u)

5 Functions

5-860

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(1)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','magnetostatic')

mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

nodes — Nodal coordinates
2-by-NumNodes matrix

 pdeplot

5-861

Nodal coordinates, specified as a 2-by-NumNodes matrix. NumNodes is the number of nodes.

elements — Element connectivity matrix in terms of node IDs
3-by-NumElements matrix | 6-by-NumElements matrix

Element connectivity matrix in terms of the node IDs, specified as a 3-by-NumElements or 6-by-
NumElements matrix. Linear meshes contain only corner nodes. For linear meshes, the connectivity
matrix has three nodes per 2-D element. Quadratic meshes contain corner nodes and nodes in the
middle of each edge of an element. For quadratic meshes, the connectivity matrix has six nodes per 2-
D element.

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

5 Functions

5-862

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.
Example: [p,e,t] = initmesh(gd)
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: pdeplot(model,'XYData',u,'ZData',u)

When you use a PDEModel object, pdeplot(model,'XYData',u,'ZData',u) sets surface plot
coloring to the solution u, and sets the heights for a 3-D plot to u. Here u is a NodalSolution
property of the PDE results returned by solvepde or solvepdeeig.

When you use a [p,e,t] representation, pdeplot(p,e,t,'XYData',u,'ZData',u) sets surface
plot coloring to the solution u and sets the heights for a 3-D plot to the solution u. Here u is a solution
returned by a legacy solver, such as assempde.

Tip Specify at least one of the FlowData (vector field plot), XYData (colored surface plot), or ZData
(3-D height plot) name-value pairs. Otherwise, pdeplot plots the mesh with no data.

Data Plots

XYData — Colored surface plot data
vector

Colored surface plot data, specified as the comma-separated pair consisting of 'XYData' and a
vector. If you use a [p,e,t] representation, specify data for points in a vector of length size(p,2),
or specify data for triangles in a vector of length size(t,2).

• Typically, you set XYData to the solution u. The pdeplot function uses XYData for coloring both
2-D and 3-D plots.

• pdeplot uses the colormap specified in the ColorMap name-value pair, using the style specified
in the XYStyle name-value pair.

• When the Contour name-value pair is 'on', pdeplot also plots level curves of XYData.
• pdeplot plots the real part of complex data.

To plot the kth component of a solution to a PDE system, extract the relevant part of the solution. For
example, when using a PDEModel object, specify:

results = solvepde(model);
u = results.NodalSolution; % each column of u has one component of u
pdeplot(model,'XYData',u(:,k)) % data for column k

When using a [p,e,t] representation, specify:

np = size(p,2); % number of node points
uk = reshape(u,np,[]); % each uk column has one component of u
pdeplot(p,e,t,'XYData',uk(:,k)) % data for column k

 pdeplot

5-863

Example: 'XYData',u
Data Types: double

XYStyle — Coloring choice
'interp' (default) | 'off' | 'flat'

Coloring choice, specified as the comma-separated pair consisting of 'XYStyle' and 'interp',
'off', or 'flat'.

• 'off' — No shading, only mesh is displayed.
• 'flat' — Each triangle in the mesh has a uniform color.
• 'interp' — Plot coloring is smoothly interpolated.

The coloring choice relates to the XYData name-value pair.
Example: 'XYStyle','flat'
Data Types: char | string

ZData — Data for 3-D plot heights
matrix

Data for the 3-D plot heights, specified as the comma-separated pair consisting of 'ZData' and a
matrix. If you use a [p,e,t] representation, provide data for points in a vector of length size(p,2)
or data for triangles in a vector of length size(t,2).

• Typically, you set ZData to u, the solution. The XYData name-value pair sets the coloring of the 3-
D plot.

• The ZStyle name-value pair specifies whether the plot is continuous or discontinuous.
• pdeplot plots the real part of complex data.

To plot the kth component of a solution to a PDE system, extract the relevant part of the solution. For
example, when using a PDEModel object, specify:

results = solvepde(model);
u = results.NodalSolution; % each column of u has one component of u
pdeplot(model,'XYData',u(:,k),'ZData',u(:,k)) % data for column k

When using a [p,e,t] representation, specify:

np = size(p,2); % number of node points
uk = reshape(u,np,[]); % each uk column has one component of u
pdeplot(p,e,t,'XYData',uk(:,k),'ZData',uk(:,k)) % data for column k

Example: 'ZData',u
Data Types: double

ZStyle — 3-D plot style
'continuous' (default) | 'off' | 'discontinuous'

3-D plot style, specified as the comma-separated pair consisting of 'ZStyle' and one of these
values:

• 'off' — No 3-D plot.

5 Functions

5-864

• 'discontinuous' — Each triangle in the mesh has a uniform height in a 3-D plot.
• 'continuous' — 3-D surface plot is continuous.

If you use ZStyle without specifying the ZData name-value pair, then pdeplot ignores ZStyle.
Example: 'ZStyle','discontinuous'
Data Types: char | string

FlowData — Data for quiver plot
matrix

Data for the quiver plot on page 5-868, specified as the comma-separated pair consisting of
'FlowData' and an M-by-2 matrix, where M is the number of mesh nodes. FlowData contains the x
and y values of the field at the mesh points.

When you use a PDEModel object, set FlowData as follows:

results = solvepde(model);
gradx = results.XGradients;
grady = results.YGradients;
pdeplot(model,'FlowData',[gradx grady])

When you use a [p,e,t] representation, set FlowData as follows:

[gradx,grady] = pdegrad(p,t,u); % Calculate gradient
pdeplot(p,e,t,'FlowData',[gradx;grady])

When you use ZData to represent a 2-D PDE solution as a 3-D plot and you also include a quiver plot,
the quiver plot appears in the z = 0 plane.

pdeplot plots the real part of complex data.
Example: 'FlowData',[ux uy]
Data Types: double

FlowStyle — Indicator to show quiver plot
'arrow' (default) | 'off'

Indicator to show the quiver plot, specified as the comma-separated pair consisting of 'FlowStyle'
and 'arrow' or 'off'. Here, 'arrow' displays the quiver plot on page 5-868 specified by the
FlowData name-value pair.
Example: 'FlowStyle','off'
Data Types: char | string

XYGrid — Indicator to convert mesh data to x-y grid
'off' (default) | 'on'

Indicator to convert the mesh data to x-y grid before plotting, specified as the comma-separated pair
consisting of 'XYGrid' and 'off' or 'on'.

Note This conversion can change the geometry and lessen the quality of the plot.

By default, the grid has about sqrt(size(t,2)) elements in each direction.

 pdeplot

5-865

Example: 'XYGrid','on'
Data Types: char | string

GridParam — Customized x-y grid
[tn;a2;a3] from an earlier call to tri2grid

Customized x-y grid, specified as the comma-separated pair consisting of 'GridParam' and a matrix
[tn;a2;a3]. For example:

[~,tn,a2,a3] = tri2grid(p,t,u,x,y);
pdeplot(p,e,t,'XYGrid','on','GridParam',[tn;a2;a3],'XYData',u)

For details on the grid data and its x and y arguments, see tri2grid. The tri2grid function does
not work with PDEModel objects.
Example: 'GridParam',[tn;a2;a3]
Data Types: double

Mesh Plots

NodeLabels — Node labels
'off' (default) | 'on'

Node labels, specified as the comma-separated pair consisting of 'NodeLabels' and 'off' or 'on'.

pdeplot ignores NodeLabels when you use it with ZData.
Example: 'NodeLabels','on'
Data Types: char | string

ElementLabels — Element labels
'off' (default) | 'on'

Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off'
or 'on'.

pdeplot ignores ElementLabels when you use it with ZData.
Example: 'ElementLabels','on'
Data Types: char | string

Structural Analysis Plots

Deformation — Data for plotting deformed shape
Displacement property of StaticStructuralResults object

Data for plotting the deformed shape for a structural analysis model, specified as the comma-
separated pair consisting of 'Deformation' and the Displacement property of the
StaticStructuralResults object.

In an undeformed shape, center nodes in quadratic meshes are always added at half-distance
between corners. When you plot a deformed shape, the center nodes might move away from the edge
centers.
Example: 'Deformation',structuralresults.Displacement

5 Functions

5-866

DeformationScaleFactor — Scaling factor for plotting deformed shape
real number

Scaling factor for plotting the deformed shape, specified as the comma-separated pair consisting of
'DeformationScaleFactor' and a real number. Use this argument with the Deformation name-
value pair. The default value is defined internally, based on the dimensions of the geometry and the
magnitude of the deformation.
Example: 'DeformationScaleFactor',100
Data Types: double

Annotations and Appearance

ColorBar — Indicator to include color bar
'on' (default) | 'off'

Indicator to include a color bar, specified as the comma-separated pair consisting of 'ColorBar' and
'on' or 'off'. Specify 'on' to display a bar giving the numeric values of colors in the plot. For
details, see colorbar. The pdeplot function uses the colormap specified in the ColorMap name-
value pair.
Example: 'ColorBar','off'
Data Types: char | string

ColorMap — Colormap
'cool' (default) | ColorMap value or matrix of such values

Colormap, specified as the comma-separated pair consisting of 'ColorMap' and a value representing
a built-in colormap, or a colormap matrix. For details, see colormap.

ColorMap must be used with the XYData name-value pair.
Example: 'ColorMap','jet'
Data Types: double | char | string

Mesh — Indicator to show mesh
'off' (default) | 'on'

Indicator to show the mesh, specified as the comma-separated pair consisting of 'Mesh' and 'on' or
'off'. Specify 'on' to show the mesh in the plot.
Example: 'Mesh','on'
Data Types: char | string

Title — Title of plot
character vector

Title of plot, specified as the comma-separated pair consisting of 'Title' and a character vector.
Example: 'Title','Solution Plot'
Data Types: char | string

FaceAlpha — Surface transparency for 3-D geometry
1 (default) | real number from 0 through 1

 pdeplot

5-867

Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of
'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency.
The value 0 indicates complete transparency.
Example: 'FaceAlpha',0.5
Data Types: double

Contour — Indicator to plot level curves
'off' (default) | 'on'

Indicator to plot level curves, specified as the comma-separated pair consisting of 'Contour' and
'off' or 'on'. Specify 'on' to plot level curves for the XYData data. Specify the levels with the
Levels name-value pair.
Example: 'Contour','on'
Data Types: char | string

Levels — Levels for contour plot
10 (default) | positive integer | vector of level values

Levels for contour plot, specified as the comma-separated pair consisting of 'Levels' and a positive
integer or a vector of level values.

• Positive integer — Plot Levels as equally spaced contours.
• Vector — Plot contours at the values in Levels.

To obtain a contour plot, set the Contour name-value pair to 'on'.
Example: 'Levels',16
Data Types: double

Output Arguments
h — Handles to graphics objects
vector

Handles to graphics objects, returned as a vector.

More About
Quiver Plot

A quiver plot is a plot of a vector field. It is also called a flow plot.

Arrows show the direction of the field, with the lengths of the arrows showing the relative sizes of the
field strength. For details on quiver plots, see quiver.

See Also
pdegplot | pdemesh | pdeplot3D | PDEModel

Topics
“Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-302

5 Functions

5-868

“Deflection of Piezoelectric Actuator” on page 3-11
“Mesh Data” on page 2-153
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced before R2006a

 pdeplot

5-869

pdeplot3D
Plot solution or surface mesh for 3-D problem

Syntax
pdeplot3D(model,'ColorMapData',results.NodalSolution)
pdeplot3D(model,'ColorMapData',results.Temperature)
pdeplot3D(
model,'ColorMapData',results.VonMisesStress,'Deformation',results.Displacemen
t)
pdeplot3D(model,'ColorMapData',results.ElectricPotential)

pdeplot3D(model)
pdeplot3D(mesh)
pdeplot3D(nodes,elements)

pdeplot3D(___ ,Name,Value)
h = pdeplot3D(___)

Description
pdeplot3D(model,'ColorMapData',results.NodalSolution) plots the solution at nodal
locations as colors on the surface of the 3-D geometry specified in model.

pdeplot3D(model,'ColorMapData',results.Temperature) plots the temperature at nodal
locations for a 3-D thermal analysis model.

pdeplot3D(
model,'ColorMapData',results.VonMisesStress,'Deformation',results.Displacemen
t) plots the von Mises stress and shows the deformed shape for a 3-D structural analysis model.

pdeplot3D(model,'ColorMapData',results.ElectricPotential) plots the electric potential
at nodal locations for a 3-D electrostatic analysis model.

pdeplot3D(model) plots the surface mesh specified in model.

pdeplot3D(mesh) plots the mesh defined as a Mesh property of a 3-D model object of type
PDEModel.

pdeplot3D(nodes,elements) plots the mesh defined by nodes and elements.

pdeplot3D(___ ,Name,Value) plots the surface mesh, the data at nodal locations, or both the
mesh and data, depending on the Name,Value pair arguments. Use any arguments from the previous
syntaxes.

h = pdeplot3D(___) returns a handle to a plot, using any of the previous syntaxes.

Examples

5 Functions

5-870

Solution Plot on Surface

Plot a PDE solution on the geometry surface. First, create a PDE model and import a 3-D geometry
file. Specify boundary conditions and coefficients. Mesh the geometry and solve the problem.

model = createpde;
importGeometry(model,'Block.stl');
applyBoundaryCondition(model,'dirichlet','Face',[1:4],'u',0);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',2);
generateMesh(model);
results = solvepde(model)

results =
 StationaryResults with properties:

 NodalSolution: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]

Access the solution at the nodal locations.

u = results.NodalSolution;

Plot the solution u on the geometry surface.

pdeplot3D(model,'ColorMapData',u)

 pdeplot3D

5-871

Solution to Steady-State Thermal Model

Solve a 3-D steady-state thermal problem.

Create a thermal model for this problem.

thermalmodel = createpde('thermal');

Import and plot the block geometry.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabel','on','FaceAlpha',0.5)
axis equal

Assign material properties.

thermalProperties(thermalmodel,'ThermalConductivity',80);

Apply a constant temperature of 100 °C to the left side of the block (face 1) and a constant
temperature of 300 °C to the right side of the block (face 3). All other faces are insulated by default.

thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);

Mesh the geometry and solve the problem.

5 Functions

5-872

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]

The solver finds the temperatures and temperature gradients at the nodal locations. To access these
values, use thermalresults.Temperature, thermalresults.XGradients, and so on. For
example, plot temperatures at the nodal locations.

pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)

Heat Flux for 3-D Steady-State Thermal Model

For a 3-D steady-state thermal model, evaluate heat flux at the nodal locations and at the points
specified by x, y, and z coordinates.

Create a thermal model for steady-state analysis.

 pdeplot3D

5-873

thermalmodel = createpde('thermal');

Create the following 3-D geometry and include it in the model.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)
title('Copper block, cm')
axis equal

Assuming that this is a copper block, the thermal conductivity of the block is approximately
4 W /(cmK).

thermalProperties(thermalmodel,'ThermalConductivity',4);

Apply a constant temperature of 373 K to the left side of the block (face 1) and a constant
temperature of 573 K to the right side of the block (face 3).

thermalBC(thermalmodel,'Face',1,'Temperature',373);
thermalBC(thermalmodel,'Face',3,'Temperature',573);

Apply a heat flux boundary condition to the bottom of the block.

thermalBC(thermalmodel,'Face',4,'HeatFlux',-20);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

5 Functions

5-874

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]

Evaluate heat flux at the nodal locations.

[qx,qy,qz] = evaluateHeatFlux(thermalresults);

figure
pdeplot3D(thermalmodel,'FlowData',[qx qy qz])

Create a grid specified by x, y, and z coordinates, and evaluate heat flux to the grid.

[X,Y,Z] = meshgrid(1:26:100,1:6:20,1:11:50);

[qx,qy,qz] = evaluateHeatFlux(thermalresults,X,Y,Z);

Reshape the qx, qy, and qz vectors, and plot the resulting heat flux.

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));

 pdeplot3D

5-875

figure
quiver3(X,Y,Z,qx,qy,qz)

Alternatively, you can specify the grid by using a matrix of query points.

querypoints = [X(:) Y(:) Z(:)]';
[qx,qy,qz] = evaluateHeatFlux(thermalresults,querypoints);

qx = reshape(qx,size(X));
qy = reshape(qy,size(Y));
qz = reshape(qz,size(Z));
figure
quiver3(X,Y,Z,qx,qy,qz)

5 Functions

5-876

Deformed Shape for Cantilever Beam Problem

Create a structural analysis model for a 3-D problem.

structuralmodel = createpde('structural','static-solid');

Import the geometry and plot it.

importGeometry(structuralmodel,'SquareBeam.stl');
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

 pdeplot3D

5-877

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify that face 6 is a fixed boundary.

structuralBC(structuralmodel,'Face',6,'Constraint','fixed');

Specify the surface traction for face 5.

structuralBoundaryLoad(structuralmodel,'Face',5, ...
 'SurfaceTraction', ...
 [0;0;-2]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Plot the deformed shape with the von Mises stress using the default scale factor. By default,
pdeplot3D internally determines the scale factor based on the dimensions of the geometry and the
magnitude of deformation.

figure
pdeplot3D(structuralmodel, ...
 'ColorMapData',structuralresults.VonMisesStress, ...
 'Deformation',structuralresults.Displacement)

5 Functions

5-878

Plot the same results with the scale factor 500.

figure
pdeplot3D(structuralmodel, ...
 'ColorMapData',structuralresults.VonMisesStress, ...
 'Deformation',structuralresults.Displacement, ...
 'DeformationScaleFactor',500)

 pdeplot3D

5-879

Plot the same results without scaling.

figure
pdeplot3D(structuralmodel, ...
 'ColorMapData',structuralresults.VonMisesStress)

5 Functions

5-880

von Mises Stress for 3-D Structural Dynamic Problem

Evaluate the von Mises stress in a beam under a harmonic excitation.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 pdeplot3D

5-881

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

Generate a mesh.

generateMesh(structuralmodel,'Hmax',0.01);

Specify the zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the model.

tlist = 0:0.002:0.2;
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-882

Evaluate the von Mises stress in the beam.

vmStress = evaluateVonMisesStress(structuralresults);

Plot the von Mises stress for the last time-step.

figure
pdeplot3D(structuralmodel,'ColorMapData',vmStress(:,end))
title('von Mises Stress in the Beam for the Last Time-Step')

Solution to 3-D Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 3-D
geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

gm = importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(gm,'FaceLabels','on','FaceAlpha',0.3)

 pdeplot3D

5-883

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Apply the voltage boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'Voltage',0,'Face',3:6);
electromagneticBC(emagmodel,'Voltage',1000,'Face',7);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

5 Functions

5-884

 ElectricPotential: [4359x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric potential.

figure
pdeplot3D(emagmodel,'ColorMapData',R.ElectricPotential)

Plot the electric field.

pdeplot3D(emagmodel,'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey ...
 R.ElectricField.Ez])

 pdeplot3D

5-885

3-D Mesh Plot

Create a PDE model, include the geometry, and generate a mesh.

model = createpde;
importGeometry(model,'Tetrahedron.stl');
mesh = generateMesh(model,'Hmax',20,'GeometricOrder','linear');

Plot the surface mesh.

pdeplot3D(model)

5 Functions

5-886

Alternatively, you can plot a mesh by using mesh as an input argument.

pdeplot3D(mesh)

 pdeplot3D

5-887

Another approach is to use the nodes and elements of the mesh as input arguments for pdeplot3D.

pdeplot3D(mesh.Nodes,mesh.Elements)

5 Functions

5-888

Display the node labels on the surface of a simple mesh.

pdeplot3D(model,'NodeLabels','on')
view(101,12)

 pdeplot3D

5-889

Display the element labels.

pdeplot3D(model,'ElementLabels','on')
view(101,12)

5 Functions

5-890

Input Arguments
model — Model object
PDEModel object | ThermalModel object | StructuralModel object | ElectromagneticModel
object

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectromagneticModel object.
Example: model = createpde(3)
Example: thermalmodel = createpde('thermal','steadystate')
Example: structuralmodel = createpde('structural','static-solid')
Example: emagmodel = createpde('electromagnetic','electrostatic')

mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.
Example: model.Mesh

nodes — Nodal coordinates
3-by-NumNodes matrix

 pdeplot3D

5-891

Nodal coordinates, specified as a 3-by-NumNodes matrix. NumNodes is the number of nodes.

elements — Element connectivity matrix in terms of node IDs
4-by-NumElements matrix | 10-by-NumElements matrix

Element connectivity matrix in terms of the node IDs, specified as a 4-by-NumElements or 10-by-
NumElements matrix. Linear meshes contain only corner nodes. For linear meshes, the connectivity
matrix has four nodes per 3-D element. Quadratic meshes contain corner nodes and nodes in the
middle of each edge of an element. For quadratic meshes, the connectivity matrix has 10 nodes per 3-
D element.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: pdeplot3D(model,'NodeLabels','on')

ColorMapData — Data to plot as colored surface
column vector

Data to plot as a colored surface, specified as the comma-separated pair consisting of
'ColorMapData' and a column vector with the number of elements that equals the number of points
in the mesh. Typically, this data is the solution returned by solvepde for a scalar PDE problem and a
component of the solution for a multicomponent PDE system.
Example: 'ColorMapData',results.NodalSolution
Example: 'ColorMapData',results.NodalSolution(:,1)
Data Types: double

FlowData — Data for quiver plot
matrix

5 Functions

5-892

Data for the quiver plot on page 5-868, specified as the comma-separated pair consisting of
'FlowData' and an M-by-3 matrix, where M is the number of mesh nodes. FlowData contains the x,
y, and z values of the field at the mesh points. Set FlowData as follows:

results = solvepde(model);
[cgradx,cgrady,cgradz] = evaluateCGradient(results);
pdeplot3D(model,'FlowData',[cgradx cgrady cgradz])

pdeplot3D plots the real part of complex data.
Example: 'FlowData',[cgradx cgrady cgradz]
Data Types: double

Mesh — Indicator to show mesh
'off' (default) | 'on'

Indicator to show the mesh, specified as the comma-separated pair consisting of 'Mesh' and 'on' or
'off'. Specify 'on' to show the mesh in the plot.
Example: 'Mesh','on'
Data Types: char | string

NodeLabels — Node labels
'off' (default) | 'on'

Node labels, specified as the comma-separated pair consisting of 'NodeLabels' and 'off' or 'on'.
Example: 'NodeLabels','on'
Data Types: char | string

ElementLabels — Element labels
'off' (default) | 'on'

Element labels, specified as the comma-separated pair consisting of 'ElementLabels' and 'off'
or 'on'.
Example: 'ElementLabels','on'
Data Types: char | string

FaceAlpha — Surface transparency for 3-D geometry
1 (default) | real number from 0 through 1

Surface transparency for 3-D geometry, specified as the comma-separated pair consisting of
'FaceAlpha' and a real number from 0 through 1. The default value 1 indicates no transparency.
The value 0 indicates complete transparency.
Example: 'FaceAlpha',0.5
Data Types: double

Deformation — Deformed shape for structural analysis models
FEStruct object representing displacement values at nodes

Deformed shape for structural analysis models, specified as the comma-separated pair consisting of
'Deformation' and the FEStruct object representing displacement values at nodes. The

 pdeplot3D

5-893

displacement FEStruct object is a property of StaticStructuralResults,
TransientStructuralResults, and FrequencyStructuralResults.

In an undeformed shape, center nodes in quadratic meshes are always added at half-distance
between corners. When you plot a deformed shape, the center nodes might move away from the edge
centers.
Example: 'Deformation',results.Displacement

DeformationScaleFactor — Scaling factor for plotting deformed shape
positive number

Scaling factor for plotting the deformed shape, specified as the comma-separated pair consisting of
'DeformationScaleFactor' and a positive number. Use this argument together with the
Deformation name-value pair argument. The pdeplot3D function chooses the default value based
on the geometry itself and on the magnitude of deformation.
Example: 'DeformationScaleFactor',1000
Data Types: double

Output Arguments
h — Handles to graphics objects
vector

Handles to graphics objects, returned as a vector.

See Also
PDEModel | pdeplot | pdegplot | pdemesh

Topics
“3-D Solution and Gradient Plots with MATLAB® Functions” on page 3-317
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

5 Functions

5-894

pdepoly
Package: pde

Draw polygon in PDE Modeler app

Syntax
pdepoly(X,Y)
pdepoly(X,Y,label)

Description
pdepoly(X,Y) draws a polygon with the corner coordinates (vertices) defined by X and Y. The
pdepoly command opens the PDE Modeler app with the specified polygon drawn in it. If the app is
already open, pdepoly adds the specified polygon to the app window without deleting any existing
shapes.

pdepoly updates the state of the geometry description matrix inside the PDE Modeler app to include
the polygon. You can export the geometry description matrix from the PDE Modeler app to the
MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For
details on the format of the geometry description matrix, see decsg.

pdepoly(X,Y,label) assigns a name to the polygon. Otherwise, pdepoly uses a default name,
such as P1, P2, and so on.

Examples

Draw Polygon in PDE Modeler App

Open the PDE Modeler app window containing a polygon representing the L-shaped membrane
geometry.

pdepoly([-1 0 0 1 1 -1],[0 0 1 1 -1 -1])

Call the pdepoly command again to draw the diamond-shaped region with corners in (0.5,0),
(1,-0.5), (0.5,-1), and (0,-0.5). The pdepoly command adds the second polygon to the app
window without deleting the first.

pdepoly([0.5 1 0.5 0],[0 -0.5 -1 -0.5])

 pdepoly

5-895

Assign Name to Polygon in PDE Modeler App

Open the PDE Modeler app window with a polygon representing the L-shaped membrane geometry.
Assign the name L-shaped-membrane to this polygon.

pdepoly([-1 0 0 1 1 -1],[0 0 1 1 -1 -1],'L-shaped-membrane')

5 Functions

5-896

Input Arguments
X — x-coordinates of vertices
vector of real numbers

x-coordinates of vertices defining the polygon, specified as a vector of real numbers.
Example: pdepoly([-1 0 0 1 1 -1],[0 0 1 1 -1 -1])

 pdepoly

5-897

Data Types: double

Y — y-coordinates of vertices
vector of real numbers

y-coordinates of vertices defining the polygon, specified as a vector of real numbers.
Example: pdepoly([-1 0 0 1 1 -1],[0 0 1 1 -1 -1])
Data Types: double

label — Name
character vector | string scalar

Name of the polygon, specified as a character vector or string scalar.
Data Types: char | string

Tips
• pdepoly opens the PDE Modeler app and draws a polygon. If, instead, you want to draw polygons

in a MATLAB figure, use the plot function, for example:

x = [-1,-0.5,-0.5,0,1.5,-0.5,-1];
y = [-1,-1,-0.5,0,0.5,0.9,-1];
plot(x,y,'.-')

See Also
pdecirc | pdeellip | pderect | PDE Modeler

Introduced before R2006a

5 Functions

5-898

pdeprtni
(Not recommended) Interpolate triangle midpoint data to mesh nodes

Note pdeprtni is not recommended. Use interpolateSolution and evaluateGradient
instead.

Syntax
un = pdeprtni(p,t,ut)

Description
un = pdeprtni(p,t,ut) uses the data ut at mesh triangle midpoints to linearly interpolate data at
mesh nodes.

pdeprtni and pdeintrp are not inverse functions because the interpolation introduces some
averaging.

Examples

Data at Mesh Nodes and Triangle Midpoints

Solve the equation −Δu = 1 on the L-shaped membrane and interpolate the solution from nodes to
triangle midpoints.

First, create a [p,e,t] mesh on the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

Solve the equation using the Dirichlet boundary condition u = 0 on ∂Ω. The result is the solution at
the mesh nodes.

un = assempde('lshapeb',p,e,t,1,0,1);

Interpolate the solution from the mesh nodes to the triangle midpoints.

ut = pdeintrp(p,t,un);

Interpolate the solution back to nodes by using the pdeprtni function. Compare the result and the
original solution at the mesh nodes. The pdeprtni and pdeintrp functions are not inverse.

un2 = pdeprtni(p,t,ut);
isequal(un,un2)

ans = logical
 0

 pdeprtni

5-899

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

ut — Data at triangle midpoints
row vector

Data at triangle midpoints, specified as a row vector.

For a PDE system of N equations and a mesh with Nt elements, the first Nt values of ut describe the
first component, the following Nt values of ut describe the second component, and so on.

Output Arguments
un — Data at nodes
column vector

Data at nodes, returned as a column vector.

For a PDE system of N equations and a mesh with Np node points, the first Np values of un describe
the first component, the following Np values of un describe the second component, and so on.
Data Types: double

See Also
pdeintrp | evaluate | pdeInterpolant

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

5 Functions

5-900

pderect
Package: pde

Draw rectangle in PDE Modeler app

Syntax
pderect([xmin xmax ymin ymax])
pderect([xmin xmax ymin ymax], label)

Description
pderect([xmin xmax ymin ymax]) draws a rectangle with the corner coordinates defined by
[xmin xmax ymin ymax]. The pderect command opens the PDE Modeler app with the specified
rectangle drawn in it. If the app is already open, pderect adds the specified rectangle to the app
window without deleting any existing shapes.

pderect updates the state of the geometry description matrix inside the PDE Modeler app to include
the rectangle. You can export the geometry description matrix from the PDE Modeler app to the
MATLAB Workspace by selecting DrawExport Geometry Description, Set Formula, Labels.... For
details on the format of the geometry description matrix, see decsg.

pderect([xmin xmax ymin ymax], label) assigns a name to the rectangle. Otherwise,
pderect uses a default name, such as R1, R2, and so on. For squares, pderect uses the default
names SQ1, SQ2, and so on.

Examples

Draw Rectangle in PDE Modeler App

Open the PDE Modeler app window containing a rectangle with the corners at (-1,-0.5),
(-1,0.5), (1,0.5), and (1,-0.5).

pderect([-1 1 -0.5 0.5])

Call the pderect command again to draw a square with the corners at (-0.25,-0.25),
(-0.25,0.25), (0.25,0.25), and (0.25,-0.25). The pderect command adds the square to the
app window without deleting the rectangle.

pderect([-0.25 0.25 -0.25 0.25])

 pderect

5-901

Assign Name to Rectangle in PDE Modeler App

Open the PDE Modeler app window and draw a rectangle with the corners at (-1,-0.5), (-1,0.5),
(1,0.5), and (1,-0.5). Assign the name rectangle1 to this rectangle.

pderect([-1 1 -0.5 0.5],'rectangle1')

5 Functions

5-902

Input Arguments
[xmin xmax ymin ymax] — Corner coordinates
vector of real numbers

Corner coordinates defining the rectangle, specified as a vector of real numbers.
Example: pderect([-1 0 -1 0])

 pderect

5-903

Data Types: double

label — Name
character vector | string scalar

Name of the rectangle, specified as a character vector or string scalar.
Data Types: char | string

Tips
• pderect opens the PDE Modeler app and draws a rectangle. If, instead, you want to draw

rectangles in a MATLAB figure, use the rectangle function, for example,
rectangle('Position',[1,2,5,6]).

See Also
pdecirc | pdeellip | pdepoly | PDE Modeler

Introduced before R2006a

5 Functions

5-904

pdesdp
Indices of subset of mesh nodes belonging to specified faces of 2-D geometry

Note pdesdp is not recommended. Use findNodes instead.

Syntax
s = pdesdp(p,e,t,FaceID)
[i,c] = pdesdp(p,e,t,FaceID)
___ = pdesdp(p,e,t)

Description
s = pdesdp(p,e,t,FaceID) returns the indices of the nodes of the [p,e,t] mesh shared
between two or more faces listed in FaceID.

[i,c] = pdesdp(p,e,t,FaceID) returns the indices of the nodes of the [p,e,t] mesh belonging
strictly to faces FaceID as i. It also returns the indices of the nodes shared between FaceID and
faces not listed in FaceID as c.

___ = pdesdp(p,e,t) uses any of the previous syntaxes, assuming that FaceID is a list of all
faces of a 2-D geometry.

Examples

Mesh Nodes of Specified Faces

Find the indices of the mesh nodes belonging strictly to the specified faces and the indices of the
nodes shared between faces.

Define two circles and a rectangle and place these in one matrix.

R1 = [3,4,-1,1,1,-1,0.5,0.5,-0.75,-0.75]';
C1 = [1,-0.5,-0.25,0.25]';
C2 = [1,0.5,-0.25,0.25]';
C1 = [C1;zeros(length(R1) - length(C1),1)];
C2 = [C2;zeros(length(R1) - length(C2),1)];
gd = [R1,C1,C2];

Create a set formula that adds the circles to the rectangle.

sf = 'R1+C1+C2';

Create and plot the geometry.

ns = char('R1','C1','C2');
ns = ns';
gd = decsg(gd,sf,ns);
pdegplot(gd,'FaceLabels','on')

 pdesdp

5-905

Create a mesh.

[p,e,t] = initmesh(gd);

Plot the mesh with the node labels.

pdemesh(p,e,t,'NodeLabels','on')

5 Functions

5-906

Find the indices of the mesh nodes shared between faces 1 and 2.

s1 = pdesdp(p,e,t,[1 2])

s1 = 1×8

 5 6 7 8 13 14 15 16

Find the indices of the mesh nodes shared between faces 2 and 3. Since these faces do not share any
nodes, pdesdp returns an empty vector.

s2 = pdesdp(p,e,t,[2 3])

s2 =

 1x0 empty double row vector

Find the nodes belonging strictly to face 2 and also the nodes shared between face 2 and other faces.
Face 2 shares nodes only with face 1, therefore, vectors c and s1 consist of the same face IDs.

[i,c] = pdesdp(p,e,t,2)

i = 1×5

 56 88 90 91 92

 pdesdp

5-907

c = 1×8

 5 6 7 8 13 14 15 16

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

FaceID — Face IDs
vector of integers

Face IDs, specified as a vector of integers.
Data Types: double

Output Arguments
s — Mesh nodes shared between two or more specified faces
row vector of positive integers

Mesh nodes shared between two or more specified faces, returned as a row vector of positive
integers representing the indices of the nodes.

i — Mesh nodes belonging only to specified faces
row vector of positive integers

Mesh nodes belonging only to specified faces, returned as a row vector of positive integers
representing the indices of the nodes.

c — Mesh nodes shared between specified and other faces
row vector of positive integers

5 Functions

5-908

Mesh nodes shared between specified and other faces, returned as a row vector of positive integers
representing the indices of the nodes.

See Also
pdesde | pdesdt

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 pdesdp

5-909

pdesde
Indices of edges of mesh elements belonging to the specified faces of 2-D geometry

Note pdesde is not recommended. Use faceEdges instead.

Syntax
i = pdesde(e,FaceID)
i = pdesde(e)

Description
i = pdesde(e,FaceID) returns the indices of the [p,e,t] mesh edges that belong to outer
boundaries of the geometry for a set of faces listed in FaceID.

i = pdesde(e) assumes that FaceID is a list of all faces of a 2-D geometry.

Examples

Edges of Mesh Elements for Specified Faces

Find the indices of the mesh elements' edges located on the outer boundaries of the geometry and
belonging to the specified faces.

Define two circles and a rectangle and place these in one matrix.

R1 = [3,4,-1,1,1,-1,0.5,0.5,-0.75,-0.75]';
C1 = [1,-0.5,-0.25,0.25]';
C2 = [1,0.5,-0.25,0.25]';
C1 = [C1;zeros(length(R1) - length(C1),1)];
C2 = [C2;zeros(length(R1) - length(C2),1)];
gd = [R1,C1,C2];

Create a set formula that subtracts one circle from the rectangle and adds the other circle to the
rectangle.

sf = 'R1-C1+C2';

Create and plot the geometry.

ns = char('R1','C1','C2');
ns = ns';
gd = decsg(gd,sf,ns);
pdegplot(gd,'FaceLabels','on')

5 Functions

5-910

Create and plot a mesh.

[p,e,t] = initmesh(gd);
pdemesh(p,e,t)

 pdesde

5-911

Find the indices of the mesh elements' edges located on the outer boundaries and belonging to face
1. Display the result as a column vector.

i1 = pdesde(e,1);
i1.'

ans = 42×1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 ⋮

The resulting vector contains indices of all mesh edges in this geometry, except the eight internal
edges surrounding face 2.

length(e) - length(i1)

ans = 8

5 Functions

5-912

Use the pdesde function to find the mesh edges surrounding face 2. The result is an empty vector
because none of these mesh edges belong to the outer boundary of the geometry.

i2 = pdesde(e,2)

i2 =

 1x0 empty double row vector

Input Arguments
e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
details on the mesh data representation, see initmesh.
Data Types: double

FaceID — Face IDs
vector of integers

Face IDs, specified as a vector of integers.
Data Types: double

Output Arguments
i — Indices of mesh edges on outer boundaries
vector of integers

Indices of the mesh edges on the outer boundaries, returned as a vector of integers.

See Also
pdesdp | pdesdt

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 pdesde

5-913

pdesdt
Indices of subset of mesh elements belonging to specified faces of 2-D geometry

Note pdesdt is not recommended. Use findElements instead.

Syntax
i = pdesdt(t,FaceID)
i = pdesdt(t)

Description
i = pdesdt(t,FaceID) returns the indices of the mesh elements of the [p,e,t] mesh that belong
to the set of faces listed in FaceID.

i = pdesdt(t) assumes that FaceID is a list of all faces of a 2-D geometry.

Examples

Mesh Elements of Specified Faces

Find the indices of the mesh elements belonging to the specified faces.

Define two circles and a rectangle and place these in one matrix.

R1 = [3,4,-1,1,1,-1,0.5,0.5,-0.75,-0.75]';
C1 = [1,-0.5,-0.25,0.25]';
C2 = [1,0.5,-0.25,0.25]';
C1 = [C1;zeros(length(R1) - length(C1),1)];
C2 = [C2;zeros(length(R1) - length(C2),1)];
gd = [R1,C1,C2];

Create a set formula that adds the circles to the rectangle.

sf = 'R1+C1+C2';

Create and plot the geometry.

ns = char('R1','C1','C2');
ns = ns';
gd = decsg(gd,sf,ns);
pdegplot(gd,'FaceLabels','on')

5 Functions

5-914

Create a mesh.

[p,e,t] = initmesh(gd);

Plot the mesh with the element labels.

pdemesh(p,e,t,'ElementLabels','on')

 pdesdt

5-915

Find the indices of the mesh elements that belong to face 2. Display the result as a column vector.

i = pdesdt(t,2);
i.'

ans = 16×1

 5
 8
 19
 20
 21
 22
 75
 76
 139
 140
 ⋮

Input Arguments
t — Mesh elements
matrix

5 Functions

5-916

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

FaceID — Face IDs
vector of integers

Face IDs, specified as a vector of integers.
Data Types: double

Output Arguments
i — Mesh elements belonging to specified faces
vector of integers

Mesh elements belonging to the specified faces, returned as a vector of integers.

See Also
pdesdp | pdesde

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 pdesdt

5-917

pdesmech
(Not recommended) Calculate structural mechanics tensor functions

Note pdesmech is not recommended. Use the PDE Modeler app instead.

Syntax
ux = pdesmech(p,t,c,u,'PropertyName',PropertyValue,...)

Description
ux = pdesmech(p,t,c,u,'PropertyName',PropertyValue,...) returns a tensor expression
evaluated at the center of each triangle. The tensor expressions are stresses and strains for structural
mechanics applications with plane stress or plane strain conditions. pdesmech is intended to be used
for postprocessing of a solution computed using the structural mechanics application modes of the
PDE Modeler app, after exporting the solution, the mesh, and the PDE coefficients to the MATLAB
workspace. Poisson's ratio, nu, has to be supplied explicitly for calculations of shear stresses and
strains, and for the von Mises effective stress in plane strain mode.

Valid property name/property value pairs include the following.

Property Name Property Value/Default Description
tensor 'ux' | 'uy' | 'vx' | 'vy' | 'exx' | 'eyy'

| 'exy' |
'sxx' | 'syy' | 'sxy' | 'e1' | 'e2' | 's1'
| 's2' | {'vonmises'}

Tensor expression

application {'ps'} | 'pn' Plane stress | plane strain
nu Scalar | vector | character vector | string scalar | {0.3} Poisson's ratio. Applies to

calculating von Mises
('vonmises') effective
stress in plane strain mode
('pn'). Specify a scalar if
the value is constant over
the entire geometry. Specify
a vector as a row vector
whose length is equal to the
number of elements.
Specify a character vector
or a string scalar in
coefficient form.

The available tensor expressions are

• 'ux', which is ∂u∂x
• 'uy', which is ∂u∂y

5 Functions

5-918

• 'vx', which is ∂v∂x
• 'vy', which is ∂v∂y
• 'exx', the x-direction strain (εx)
• 'eyy', the y-direction strain (εy)
• 'exy', the shear strain (γxy)
• 'sxx', the x-direction stress (σx)
• 'syy', the y-direction stress (σy)
• 'sxy', the shear stress (τxy)
• 'e1', the first principal strain (ε1)
• 'e2', the second principal strain (ε2)
• 's1', the first principal stress (σ1)
• 's2', the second principal stress (σ2)
• 'vonmises', the von Mises effective stress, for plane stress conditions

σ1
2 + σ2

2− σ1σ2

or for plane strain conditions

(σ1
2 + σ2

2)(v2− v + 1) + σ1σ2 2v2− 2v− 1

where v is Poisson’s ratio nu.

Examples
Assuming that a problem has been solved using the application mode Structural Mechanics, Plane
Stress, and that the solution u, the mesh data p and t, and the PDE coefficient c all have been
exported to the MATLAB workspace, the x-direction strain is computed as

sx = pdesmech(p,t,c,u,'tensor','sxx');

To compute the von Mises effective stress for a plane strain problem with Poisson's ratio equal to 0.3,
type

mises = pdesmech(p,t,c,u,'tensor','vonmises',...
 'application','pn','nu',0.3);

Introduced before R2006a

 pdesmech

5-919

PDESolverOptions Properties
Algorithm options for solvers

Description
A PDESolverOptions object contains options used by the solvers when solving a structural,
thermal, or general PDE problem specified as a StructuralModel, ThermalModel, or PDEModel
object, respectively. StructuralModel, ThermalModel, and PDEModel objects contain a
PDESolverOptions object in their SolverOptions property.

Solvers for structural modal analysis problems and reduced-order modeling use the Lanczos
algorithm.

Properties
Statistics and Convergence Report

ReportStatistics — Flag to display internal solver statistics and convergence report
during the solution process
'off' (default) | 'on'

Flag to display the internal solver statistics and the convergence report during the solution process,
returned as 'off' or 'on'.
Example: model.SolverOptions.ReportStatistics = 'on'
Data Types: char

ODE Solver

AbsoluteTolerance — Absolute tolerance for internal ODE solver
1.0000e-06 (default) | positive number

Absolute tolerance for the internal ODE solver, returned as a positive number. Absolute tolerance is a
threshold below which the value of the solution component is unimportant. This property determines
the accuracy when the solution approaches zero.
Example: model.SolverOptions.AbsoluteTolerance = 5.0000e-06
Data Types: double

RelativeTolerance — Relative tolerance for internal ODE solver
1.0000e-03 (default) | positive number

Relative tolerance for the internal ODE solver, returned as a positive number. This tolerance is a
measure of the error relative to the size of each solution component. Roughly, it controls the number
of correct digits in all solution components, except those smaller than thresholds imposed by
AbsoluteTolerance. The default value corresponds to 0.1% accuracy.
Example: model.SolverOptions.RelativeTolerance = 5.0000e-03
Data Types: double

5 Functions

5-920

Nonlinear Solver

ResidualTolerance — Acceptable residual tolerance for internal nonlinear solver
1.0000e-04 (default) | positive number

Acceptable residual tolerance for the internal nonlinear solver, returned as a positive number. The
nonlinear solver iterates until the residual size is less than the value of ResidualTolerance.
Example: model.SolverOptions.ResidualTolerance = 5.0000e-04
Data Types: double

MaxIterations — Maximal number of Gauss-Newton iterations for internal nonlinear solver
25 (default) | positive integer

Maximal number of Gauss-Newton iterations for the internal nonlinear solver, returned as a positive
integer.
Example: model.SolverOptions.MaxIterations = 30
Data Types: double

MinStep — Minimum damping of search direction for internal nonlinear solver
1.5259e-05 (default) | positive number

Minimum damping of the search direction for the internal nonlinear solver, returned as a positive
number. For details, see “Nonlinear Solver Algorithm” on page 5-922.
Example: model.SolverOptions.MinStep = 1.5259e-7
Data Types: double

ResidualNorm — Type of norm for computing residual for internal nonlinear solver
Inf (default) | -Inf | positive number | 'energy'

Type of norm for computing the residual for the internal nonlinear solver, returned as Inf, -Inf, a
positive number, or 'energy'.

The infinity norms of a vector are

ρ ∞ = maxi ρ i

ρ −∞ = mini ρ i

The Lp-norm of a vector ρ that has N elements is

ρ p =
∑

k = 1

N
ρk

p
1
p

N
1
p

The energy norm of a vector ρ is

ρ = ρTKρ

Here, K is the combined stiffness matrix defined in “Nonlinear Solver Algorithm” on page 5-922.

 PDESolverOptions Properties

5-921

Example: model.SolverOptions.ResidualNorm = 'energy'
Data Types: double | char

Lanczos Solver

MaxShift — Maximum number of Lanczos shifts
100 (default) | positive integer

Maximum number of Lanczos shifts, specified as a positive integer. Increase this value when
computing a large number of eigenpairs.
Example: model.SolverOptions.MaxShift = 500
Data Types: double

BlockSize — Block size for block Lanczos recurrence
ranges from 7 to 25 (default) | positive integer

Block size for block Lanczos recurrence, specified as a positive integer. The default number ranges
from 7 to 25, depending on the size of the stiffness matrix K.
Example: model.SolverOptions.BlockSize = 20
Data Types: double

Algorithms
Nonlinear Solver Algorithm

The residual equation of a nonlinear PDE is as follows:

r u = − ∇ ⋅ c u ∇ u + a u u− f u = 0

To obtain a discretized residual equation, apply the finite element method (FEM) to a partial
differential equation as described in “Finite Element Method Basics” on page 1-11:

ρ U = K U U − F U = 0

The nonlinear solver uses a Gauss-Newton iteration scheme applied to the finite element matrices.
Use a Taylor series expansion to obtain the linearized system for the residual:

ρ Un + 1 ≅ ρ Un +
∂ρ Un

∂U Un + 1−Un + … = 0

Neglecting the higher-order terms, write the linearized system of equations as

∂ρ Un

∂U Un + 1−Un = − ρ Un

The descent direction for the residual is

pn = −
∂ρ Un

∂U

−1
ρ Un

5 Functions

5-922

The Gauss-Newton iteration minimizes the residual, that is, the solution of minU ρ U , using the
equation

Un + 1 = Un + αpn

Here, ɑ ≤ 1 is a positive number, that must be set as large as possible so that the step has a
reasonable descent. For a sufficiently small ɑ,

ρ Un + αpn < ρ Un

For the Gauss-Newton algorithm to converge, U0 must be close enough to the solution. The first
guess is often outside the region of convergence. The Armijo-Goldstein line search (a damping
strategy for choosing ɑ) helps to improve convergence from bad initial guesses. This method chooses
the largest damping coefficient ɑ out of the sequence 1, 1/2, 1/4, . . . such that the following
inequality holds:

ρ Un − ρ Un + αpn ≥ α
2 ρ Un

Using the Armijo-Goldstein line search guarantees a reduction of the residual norm by at least
1 − α/2. Each step of the line-search algorithm must evaluate the residual ρ Un + αpn .

With this strategy, when Un approaches the solution, α→1, thus, the convergence rate increases.

See Also
PDEModel | solvepde | solvepdeeig

Introduced in R2016a

 PDESolverOptions Properties

5-923

pdesurf
Surface plot of PDE node or triangle data

Note This page describes the legacy workflow. Use it when you work with legacy code and do not
plan to convert it to use the recommended approach. Otherwise, use pdeplot.

Syntax
pdesurf(p,t,u)
h = pdesurf(p,t,u)

Description
pdesurf(p,t,u) plots a 3-D surface using PDE node or triangle data as a height for a 2-D problem.
The p and t arguments specify the geometry of the PDE problem.

If u is a column vector, pdesurf treats it as node data and uses continuous style and interpolated
shading. If u is a row vector, pdesurf treats it as triangle data and uses discontinuous style and flat
shading.

h = pdesurf(p,t,u) returns handles to the drawn axes objects.

Examples

Surface Plot of PDE Solution

Plot the solution of the equation −Δu = 1 on the L-shaped membrane using the pdesurf function.

First, create a [p,e,t] mesh on the L-shaped membrane.

[p,e,t] = initmesh('lshapeg');

Solve the equation using the Dirichlet boundary conditions u = 0 on ∂Ω.

u = assempde('lshapeb',p,e,t,1,0,1);

Plot the solution at the mesh nodes. When plotting the solution at the nodes, the function uses
continuous style and interpolated shading.

pdesurf(p,t,u)

5 Functions

5-924

Interpolate the solution from the mesh nodes to the triangle midpoints.

ut = pdeintrp(p,t,u);

Plot the interpolated solution. When plotting the solution as a triangle data, the function uses
discontinuous style and flat shading.

pdesurf(p,t,ut)

 pdesurf

5-925

Input Arguments
p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

u — PDE solution
vector

PDE solution, specified as a vector.

The pdesurf function treats a column vector as node data and uses continuous style and
interpolated shading. The function treats a row vector as triangle data and uses discontinuous style
and flat shading.

5 Functions

5-926

Data Types: double

Output Arguments
h — Handles to graphics objects
vector

Handles to graphics objects, returned as a vector.

Tips
• For more control over a surface plot, use the pdeplot function.

See Also
pdecont | pdemesh | pdeplot

Introduced before R2006a

 pdesurf

5-927

PDE Modeler
Create complex 2-D geometries by drawing, overlapping, and rotating basic shapes

Description
The PDE Modeler app provides an interactive interface for solving 2-D geometry problems. Using
the app, you can create complex geometries by drawing, overlapping, and rotating basic shapes, such
as circles, polygons and so on. The app also includes preset modes for applications, such as
electrostatics, magnetostatics, heat transfer, and so on.

When solving a PDE problem in the app, follow these steps:

1 Create a 2-D geometry.
2 Specify boundary conditions.
3 Specify equation coefficients.
4 Generate a mesh.
5 Specify parameters for solving a PDE. The set of parameters depends on the type of PDE. For

parabolic and hyperbolic PDEs, these parameters include initial conditions.
6 Solve the problem.
7 Specify plotting parameters and plot the results.

You can choose to export data to the MATLAB workspace from any step in the app and continue your
work outside the app.

Note The app does not support 3-D geometry problems and systems of more than two PDEs.

5 Functions

5-928

Open the PDE Modeler App
• MATLAB Toolstrip: On the Apps tab, under Math, Statistics and Optimization, click the app

icon.
• MATLAB command prompt: Enter pdeModeler.

Examples
• “Solve 2-D PDEs Using the PDE Modeler App” on page 1-5
• “Open the PDE Modeler App” on page 4-2
• “2-D Geometry Creation in PDE Modeler App” on page 4-3
• “Specify Boundary Conditions in the PDE Modeler App” on page 4-12
• “Specify Coefficients in PDE Modeler App” on page 4-14

 PDE Modeler

5-929

• “Specify Mesh Parameters in the PDE Modeler App” on page 4-24
• “Adjust Solve Parameters in the PDE Modeler App” on page 4-26
• “Plot the Solution in the PDE Modeler App” on page 4-31
• “von Mises Effective Stress and Displacements: PDE Modeler App” on page 3-3
• “Heat Transfer in Block with Cavity: PDE Modeler App” on page 3-227
• “Heat Distribution in Circular Cylindrical Rod: PDE Modeler App” on page 3-268
• “Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App” on page

3-177
• “Poisson's Equation on Unit Disk: PDE Modeler App” on page 3-198
• “Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App” on page 1-7
• “Electrostatic Potential in Air-Filled Frame: PDE Modeler App” on page 3-123
• “Magnetic Field in Two-Pole Electric Motor: PDE Modeler App” on page 3-156
• “Wave Equation on Square Domain: PDE Modeler App” on page 3-275
• “Scattering Problem: PDE Modeler App” on page 3-212
• “Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App” on page 3-166
• “Poisson's Equation on Unit Disk: PDE Modeler App” on page 3-198
• “Minimal Surface Problem: PDE Modeler App” on page 3-220
• “Current Density Between Two Metallic Conductors: PDE Modeler App” on page 3-174
• “L-Shaped Membrane with Rounded Corner: PDE Modeler App” on page 3-287
• “Eigenvalues and Eigenmodes of Square: PDE Modeler App” on page 3-295
• “Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App” on page 3-284

Programmatic Use
pdeModeler opens the PDE Modeler app or brings focus to the app if it is already open.

pdecirc(xc,yc,r) opens the PDE Modeler app and draws a circle with center in (xc,yc) and
radius r.

pdeellip(xc,yc,a,b,phi) opens the PDE Modeler app and draws an ellipse with center in
(xc,yc) and semiaxes a and b. The rotation of the ellipse (in radians) is phi.

pdepoly(x,y) opens the PDE Modeler app and draws a polygon with corner coordinates defined by
x and y.

pderect([xmin xmax ymin ymax]) opens the PDE Modeler app and draws a rectangle with
corner coordinates defined by [xmin xmax ymin ymax].

See Also
Functions
pdecirc | pdeellip | pdepoly | pderect

Topics
“Solve 2-D PDEs Using the PDE Modeler App” on page 1-5

5 Functions

5-930

“Open the PDE Modeler App” on page 4-2
“2-D Geometry Creation in PDE Modeler App” on page 4-3
“Specify Boundary Conditions in the PDE Modeler App” on page 4-12
“Specify Coefficients in PDE Modeler App” on page 4-14
“Specify Mesh Parameters in the PDE Modeler App” on page 4-24
“Adjust Solve Parameters in the PDE Modeler App” on page 4-26
“Plot the Solution in the PDE Modeler App” on page 4-31
“von Mises Effective Stress and Displacements: PDE Modeler App” on page 3-3
“Heat Transfer in Block with Cavity: PDE Modeler App” on page 3-227
“Heat Distribution in Circular Cylindrical Rod: PDE Modeler App” on page 3-268
“Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App” on page 3-177
“Poisson's Equation on Unit Disk: PDE Modeler App” on page 3-198
“Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App” on page 1-7
“Electrostatic Potential in Air-Filled Frame: PDE Modeler App” on page 3-123
“Magnetic Field in Two-Pole Electric Motor: PDE Modeler App” on page 3-156
“Wave Equation on Square Domain: PDE Modeler App” on page 3-275
“Scattering Problem: PDE Modeler App” on page 3-212
“Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App” on page 3-166
“Poisson's Equation on Unit Disk: PDE Modeler App” on page 3-198
“Minimal Surface Problem: PDE Modeler App” on page 3-220
“Current Density Between Two Metallic Conductors: PDE Modeler App” on page 3-174
“L-Shaped Membrane with Rounded Corner: PDE Modeler App” on page 3-287
“Eigenvalues and Eigenmodes of Square: PDE Modeler App” on page 3-295
“Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App” on page 3-284

Introduced before R2006a

 PDE Modeler

5-931

pdetrg
(Not recommended) Triangle geometry data

Note pdetrg is not recommended. Use area instead.

Syntax
[ar,a1,a2,a3] = pdetrg(p,t)
[ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t)

Description
[ar,a1,a2,a3] = pdetrg(p,t) returns the areas of individual mesh triangles as a vector ar and
half of the negative cotangent of each angle as vectors a1,a2,a3.

[ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t) returns the areas of individual mesh triangles
as a vector ar and the gradient components of the triangle base functions as vectors
g1x,g1y,g2x,g2y,g3x,g3y.

Examples

Areas of Individual Mesh Elements

Find the area of each element of a 2-D mesh. In addition, return half of the negative cotangent of
each angle and the gradient components of the triangle base functions for each element.

Generate and plot a mesh for a unit square geometry.

[p,e,t] = initmesh(@squareg);
pdemesh(p,e,t)

5 Functions

5-932

Compute the area of each individual element of the mesh and half of the negative cotangent of each
angle. Display the first 5 elements for each result.

[ar,a1,a2,a3] = pdetrg(p,t);
ar(1:5)

ans = 1×5

 0.0126 0.0148 0.0144 0.0156 0.0118

a1(1:5)

ans = 1×5

 -0.2819 -0.3905 -0.5332 -0.1812 -0.5237

a2(1:5)

ans = 1×5

 -0.5124 -0.2842 -0.1613 -0.4616 -0.3267

a3(1:5)

ans = 1×5

 pdetrg

5-933

 -0.1329 -0.2061 -0.2362 -0.2588 -0.0928

Find the area of the smallest and the largest element of the mesh.

min(ar)

ans = 0.0061

max(ar)

ans = 0.0216

Use the syntax with seven output arguments to compute the gradient components of the triangle base
functions for each element.

[ar,g1x,g1y,g2x,g2y,g3x,g3y] = pdetrg(p,t);

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

Output Arguments
ar — Areas of individual elements
row vector of positive numbers

Areas of individual elements, returned as a row vector of positive numbers.

a1,a2,a3 — Half of negative cotangent of each angle
three row vectors of numbers

Half of the negative cotangent of each angle, returned as three row vectors of numbers.

g1x,g1y,g2x,g2y,g3x,g3y — Gradient components of triangle base functions
six row vectors of numbers

Gradient components of the triangle base functions, returned as six row vectors of numbers.

See Also
area | pdetriq

5 Functions

5-934

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 pdetrg

5-935

pdetriq
(Not recommended) Triangle quality measure

Note pdetriq is not recommended. Use meshQuality instead.

Syntax
q = pdetriq(p,t)

Description
q = pdetriq(p,t) returns a row vector of numbers from 0 through 1 representing the triangle
quality of all the elements of the [p,e,t] mesh.

pdetriq evaluates the quality of a triangle as

q = 4a 3
h1

2 + h2
2 + h3

2

where a is the area and h1, h2, and h3 are the lengths of the edges of the triangle.

The value 0 corresponds to a degenerate triangle with zero area. The value 1 corresponds to a
triangle with h1 = h2 = h3.

Examples

Mesh Element Quality for [p,e,t] Data

Evaluate the quality for each triangle of a [p,e,t] mesh.

Generate and plot a mesh for the geometry consisting of a circle with a diamond hole.

[p,e,t] = initmesh(@scatterg);
pdemesh(p,e,t)
axis equal

5 Functions

5-936

Evaluate the triangle quality for each mesh triangle. Plot the resulting quality values.

q = pdetriq(p,t);
figure
pdeplot(p,e,t,'XYData',q);
axis equal

 pdetriq

5-937

Input Arguments
p — Mesh nodes
matrix

Mesh nodes, specified as a 2-by-Np matrix of nodes (points), where Np is the number of nodes in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh elements
matrix

Mesh elements, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

Output Arguments
q — Triangle quality
row vector

Triangle quality, returned as a row vector of numbers from 0 through 1.

5 Functions

5-938

References
[1] Bank, Randolph E. PLTMG: A Software Package for Solving Elliptic Partial Differential Equations,

User's Guide 6.0. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1990.

See Also
pdetrg | meshQuality

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 pdetriq

5-939

pdeviz
Create and plot PDE visualization object

Syntax
pdeviz(MeshData,NodalData)
pdeviz(MeshData)
pdeviz(___ ,Name,Value)
pdeviz(figure, ___)
V = pdeviz(___)

Description
pdeviz(MeshData,NodalData) creates a PDEVisualization object and plots the data at the
mesh nodes as a surface plot. For details, see PDEVisualization Properties.

pdeviz(MeshData) creates a PDEVisualization object and plots the mesh.

pdeviz(___ ,Name,Value) customizes the plot appearance using one or more Name,Value
arguments. Use name-value arguments with any combination of arguments from the previous
syntaxes.

pdeviz(figure, ___) specifies the graphics container for the PDEVisualization object. For
example, you can plot the object in Figure 3 by specifying pdeviz(figure(3), ___).

V = pdeviz(___) returns a handle to the PDEVisualization object, using any of the previous
syntaxes.

Examples

Mesh and Solution of Structural Model

Use the pdeviz function to create a PDE visualization object and plot it. Change the properties of
this object to interact with the resulting plot.

Create a structural analysis model for a 3-D problem.

structuralmodel = createpde('structural','static-solid');

Import the beam geometry and plot it.

importGeometry(structuralmodel,'SquareBeam.stl');
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-940

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralmodel,'PoissonsRatio',0.3, ...
 'YoungsModulus',210E3);

Specify that face 6 is a fixed boundary.

structuralBC(structuralmodel,'Face',6,'Constraint','fixed');

Specify the surface traction for face 5.

structuralBoundaryLoad(structuralmodel,'Face',5, ...
 'SurfaceTraction',[0;0;-2]);

Generate a mesh and solve the problem.

msh = generateMesh(structuralmodel);
structuralresults = solve(structuralmodel);

Call pdeviz with only the mesh data. This call creates a PDEVisualization object and plots the
mesh.

figure
v = pdeviz(msh)

 pdeviz

5-941

v =
 PDEVisualization with properties:

 MeshData: [1x1 FEMesh]
 NodalData: [0x1 double]
 MeshVisible: on
 Transparency: 1
 Position: [0.1300 0.1100 0.6669 0.8150]
 Units: 'normalized'

 Show all properties

Update the plot by adding the von Mises stress as the NodalData property of the
PDEVisualization object v. The plot now shows the von Mises stress and the mesh.

figure
v.NodalData = structuralresults.VonMisesStress;

Update the plot by adding the displacement as the DeformationData property of the
PDEVisualization object v. The plot shows the deformed shape with the von Mises stress.

figure
v.DeformationData = structuralresults.Displacement;

5 Functions

5-942

Update the plot to hide the mesh.

figure
v.MeshVisible = 'off';

 pdeviz

5-943

Update the plot to show the axes.

figure
v.AxesVisible = 'off';

5 Functions

5-944

Input Arguments
MeshData — Finite element mesh
FEMesh object

Finite element mesh, specified as an FEMesh object.

NodalData — Data at mesh nodes
column vector

Data at mesh nodes, specified as a column vector.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
pdeviz(model.Mesh,results.NodalSolution,'MeshVisible','on','DeformationData',
results.Displacement)

Transparency — Surface transparency
1 (default) | real number from 0 through 1

 pdeviz

5-945

Surface transparency, specified as a real number from 0 through 1. The default value 1 indicates no
transparency. The value 0 indicates complete transparency.
Data Types: double

MeshVisible — Toggle to show mesh
'on' | 'off' | on/off logical value

Toggle to show mesh, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this argument as a logical value.

When plotting only the mesh, the default is 'on'. Otherwise, the default is 'off'.
Data Types: char | string

DeformationData — Mesh deformation data
FEStruct object | matrix | structure array

Mesh deformation data, specified as one of the following:

• An FEStruct object with the properties ux, uy, and, for a 3-D geometry, uz
• A structure array with the fields ux, uy, and, for a 3-D geometry, uz
• A matrix with either two columns for a 2-D geometry or three columns for a 3-D geometry

DeformationScaleFactor — Level of mesh deformation
nonnegative number

Level of mesh deformation, specified as a nonnegative number. Use this name-value argument
together with DeformationData.

pdeviz computes the default value of DeformationScaleFactor based on the mesh and the value
of DeformationData.
Data Types: double

AxesVisible — Toggle to hide or show axes
'on' (default) | 'off' | on/off logical value

Toggle to hide or show axes, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this argument as a logical value.

AxesColor — Background color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

Output Arguments
V — Visualization container
handle

Visualization container, returned as a handle to the PDEVisualization object. For details, see
PDEVisualization Properties.

5 Functions

5-946

See Also
pdeplot | pdeplot3D | pdemesh | PDEVisualization Properties

Introduced in R2021a

 pdeviz

5-947

PDEVisualization Properties
PDE visualization of mesh and nodal results

Description
PDEVisualization properties control the appearance and behavior of a PDEVisualization
object. By changing property values, you can modify certain aspects of the visualization.

Create a PDEVisualization object using the pdeviz function.

Properties
Displayed Data

MeshData — Finite element mesh
FEMesh object

Finite element mesh, specified as an FEMesh object.

NodalData — Data at mesh nodes
vector

Data at mesh nodes, specified as a vector.
Data Types: double

DeformationData — Mesh deformation data
FEStruct object | matrix | structure array

Mesh deformation data, specified as one of the following:

• An FEStruct object with the properties ux, uy, and, for a 3-D geometry, uz
• A structure array with the fields ux, uy, and, for a 3-D geometry, uz
• A matrix with either two columns for a 2-D geometry or three columns for a 3-D geometry

Data Types: double

DeformationScaleFactor — Level of mesh deformation
nonnegative number

Level of mesh deformation, specified as a nonnegative number.

The toolbox computes the default value of DeformationScaleFactor based on the mesh and the
value of DeformationData.
Example: v.DeformationScaleFactor = 1000;
Data Types: double

XLimits, YLimits, ZLimits — Axis limits
two-element vector of the form [min max]

5 Functions

5-948

Axis limits, specified as a two-element vector of the form [min max], where max is greater than min.
You can specify the limits as numeric, categorical, datetime, or duration values. The type of values
that you specify must match the type of values along the axis.

You can specify both limits or you can specify one limit and let the axes automatically calculate the
other. For an automatically calculated minimum or maximum limit, use -Inf or Inf, respectively.
Example: ax.XLim = [0 10]
Example: ax.YLim = [-Inf 10]
Example: ax.ZLim = [0 Inf]

Color and Styling

ColorLimits — Color limits
two-element vector

Color limits, specified as a two-element vector of the form [min max]. The color limits indicate the
color data values that map to the first and last colors in the colormap.
Example: v.ColorLimits = [0 10];

ColorbarVisible — Colorbar visibility
'on' (default) | on/off logical value

Colorbar visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A
value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value
of this property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
Example: v.ColorbarVisible = 'off';

MeshVisible — Mesh visibility
'on' | 'off' | on/off logical value

Mesh visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of
'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.
Example: v.MeshVisible = 'on';
Data Types: char | string

Transparency — Surface transparency
1 (default) | real number from 0 through 1

Surface transparency, specified as a real number from 0 through 1. The default value 1 indicates no
transparency. The value 0 indicates complete transparency.

When you use the Transparency argument for solution plots, the plot colors might not match the
color bar values. Always use a fully opaque plot to estimate the solution values.
Data Types: double

AxesVisible — Toggle to hide or show axes
'on' (default) | 'off' | on/off logical value

 PDEVisualization Properties

5-949

Toggle to hide or show axes, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0
(false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use
the value of this argument as a logical value.

AxesColor — Background color
RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'

Background color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

Labels

XLabel, YLabel, ZLabel — Text object for axis label
character vector | cell array of character vectors | string array | categorical array

Axis labels, specified as character vectors, cell arrays of character vectors, string arrays, or
categorical arrays.
Example: v.XLabel = 'time';

Title — Chart title
character vector | cell array of character vectors | string array | categorical array

Chart title, specified as a character vector, cell array of character vectors, string array, or categorical
array.
Example: v.Title = 'My Title Text';

To create a multi-line title, specify a cell array of character vectors or a string array. Each element in
the array corresponds to a line of text.
Example: v.Title = {'My','Title'};

If you specify the title as a categorical array, MATLAB uses the values in the array, not the categories.

If you create the chart using tabular data, the default chart has an autogenerated title. If you do not
want a title, specify ''.

Interactivity

Visible — State of visibility
'on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.OnOffSwitchState.

• 'on' — Display the chart.
• 'off' — Hide the chart without deleting it. You still can access the properties of chart when it is

not visible.

Parent/Child

Parent — Parent container
Figure object (default) | Panel object | Tab object | TiledChartLayout object

5 Functions

5-950

Parent container of the chart, specified as a Figure, Panel, Tab, or TiledChartLayout object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of these
values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing unintended

changes by another function. Set the HandleVisibility to 'off' to temporarily hide the
handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but permits callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. Examples
of such functions include the get, findobj, gca, gcf, gco, newplot, cla, clf, and close
functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles regardless of their HandleVisibility property setting.

Position

OuterPosition — Chart size and location, including margins
[left bottom width height]

Chart size and location, including the margins for decorations such as axis labels and tick marks.
Specify this property as a vector of form [left bottom width height]. The values are in the
units specified by the Units property.

• left — Distance from the left edge of the parent container to the outer-left edge of the chart that
includes the margins. Typically, the parent container is a figure, panel, or tab.

• bottom — Distance from the bottom edge of the parent container to the outer-bottom edge of the
chart that includes the margins.

• width — Width of chart, including the margins.
• height — Height of chart, including the margins.

Note Setting this property has no effect when the parent of the chart is a TiledChartLayout.

InnerPosition — Chart size and location, excluding margins
[left bottom width height]

Chart size and location, excluding the margins for decorations such as axis labels and tick marks.
Specify this property as a vector of form [left bottom width height]. The values are in the
units specified by the Units property.

• left — Distance from the left edge of the parent container to the inner-left edge of the chart that
excludes the margins. Typically, the parent container is a figure, panel, or tab.

 PDEVisualization Properties

5-951

• bottom — Distance from the bottom edge of the parent container to the inner-bottom edge of the
chart that excludes the margins.

• width — Width of the of chart, excluding the margins.
• height — Height of the chart, excluding the margins.

Note Setting this property has no effect when the parent of the chart is a TiledChartLayout.

Position — Chart size and location, excluding margins
[left bottom width height]

Chart size and location, excluding the margins for decorations such as axis labels and tick marks.
Specify this property as a vector of form [left bottom width height]. This property is
equivalent to the InnerPosition property.

Note Setting this property has no effect when the parent of the chart is a TiledChartLayout.

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition'

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

• 'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

• 'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
'normalized' (default) | 'inches' | 'centimeters' | 'characters' | 'points' | 'pixels'

Position units, specified as a value from the following table. To change the position of the chart in
specific units, set the Units property before specifying the Position property. If you specify the
Units and Position properties in a single command (using name-value pairs), be sure to specify
Units before Position.

Units Description
'normalized' (default) Normalized with respect to the parent container,

which is typically the figure, panel, or tab. The
lower left corner of the container maps to (0,0),
and the upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.

5 Functions

5-952

Units Description
'characters' Based on the default font of the graphics root

object:

• Character width = width of letter x.
• Character height = distance between the

baselines of two lines of text.
'points' Typography points. One point equals 1/72 inch.
'pixels' Distances in pixels are independent of your

system resolution on Windows® and Macintosh
systems:

• On Windows systems, a pixel is 1/96th of an
inch.

• On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions

Layout options, specified as a TiledChartLayoutOptions object. This property specifies options
when an instance of your chart is a child of a tiled chart layout. If the instance is not a child of a tiled
chart layout (for example, it is a child of a figure or panel), then this property is empty and has no
effect. Otherwise, you can position the chart within the layout by setting the Tile and TileSpan
properties on the TiledChartLayoutOptions object.

For example, this code places chart object c into the third tile of a tiled chart layout.

c.Layout.Tile = 3;

To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

Note Tiled chart layouts are not supported for the axes returned by the getAxes method. Instead,
you can place an instance of your chart into a tiled chart layout.

See Also
pdeviz

Introduced in R2021a

 PDEVisualization Properties

5-953

poimesh
(Not recommended) Generate regular mesh on rectangular geometry

Note poimesh is not recommended. To solve Poisson's equations, use solvepde. For details, see
“Solve Problems Using PDEModel Objects”.

Syntax
[p,e,t] = poimesh(g,nx,ny)
[p,e,t] = poimesh(g,n)
[p,e,t] = poimesh(g)

Description
[p,e,t] = poimesh(g,nx,ny) constructs a regular mesh on the rectangular geometry by dividing
the rectangle into nx pieces along the x-direction and ny pieces along the y-direction, thus resulting
in (nx + 1)*(ny + 1) nodes in the domain. The x-direction is the direction along the edge that
makes the smallest angle with the x-axis.

For best performance with poisolv, the larger of nx and ny must be a power of 2.

If g is not a rectangle, poimesh returns p as zero.

[p,e,t] = poimesh(g,n) divides each edge into n pieces, that is, nx = ny = n.

[p,e,t] = poimesh(g) uses the value nx = ny = n = 1.

Examples

Fast Poisson Solver

Solve the Poisson's equation −Δu = 3x2 on a square domain with Dirichlet boundary conditions using
the poisolv function.

Create a model object and include the square geometry created using the squareg function.

model = createpde;
g = @squareg;
geometryFromEdges(model,g);

Plot the geometry with the edge labels.

pdegplot(model,'EdgeLabels','on')
axis([-1.1 1.1 -1.1 1.1])

5 Functions

5-954

Apply the following Dirichlet boundary conditions. The solution is 0 . 2 cos πy/2 on the right
boundary (edge 2) and zero on all other boundaries.

innerBC = @(region,state) 0.2*cos(pi/2*region.y);
applyBoundaryCondition(model,'Dirichlet','Edge',2,'u',innerBC);
applyBoundaryCondition(model,'Dirichlet','Edge',[1 3 4],'u',0);

The fast Poisson solver requires a regular rectangular grid. Use the poimesh function to generate a
mesh meeting this requirement. Plot the mesh.

[p,e,t] = poimesh(g,16);
figure;
pdemesh(p,e,t);
axis equal

 poimesh

5-955

Specify the PDE coefficients.

c = 1;
a = 0;
f = '3*x.^2';

Solve the equation on different meshes using the poisolv function.

for n = [16 32 64 128 256 512]
 [p,e,t] = poimesh(g,n);
 tic;
 u = poisolv(model,p,e,t,f);
 tfast = toc;
 fprintf('%-5d|%15.5g\n',n,tfast);
end

16 | 0.50471
32 | 0.08859
64 | 0.11504
128 | 0.11639
256 | 0.34851
512 | 0.97411

Plot the solution on the finest mesh.

figure;
pdesurf(p,t,u);

5 Functions

5-956

Input Arguments
g — Rectangular geometry
decomposed geometry matrix | geometry function | handle to geometry function

Rectangular geometry, specified as a decomposed geometry matrix, a geometry function, or a handle
to the geometry function. For details about a decomposed geometry matrix, see decsg. For details
about geometry functions, see “Parametrized Function for 2-D Geometry Creation” on page 2-10.

A geometry function must return the same result for the same input arguments in every function call.
Thus, it must not contain functions and expressions designed to return a variety of results, such as
random number generators.

If g is not a rectangle, poimesh returns p as zero.
Data Types: double | char | string | function_handle

nx — Number of divisions along x-direction
positive integer

Number of divisions along the x-direction, specified as a positive integer.
Data Types: double

ny — Number of divisions along y-direction
positive integer

 poimesh

5-957

Number of divisions along the y-direction, specified as a positive integer.
Data Types: double

n — Number of divisions
positive integer

Number of divisions along both the x- and y-direction, specified as a positive integer. In this case,
both the x- and y-edges are divided into the same number of pieces.
Data Types: double

Output Arguments
p — Mesh points
matrix

Mesh points, returned as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For details on the mesh data representation, see initmesh.
Data Types: double

e — Mesh edges
matrix

Mesh edges, returned as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, returned as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

See Also
poisolv

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

5 Functions

5-958

poisolv
(Not recommended) Fast solver for Poisson's equation on rectangular grid

Note poisolv is not recommended. To solve Poisson's equations, use solvepde. For details, see
“Solve Problems Using PDEModel Objects”.

Syntax
u = poisolv(model,p,e,t,f)
u = poisolv(b,p,e,t,f)

Description
u = poisolv(model,p,e,t,f) solves a Poisson's equation Δu = f on a regular rectangular
[p,e,t] mesh. The model must have only Dirichlet boundary conditions. A combination of sine
transforms and tridiagonal solutions is used for increased performance.

u = poisolv(b,p,e,t,f) solves a Poisson's equation with Dirichlet boundary conditions u = b on
a regular rectangular [p,e,t] mesh.

Examples

Fast Poisson Solver

Solve the Poisson's equation −Δu = 3x2 on a square domain with Dirichlet boundary conditions using
the poisolv function.

Create a model object and include the square geometry created using the squareg function.

model = createpde;
g = @squareg;
geometryFromEdges(model,g);

Plot the geometry with the edge labels.

pdegplot(model,'EdgeLabels','on')
axis([-1.1 1.1 -1.1 1.1])

 poisolv

5-959

Apply the following Dirichlet boundary conditions. The solution is 0 . 2 cos πy/2 on the right
boundary (edge 2) and zero on all other boundaries.

innerBC = @(region,state) 0.2*cos(pi/2*region.y);
applyBoundaryCondition(model,'Dirichlet','Edge',2,'u',innerBC);
applyBoundaryCondition(model,'Dirichlet','Edge',[1 3 4],'u',0);

The fast Poisson solver requires a regular rectangular grid. Use the poimesh function to generate a
mesh meeting this requirement. Plot the mesh.

[p,e,t] = poimesh(g,16);
figure;
pdemesh(p,e,t);
axis equal

5 Functions

5-960

Specify the PDE coefficients.

c = 1;
a = 0;
f = '3*x.^2';

Solve the equation on different meshes using the poisolv function.

for n = [16 32 64 128 256 512]
 [p,e,t] = poimesh(g,n);
 tic;
 u = poisolv(model,p,e,t,f);
 tfast = toc;
 fprintf('%-5d|%15.5g\n',n,tfast);
end

16 | 0.50471
32 | 0.08859
64 | 0.11504
128 | 0.11639
256 | 0.34851
512 | 0.97411

Plot the solution on the finest mesh.

figure;
pdesurf(p,t,u);

 poisolv

5-961

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

b — Dirichlet boundary conditions for all boundary points
boundary matrix | boundary file

Dirichlet boundary conditions for all boundary points, specified as a boundary matrix or boundary file.
Pass a boundary file as a function handle or as a file name. A boundary matrix is generally an export
from the PDE Modeler app.
Example: b = 'circleb1', b = "circleb1", or b = @circleb1
Data Types: double | char | string | function_handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For details on the mesh data representation, see initmesh.

5 Functions

5-962

Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
details on the mesh data representation, see initmesh.
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For details on the mesh data representation, see initmesh.
Data Types: double

f — Right side of Poisson's equation
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

Right side of a Poisson's equation, specified as a scalar, matrix, character vector, character array,
string scalar, string vector, or coefficient function.
Data Types: double | char | string | function_handle

Output Arguments
u — PDE solution
vector

PDE solution, returned as a vector.

References
[1] Strang, G. Introduction to Applied Mathematics. Wellesley-Cambridge Press, Cambridge, MA,

1986, pp. 453–458.

See Also
poimesh

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 poisolv

5-963

reconstructSolution
Package: pde

Recover full-model transient solution from reduced-order model results

Syntax
structuralresults = reconstructSolution(Rcb,u,ut,utt,tlist)

Description
structuralresults = reconstructSolution(Rcb,u,ut,utt,tlist) recovers the full
solution from the reduced-order model Rcb, displacement u, velocity ut, and acceleration utt.
Typically, the displacement, velocity, and acceleration are the values returned by Simscape.

Examples

Reconstruct Solution from ROM Results

Knowing the solution in terms of the interface DoFs and modal DoFs, reconstruct the solution for the
full model.

Create a structural model for transient analysis.

modelT = createpde('structural','transient-solid');

Create a square cross-section beam geometry and include it in the model.

gm = multicuboid(0.05,0.003,0.003);
modelT.Geometry = gm;

Plot the geometry, displaying face and edge labels.

figure
pdegplot(modelT,'FaceLabels','on','FaceAlpha',0.5)
view([71 4])

5 Functions

5-964

figure
pdegplot(modelT,'EdgeLabels','on','FaceAlpha',0.5)
view([71 4])

 reconstructSolution

5-965

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelT,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(modelT,'Edge',[2 8 11 12],'Constraint','fixed');

Add a vertex at the center of face 3.

loadedVertex = addVertex(gm,'Coordinates',[0.025 0.0 0.0015]);

Generate a mesh.

generateMesh(modelT);

Apply a sinusoidal concentrated force in the z-direction on the new vertex.

structuralBoundaryLoad(modelT,'Vertex',loadedVertex, ...
 'Force',[0;0;10],'Frequency',6000);

Specify zero initial conditions.

structuralIC(modelT,'Velocity',[0 0 0],'Displacement',[0 0 0]);

Define superelement interfaces using the fixed and loaded boundaries. In this case, the reduced order
model retains the DoFs on the fixed face and the loaded vertex while condensing all other DoFs in

5 Functions

5-966

favor of modal DoFs. For better performance, use the set of edges bounding face 5 instead of using
the entire face.

structuralSEInterface(modelT,'Edge',[2 8 11 12]);
structuralSEInterface(modelT,'Vertex',loadedVertex);

Reduce the structure, retaining all fixed interface modes up to 5e5.

rom = reduce(modelT,'FrequencyRange',[-0.1,5e5]);

Next, use the reduced order model to simulate the transient dynamics. Use the ode15s function
directly to integrate the reduced system ODE. Working with the reduced model requires indexing into
the reduced system matrices rom.K and rom.M. First, construct mappings of indices of K and M to
loaded and fixed DoFs by using the data available in rom.

DoFs correspond to translational displacements. If the number of mesh points in a model is Nn, then
the toolbox assigns the IDs to the DoFs as follows: the first 1 to Nn are x-displacements, Nn+1 to 2*Nn
are y-displacements, and 2Nn+1 to 3*Nn are z-displacements. The reduced model object rom contains
these IDs for the retained DoFs in rom.RetainedDoF.

Create a function that returns DoF IDs given node IDs and the number of nodes.

getDoF = @(x,numNodes) [x(:); x(:) + numNodes; x(:) + 2*numNodes];

Knowing the DoF IDs for the given node IDs, use the intersect function to find the required
indices.

numNodes = size(rom.Mesh.Nodes,2);

loadedNode = findNodes(rom.Mesh,'region','Vertex',loadedVertex);
loadDoFs = getDoF(loadedNode,numNodes);
[~,loadNodeROMIds,~] = intersect(rom.RetainedDoF,loadDoFs);

In the reduced matrices rom.K and rom.M, generalized modal DoFs appear after the retained DoFs.

fixedIntModeIds = (numel(rom.RetainedDoF) + 1:size(rom.K,1))';

Because fixed-end DoFs are not a part of the ODE system, the indices for the ODE DoFs in reduced
matrices are as follows.

odeDoFs = [loadNodeROMIds;fixedIntModeIds];

The relevant components of rom.K and rom.M for time integration are:

Kconstrained = rom.K(odeDoFs,odeDoFs);
Mconstrained = rom.M(odeDoFs,odeDoFs);
numODE = numel(odeDoFs);

Now you have a second-order system of ODEs. To use ode15s, convert this into a system of first-
order ODEs by applying linearization. Such a first-order system is twice the size of the second-order
system.

Mode = [eye(numODE,numODE), zeros(numODE,numODE); ...
 zeros(numODE,numODE), Mconstrained];
Kode = [zeros(numODE,numODE), -eye(numODE,numODE); ...
 Kconstrained, zeros(numODE,numODE)];
Fode = zeros(2*numODE,1);

 reconstructSolution

5-967

The specified concentrated force load in the full system is along the z-direction, which is the third
DoF in the ODE system. Accounting for the linearization to obtain the first-order system gives the
loaded ODE DoF.

loadODEDoF = numODE + 3;

Specify the mass matrix and the Jacobian for the ODE solver.

odeoptions = odeset;
odeoptions = odeset(odeoptions,'Jacobian',-Kode);
odeoptions = odeset(odeoptions,'Mass',Mode);

Specify zero initial conditions.

u0 = zeros(2*numODE,1);

Solve the reduced system by using ode15s and the helper function CMSODEf, which is defined at the
end of this example.

tlist = 0:0.00005:3E-3;
sol = ode15s(@(t,y) CMSODEf(t,y,Kode,Fode,loadODEDoF), ...
 tlist,u0,odeoptions);

Compute the values of the ODE variable and the time derivatives.

[displ,vel] = deval(sol,tlist);

Knowing the solution in terms of the interface DoFs and modal DoFs, you can reconstruct the solution
for the full model. The reconstructSolution function requires the displacement, velocity, and
acceleration at all DoFs in rom. Construct the complete solution vector, including the zero values at
the fixed DoFs.

u = zeros(size(rom.K,1),numel(tlist));
ut = zeros(size(rom.K,1),numel(tlist));
utt = zeros(size(rom.K,1),numel(tlist));
u(odeDoFs,:) = displ(1:numODE,:);
ut(odeDoFs,:) = vel(1:numODE,:);
utt(odeDoFs,:) = vel(numODE+1:2*numODE,:);

Construct a transient results object using this solution.

RTrom = reconstructSolution(rom,u,ut,utt,tlist);

Compute the displacement in the interior at the center of the beam using the reconstructed solution.

coordCenter = [0;0;0];
iDispRTrom = interpolateDisplacement(RTrom, coordCenter);
figure
plot(tlist,iDispRTrom.uz)
title('Z-Displacement at Geometric Center')

5 Functions

5-968

ODE Helper Function

function f = CMSODEf(t,u,Kode,Fode,loadedVertex)
Fode(loadedVertex) = 10*sin(6000*t);
f = -Kode*u +Fode;
end

Input Arguments
Rcb — Structural results obtained using Craig-Bampton order reduction method
ReducedStructuralModel object

Structural results obtained using the Craig-Bampton order reduction method, specified as a
ReducedStructuralModel object.

u — Displacement
matrix

Displacement, specified as a matrix. The number of rows in the matrix must equal the sum of the
numbers of interface degrees of freedom and the number of modes. The X-displacements at the
retained degrees of freedom must appear first, then the y-displacements, and, for a 3-D geometry, z-
displacements, followed by the generalized modal degrees of freedom. The number of columns must
equal the number of elements in tlist.
Data Types: double

 reconstructSolution

5-969

ut — Velocity
matrix

Velocity, specified as a matrix. The number of rows in the matrix must equal the sum of the numbers
of interface degrees of freedom and the number of modes. The X-velocities at the retained degrees of
freedom must appear first, then the y-velocities, and, for a 3-D geometry, z-velocities, followed by the
generalized modal degrees of freedom. The number of columns must equal the number of elements in
tlist.
Data Types: double

utt — Acceleration
matrix

Acceleration, specified as a matrix. The number of rows in the matrix must equal the sum of the
numbers of interface degrees of freedom and the number of modes. The X-accelerations at the
retained degrees of freedom must appear first, then the y-accelerations, and, for a 3-D geometry, z-
accelerations, followed by the generalized modal degrees of freedom. The number of columns must
equal the number of elements in tlist.
Data Types: double

tlist — Solution times for solving reduced-order model
real vector

Solution times for solving the reduced-order model, specified as a real vector.
Data Types: double

Output Arguments
structuralresults — Transient structural results
TransientStructuralResults object

Transient structural results, returned as a TransientStructuralResults object. The object
contains the displacement, velocity, and acceleration values at the nodes of the triangular or
tetrahedral mesh generated by generateMesh.

See Also
StructuralModel | ReducedStructuralModel | reduce | structuralBC |
structuralSEInterface | solve

Introduced in R2019b

5 Functions

5-970

reduce
Package: pde

Reduce structural model

Syntax
Rcb = reduce(structuralmodel,'FrequencyRange',[omega1,omega2])

Description
Rcb = reduce(structuralmodel,'FrequencyRange',[omega1,omega2]) reduces a
structural analysis model to the fixed interface modes in the frequency range [omega1,omega2] and
the boundary interface degrees of freedom.

Examples

Reduce Transient Structural Model

Reduce the model to the fixed interface modes in the specified frequency range and the boundary
interface degrees of freedom.

Create a transient structural model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

 reduce

5-971

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);

Generate a mesh.

generateMesh(structuralmodel);

Specify the ends of the beam as structural superelement interfaces. The reduced-order model
technique retains the degrees of freedom on the superelement interfaces while condensing the
degrees of freedom on all other boundaries. For better performance, use the set of edges that bound
each side of the beam instead of using the entire face.

structuralSEInterface(structuralmodel,'Edge',[4,6,9,10]);
structuralSEInterface(structuralmodel,'Edge',[2,8,11,12]);

Reduce the model to the fixed interface modes in the frequency range [-Inf,500000] and the
boundary interface degrees of freedom.

R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])

R =
 ReducedStructuralModel with properties:

 K: [166x166 double]
 M: [166x166 double]

5 Functions

5-972

 NumModes: 22
 RetainedDoF: [144x1 double]
 ReferenceLocations: []
 Mesh: [1x1 FEMesh]

Input Arguments
structuralmodel — Structural model
StructuralModel object

Structural model, specified as a StructuralModel object. The model contains the geometry, mesh,
structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

[omega1,omega2] — Frequency range
vector of two elements

Frequency range, specified as a vector of two elements. Define omega1 as slightly smaller than the
lowest mode's frequency and omega2 as slightly larger than the highest mode's frequency. For
example, if the lowest expected frequency is zero, then use a small negative value for omega1.

You can find natural frequencies and mode shapes for the specified frequency range by solving a
modal analysis problem first. Then you can use a more precise frequency range to reduce the model.
Note that a modal analysis problem still requires you to specify a frequency range. For example, see
“Modal Superposition Method for Structural Dynamics Problem” on page 3-91.
Example: [-0.1,1000]
Data Types: double

Output Arguments
Rcb — Structural results obtained using Craig-Bampton order reduction method
ReducedStructuralModel object

Structural results obtained using the Craig-Bampton order reduction method, returned as a
ReducedStructuralModel object.

See Also
reconstructSolution | StructuralModel | solve | structuralBC |
structuralSEInterface | ReducedStructuralModel

Introduced in R2019b

 reduce

5-973

ReducedStructuralModel
Reduced order structural model results

Description
A ReducedStructuralModel object contains the stiffness matrix K, mass matrix M, mesh,
multipoint constraint reference locations, and IDs of retained degrees of freedom.

To expand this data to a full solution that includes displacement, velocity, and acceleration, use
reconstructSolution.

Creation
Reduce a structural model by using the reduce function. This function returns structural results
obtained using the Craig-Bampton reduced order method as a ReducedStructuralModel object.

Properties
K — Reduced stiffness matrix
real matrix

Reduced stiffness matrix, returned as a real N-by-N matrix.

• For models without multipoint constraints, N is the sum of the number of retained degrees of
freedom and the number of fixed interface modes.

• For models with Nmp multipoint constraints, N is the sum of 6*Nmp and the number of fixed
interface modes.

Data Types: double

M — Reduced mass matrix
real matrix

Reduced mass matrix, returned as a real N-by-N matrix.

• For models without multipoint constraints, N is the sum of the number of retained degrees of
freedom and the number of fixed interface modes.

• For models with Nmp multipoint constraints, N is the sum of 6*Nmp and the number of fixed
interface modes.

Data Types: double

NumModes — Number of fixed interface modes
integer

Number of fixed interface modes, returned as an integer.
Data Types: double

5 Functions

5-974

RetainedDoF — IDs of retained degrees of freedom
real vector

IDs of retained degrees of freedom, returned as a real vector.
Data Types: double

ReferenceLocations — Multipoint constraint reference locations
real matrix

Multipoint constraint reference locations, returned as a real 2-by-Nmp or 3-by-Nmp matrix for a 2-D or
3-D geometry, respectively. Here, Nmp is the number of multipoint constraints. If there are no
multipoint constraints, ReferenceLocations is an empty matrix.
Data Types: double

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

Object Functions
reconstructSolution Recover full-model transient solution from reduced-order model results

Examples

Reduce Transient Structural Model

Reduce the model to the fixed interface modes in the specified frequency range and the boundary
interface degrees of freedom.

Create a transient structural model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

 ReducedStructuralModel

5-975

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);

Generate a mesh.

generateMesh(structuralmodel);

Specify the ends of the beam as structural superelement interfaces. The reduced-order model
technique retains the degrees of freedom on the superelement interfaces while condensing the
degrees of freedom on all other boundaries. For better performance, use the set of edges that bound
each side of the beam instead of using the entire face.

structuralSEInterface(structuralmodel,'Edge',[4,6,9,10]);
structuralSEInterface(structuralmodel,'Edge',[2,8,11,12]);

Reduce the model to the fixed interface modes in the frequency range [-Inf,500000] and the
boundary interface degrees of freedom.

R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])

R =
 ReducedStructuralModel with properties:

 K: [166x166 double]
 M: [166x166 double]

5 Functions

5-976

 NumModes: 22
 RetainedDoF: [144x1 double]
 ReferenceLocations: []
 Mesh: [1x1 FEMesh]

More About
Degrees of Freedom (DoFs)

In Partial Differential Equation Toolbox, each node of a 2-D or 3-D geometry has two or three degrees
of freedom (DoFs), respectively. DoFs correspond to translational displacements. If the number of
mesh points in a model is NumNodes, then the toolbox assigns the IDs to the degrees of freedom as
follows:

• Numbers from 1 to NumNodes correspond to an x-displacement at each node.
• Numbers from NumNodes+1 to 2*NumNodes correspond to a y-displacement at each node.
• Numbers from 2*NumNodes+1 to 3*NumNodes correspond to a z-displacement at each node of a

3-D geometry.

See Also
reduce | reconstructSolution | structuralSEInterface | structuralBC |
StructuralModel

Introduced in R2019b

 ReducedStructuralModel

5-977

refinemesh
Package: pde

Refine triangular mesh

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow. For the corresponding step in the recommended workflow, see generateMesh.

Syntax
[p1,e1,t1] = refinemesh(g,p,e,t)
[p1,e1,t1,u1] = refinemesh(g,p,e,t,u)
[___] = refinemesh(___ ,it)
[___] = refinemesh(___ ,'longest')

Description

Note This function does not support quadratic 2-D elements.

[p1,e1,t1] = refinemesh(g,p,e,t) returns a refined version of the triangular mesh given by
the mesh data p, e, and t. For details on the mesh data representation, see “Mesh Data as [p,e,t]
Triples” on page 2-150.

[p1,e1,t1,u1] = refinemesh(g,p,e,t,u) refines the mesh and extends the solution u to the
new mesh nodes by linear interpolation. The number of rows in u must correspond to the number of
columns in p, and u1 has as many rows as there are points in p1.

refinemesh interpolates each column of u separately.

[___] = refinemesh(___ ,it) uses the input and output arguments from the previous syntaxes
and specifies the list it of geometric faces or triangles to refine. A scalar or a row vector specifies
faces. A column vector specifies triangles.

[___] = refinemesh(___ ,'longest') uses the longest edge refinement, where the longest
edge of each triangle is bisected. By default, refinemesh uses the regular refinement, where all
triangles are divided into four triangles of the same shape. You also can explicitly specify 'regular'
instead of 'longest'. If you use a column vector it to specify the triangles to refine, then
refinemesh can refine some triangles outside of the specified set to preserve the triangulation and
its quality.

Examples

Mesh Refinement

Refine the mesh of the L-shaped membrane several times. Plot the initial mesh and refined meshes at
each step.

5 Functions

5-978

[p,e,t] = initmesh('lshapeg','Hmax',Inf);
subplot(2,2,1)
pdemesh(p,e,t)

[p,e,t] = refinemesh('lshapeg',p,e,t);
subplot(2,2,2)
pdemesh(p,e,t)

[p,e,t] = refinemesh('lshapeg',p,e,t);
subplot(2,2,3)
pdemesh(p,e,t)

[p,e,t] = refinemesh('lshapeg',p,e,t);
subplot(2,2,4)
pdemesh(p,e,t)

Mesh Refinement for Specified Faces

Refine the mesh for a particular face of the L-shaped membrane.

Plot the L-shaped membrane to identify the face numbers.

pdegplot('lshapeg','FaceLabels','on')

 refinemesh

5-979

Create the initial mesh for the entire geometry, then refine the mesh for face 3 several times. Plot the
initial mesh and refined meshes at each step.

[p,e,t] = initmesh('lshapeg','Hmax',Inf);
subplot(2,2,1)
pdemesh(p,e,t)

[p,e,t] = refinemesh('lshapeg',p,e,t,3);
subplot(2,2,2)
pdemesh(p,e,t)

[p,e,t] = refinemesh('lshapeg',p,e,t,3);
subplot(2,2,3)
pdemesh(p,e,t)

[p,e,t] = refinemesh('lshapeg',p,e,t,3);
subplot(2,2,4)
pdemesh(p,e,t)

5 Functions

5-980

Input Arguments
g — Geometry description
decomposed geometry matrix | geometry function | handle to geometry function

Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle
to the geometry function. For details about a decomposed geometry matrix, see decsg. For details
about a geometry function, see “Parametrized Function for 2-D Geometry Creation” on page 2-10.

A geometry function must return the same result for the same input arguments in every function call.
Thus, it must not contain functions and expressions designed to return a variety of results, such as
random number generators.
Data Types: double | char | string | function_handle

p — Mesh points
2-by-Np matrix

Mesh points, specified as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k
of p consists of the x-coordinate of point k in p(1,k) and the y-coordinate of point k in p(2,k). For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

e — Mesh edges
7-by-Ne matrix

 refinemesh

5-981

Mesh edges, specified as a 7-by-Ne matrix, where Ne is the number of edges in the mesh. An edge is a
pair of points in p containing a boundary between subdomains, or containing an outer boundary. For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

t — Mesh elements
4-by-Nt matrix

Mesh elements, specified as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.

The t(i,k), with i ranging from 1 through end - 1, contain indices to the corner points of element
k. For details, see “Mesh Data as [p,e,t] Triples” on page 2-150. The last row, t(end,k), contains the
subdomain number of the element.

u — PDE solution
vector

PDE solution, specified as a vector.

• If the PDE is scalar, meaning that it has only one equation, then u is a column vector representing
the solution u at each node in the mesh.

• If the PDE is a system of N > 1 equations, then u is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u represent the solution of
equation 1, the next Np elements represent the solution of equation 2, and so on.

it — Faces or triangles to refine
positive number | vector of positive numbers

Faces or triangles to refine, specified as a positive number or a row or column vector of positive
numbers. A scalar or a row vector specifies faces. A column vector specifies triangles.

Output Arguments
p1 — Refined mesh points
2-by-Np matrix

Refined mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh.
Column k of p consists of the x-coordinate of point k in p(1,k) and the y-coordinate of point k in
p(2,k). For details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

e1 — Refined mesh edges
7-by-Ne matrix

Refined mesh edges, returned as a 7-by-Ne matrix, where Ne is the number of edges in the mesh. An
edge is a pair of points in p containing a boundary between subdomains, or containing an outer
boundary. For details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

t1 — Refined mesh elements
4-by-Nt matrix

Refined mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.

The t(i,k), with i ranging from 1 through end-1, contain indices to the corner points of element k.
For details, see “Mesh Data as [p,e,t] Triples” on page 2-150. The last row, t(end,k), contains the
subdomain number of the element.

5 Functions

5-982

u1 — PDE solution
vector

PDE solution, returned as a vector.

• If the PDE is scalar, meaning that it has only one equation, then u1 is a column vector
representing the solution u1 at each node in the mesh.

• If the PDE is a system of N > 1 equations, then u1 is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u1 represent the solution of
equation 1, the next Np elements represent the solution of equation 2, and so on.

Algorithms
The refinement algorithm follows these steps:

1 Pick the initial set of triangles to refine.
2 Divide all edges of the selected triangles in half (regular refinement) or divide the longest edge in

half (longest edge refinement).
3 Divide the longest edge of any triangle that has a divided edge.
4 Repeat step 3 until no more edges are divided.
5 Introduce new points of all divided edges, and replace all divided entries in e by two new entries.
6 Form the new triangles. If all three sides are divided, new triangles are formed by joining the

side midpoints. If two sides are divided, the midpoint of the longest edge is joined with the
opposing corner and with the other midpoint. If only the longest edge is divided, its midpoint is
joined with the opposing corner.

See Also
initmesh

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

 refinemesh

5-983

rotate
Package: pde

Rotate geometry

Syntax
rotate(g,theta)
rotate(g,theta,refpoint)
rotate(g,theta,refpoint1,refpoint2)

h = rotate(g, ___)

Description
rotate(g,theta) rotates the geometry g about the z-axis by the angle theta, specified in degrees.
Rotation follows the right-hand rule: a positive angle theta rotates counterclockwise, while sighting
along the z-axis toward the origin.

rotate(g,theta,refpoint) uses the rotation axis specified by the reference point refpoint. The
axis of rotation is the line in the z-direction passing through the reference point.

rotate(g,theta,refpoint1,refpoint2) uses the rotation axis specified by two reference
points. This syntax is only valid for a 3-D geometry.

h = rotate(g, ___) returns a handle h to the resulting geometry object g. Use this syntax with
any input arguments from the previous syntaxes.

If the original geometry is a DiscreteGeometry object, then the function modifies the original
geometry and returns the handle h to the modified DiscreteGeometry geometry object. If the
original geometry is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry
geometry object. In this case, the original geometry remains unchanged.

Examples

Rotate 2-D Geometry

Rotate a geometry with and without specifying the reference point for the axis of rotation.

Create a model.

model = createpde;

Import and plot a geometry.

g = importGeometry(model,'PlateHolePlanar.stl');
pdegplot(g)

5 Functions

5-984

Mesh the geometry and plot the mesh.

generateMesh(model);

figure
pdemesh(model)

 rotate

5-985

Rotate the geometry around the default z-axis by 45 degrees. Plot the result.

rotate(g,45);

figure
pdegplot(g)

5 Functions

5-986

Plot the geometry and mesh. The rotate function modifies a geometry, but it does not modify a
mesh.

figure
pdegplot(g)
hold on
pdemesh(model)

 rotate

5-987

After modifying the geometry, always regenerate the mesh.

generateMesh(model);

figure
pdegplot(g)
hold on
pdemesh(model)

5 Functions

5-988

Restore the original geometry position.

rotate(g,-45);

Rotate the geometry by the same angle, but this time use the center of the geometry as a reference
point. The axis of rotation is the line in the z-direction passing through the reference point.

rotate(g,45,[5 10]);

Regenerate the mesh.

generateMesh(model);

Plot the resulting geometry and mesh.

figure
subplot(1,2,1)
pdegplot(model)
axis([-6 16 -1 21])
subplot(1,2,2)
pdemesh(model)
axis([-6 16 -1 21])

 rotate

5-989

Rotate 3-D Geometry

Rotate a geometry with and without specifying the reference points for the axis of rotation.

Create and plot a geometry.

g = multicuboid(1,5,1);
pdegplot(g)

5 Functions

5-990

Rotate a 3-D geometry around the default z-axis by 45 degrees. Plot the result.

rotate(g,45);
pdegplot(g)

 rotate

5-991

Restore the original geometry position.

rotate(g,-45);
pdegplot(g)

5 Functions

5-992

Rotate the geometry by the same angle, but this time around the y-axis.

rotate(g,45,[0 0 0],[0 1 0]);
pdegplot(g)

 rotate

5-993

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.
Example: g = model.Geometry

theta — Rotation angle in degrees
real number

Rotation angle in degrees, specified as a real number.
Example: rotate(g,90)

refpoint — Reference point for rotation axis
vector of two or three real numbers

Reference point for a rotation axis, specified as a vector of two or three real numbers. The axis of
rotation is the line in the z-direction passing through the reference point.
Example: rotate(g,45,[1 1.5])

refpoint1,refpoint2 — Reference points that define rotation axis
vector of three real numbers

5 Functions

5-994

Reference points that define a rotation axis for a 3-D geometry, specified as a vector of three real
numbers.
Example: rotate(g,45,[0 0 0],[1 1 1])

Output Arguments
h — Resulting geometry
handle

Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object,
then h is a handle to the modified DiscreteGeometry geometry object g. If g is an
AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this
case, the original geometry g remains unchanged.

Tips
• rotate modifies a geometry, but it does not modify a mesh. After modifying a geometry,

regenerate the mesh to ensure a proper mesh association with the new geometry.
• If g is an AnalyticGeometry object, and you want to replace it with the resulting discrete

geometry, assign the output to the original geometry, for example, g = rotate(g,90).

See Also
scale | translate | AnalyticGeometry Properties | DiscreteGeometry Properties | pdegplot |
importGeometry | geometryFromMesh | generateMesh

Introduced in R2020a

 rotate

5-995

scale
Package: pde

Scale geometry

Syntax
scale(g,s)
scale(g,s,refpoint)

h = scale(g, ___)

Description
scale(g,s) scales the geometry g by the factor s with respect to the origin.

scale(g,s,refpoint) scales the geometry with respect to the reference point refpoint.

h = scale(g, ___) returns a handle h to the resulting geometry object g. Use this syntax with any
input arguments from the previous syntaxes.

If the original geometry is a DiscreteGeometry object, then the function modifies the original
geometry and returns the handle h to the modified DiscreteGeometry geometry object. If the
original geometry is an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry
geometry object. In this case, the original geometry remains unchanged.

Examples

Scale 2-D Geometry

Scale a 2-D geometry along the x- and y-axis and ensure consistency with the mesh.

Create a model.

model = createpde;

Import and plot a geometry.

g = importGeometry(model,'PlateHolePlanar.stl');
pdegplot(model)

5 Functions

5-996

Mesh the geometry and plot the mesh.

generateMesh(model);

figure
pdemesh(model)

 scale

5-997

Scale the geometry by a factor of 10 along the x-axis.

scale(g,[10 1])

ans =
 DiscreteGeometry with properties:

 NumCells: 0
 NumFaces: 1
 NumEdges: 5
 NumVertices: 5
 Vertices: [5x3 double]

Plot the geometry.

figure
pdegplot(model)

5 Functions

5-998

Plot the geometry and mesh. The scale function modifies a geometry, but it does not modify a mesh.

figure
pdegplot(model)
hold on
pdemesh(model)

 scale

5-999

After modifying the geometry, always regenerate the mesh.

generateMesh(model);

figure
pdegplot(model)
hold on
pdemesh(model)

5 Functions

5-1000

Reflect the geometry across the x-axis and regenerate the mesh.

scale(g,[1 -1]);
generateMesh(model);

Plot the resulting geometry and mesh.

figure
subplot(2,1,1)
pdegplot(model)
subplot(2,1,2)
pdemesh(model)

 scale

5-1001

Scale 3-D Geometry

Enlarge a geometry: first uniformly in all directions, and then using different scaling factors along
different axes.

Create and plot a geometry.

g = multicuboid(1,1,1);
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)

5 Functions

5-1002

Scale the geometry by a factor of 2 uniformly along all coordinate axes. Plot the result.

scale(g,2);
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)

 scale

5-1003

Now scale by factors of 2, 3, and 4 along the x-, y-, and z-axes, respectively. Plot the result.

scale(g,[2 3 4]);
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)

5 Functions

5-1004

Flip the geometry upside down by scaling it with the factor -1 and using the bottom front corner
(vertex 1) as a reference point.

scale(g,[1 1 -1], [2 -3 0]);
pdegplot(g,'VertexLabels','on','FaceAlpha',0.5)

 scale

5-1005

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

s — Scaling factor
nonzero real number | vector of two or three nonzero real numbers

Scaling factor, specified as a real number or vector of two or three real numbers. Use one value for
uniform scaling in all directions. Use a vector of two or three elements to specify different scaling
factors along the x-, y-, and, for a 3-D geometry, z-axes.

refpoint — Reference point for scaling
vector of two or three real numbers

Reference point for scaling specified as a vector of two or three real numbers for a 2-D and 3-D
geometry, respectively

Output Arguments
h — Resulting geometry
handle

5 Functions

5-1006

Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object,
then h is a handle to the modified DiscreteGeometry geometry object g. If g is an
AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this
case, the original geometry g remains unchanged.

Tips
• scale modifies a geometry, but it does not modify a mesh. After modifying a geometry, regenerate

the mesh to ensure a proper mesh association with the new geometry.
• If the scaling factor is negative, then the coordinates will flip their signs. The scaling factor of -1

mirrors the existing geometry if the reference point is the origin.
• If g is an AnalyticGeometry object, and you want to replace it with the resulting discrete

geometry, assign the output to the original geometry, for example, g = scale(g,20).

See Also
rotate | translate | AnalyticGeometry Properties | DiscreteGeometry Properties | pdegplot |
importGeometry | geometryFromMesh | generateMesh

Introduced in R2020a

 scale

5-1007

setInitialConditions
Package: pde

Give initial conditions or initial solution

Syntax
setInitialConditions(model,u0)
setInitialConditions(model,u0,ut0)
setInitialConditions(___ ,RegionType,RegionID)

setInitialConditions(model,results)
setInitialConditions(model,results,iT)

ic = setInitialConditions(___)

Description
setInitialConditions(model,u0) sets initial conditions in model. Use this syntax for stationary
nonlinear problems or time-dependent problems where the time derivative is first order.

Note Include geometry in model before using setInitialConditions.

setInitialConditions(model,u0,ut0) use this syntax for time-dependent problems where a
time derivative is second order, such as a hyperbolic problem.

setInitialConditions(___ ,RegionType,RegionID) sets initial conditions on a geometry
region using any of the arguments in the previous syntaxes.

setInitialConditions(model,results) sets the initial guess for stationary nonlinear problems
using the solution results from a previous analysis on the same geometry and mesh. The initial
derivative for stationary problems is 0.

setInitialConditions(model,results,iT) sets the initial conditions for time-dependent
problems using the solution results corresponding to the solution time index iT. If you do not
specify the time index iT, setInitialConditions uses the last solution time in results.

ic = setInitialConditions(___) returns a handle to the initial conditions object.

Examples

Constant Initial Conditions

Create a PDE model, import geometry, and set the initial condition to 50 on the entire geometry.

model = createpde();
importGeometry(model,'BracketWithHole.stl');
setInitialConditions(model,50);

5 Functions

5-1008

Constant Initial Conditions for System

Set different initial conditions for each component of a system of PDEs.

Create a PDE model for a system with five components. Import the Block.stl geometry.

model = createpde(5);
importGeometry(model,'Block.stl');

Set the initial conditions for each component to twice the component number.

u0 = [2:2:10]';
setInitialConditions(model,u0)

ans =
 GeometricInitialConditions with properties:

 RegionType: 'cell'
 RegionID: 1
 InitialValue: [5x1 double]
 InitialDerivative: []

Different Initial Conditions on Subdomains

Set different initial conditions on each portion of the L-shaped membrane geometry.

Create a model, set the geometry function, and view the subdomain labels.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
axis equal
ylim([-1.1,1.1])

 setInitialConditions

5-1009

Set subdomain 1 to initial value -1, subdomain 2 to initial value 1, and subdomain 3 to initial value 5.

setInitialConditions(model,-1);
setInitialConditions(model,1,'Face',2);
setInitialConditions(model,5,'Face',3);

The initial setting applies to the entire geometry. The subsequent settings override the initial settings
for regions 2 and 3.

Nonconstant Initial Conditions That Are Functions of Position

Set initial conditions for the L-shaped membrane geometry to be x2 + y2, except in the lower left
square where it is x2− y4.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
axis equal
ylim([-1.1,1.1])

5 Functions

5-1010

Set the initial conditions to x2 + y2.

initfun = @(location)location.x.^2 + location.y.^2;
setInitialConditions(model,initfun);

Set the initial conditions on region 2 to x2− y4. This setting overrides the first setting because you
apply it after the first setting.

initfun2 = @(location)location.x.^2 - location.y.^4;
setInitialConditions(model,initfun2,'Face',2);

Initial Conditions for Hyperbolic Equation

Hyperbolic equations have nonzero m coefficient, so you must set both the u0 and ut0 arguments.

Import the Block.stl to a PDE model with N = 3 components.

model = createpde(3);
importGeometry(model,'Block.stl');

Set the initial condition value to be 0 for all components. Set the initial derivative.

 setInitialConditions

5-1011

ut0 =

4 + x
x2 + y2 + z2

5 − tanh z

10 y
x2 + y2 + z2

To create this initial gradient, write a function file, and ensure that the function is on your MATLAB
path.

function ut0 = ut0fun(location)

M = length(location.x);

ut0 = zeros(3,M);

denom = location.x.^2+location.y.^2+location.z.^2;

ut0(1,:) = 4 + location.x./denom;

ut0(2,:) = 5 - tanh(location.z);

ut0(3,:) = 10*location.y./denom;

end

Set the initial conditions.

setInitialConditions(model,0,@ut0fun)

ans =
 GeometricInitialConditions with properties:

 RegionType: 'cell'
 RegionID: 1
 InitialValue: 0
 InitialDerivative: @ut0fun

Initial Condition Is Previously Obtained Solution

Set initial conditions using the solution from a previous analysis on the same geometry and mesh.

Create and view the geometry: a square with a circular subdomain.

% Square centered at (1,1), circle centered at (1.5,0.5).
rect1 = [3;4;0;2;2;0;0;0;2;2];
circ1 = [1;1.5;.75;0.25];
% Append extra zeros to the circle;
circ1 = [circ1;zeros(length(rect1)-length(circ1),1)];
gd = [rect1,circ1];
ns = char('rect1','circ1');
ns = ns';
sf = 'rect1+circ1';
[dl,bt] = decsg(gd,sf,ns);

5 Functions

5-1012

pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
axis equal
ylim([-0.1,2.1])

Include the geometry in a PDE model, set boundary and initial conditions, and specify coefficients.

model = createpde();
geometryFromEdges(model,dl);

% Set boundary conditions that the upper
% and left edges are at temperature 10.
applyBoundaryCondition(model,'dirichlet', ...
 'Edge',[2,3],'u',10);

% Set initial conditions that the square region
% is at temperature 0,
% and the circle is at temperature 100.
setInitialConditions(model,0);
setInitialConditions(model,100,'Face',2);

specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',1,...
 'a',0,...
 'f',0);

Solve the problem for times 0 through 1/2 in steps of 0.01.

 setInitialConditions

5-1013

generateMesh(model,'Hmax',0.05);
tlist = 0:0.01:0.5;
results = solvepde(model,tlist);

Plot the solution for times 0.02, 0.04, 0.1, and 0.5.

sol = results.NodalSolution;

subplot(2,2,1)
pdeplot(model,'XYData',sol(:,3))
title('Time 0.02')
subplot(2,2,2)
pdeplot(model,'XYData',sol(:,5))
title('Time 0.04')
subplot(2,2,3)
pdeplot(model,'XYData',sol(:,11))
title('Time 0.1')
subplot(2,2,4)
pdeplot(model,'XYData',sol(:,51))
title('Time 0.5')

Now, resume the analysis and solve the problem for times from 1/2 to 1. Use the previously obtained
solution for time 1/2 as an initial condition. Since 1/2 is the last element in tlist, you do not need to
specify the solution time index. By default, setInitialConditions uses the last solution index.

setInitialConditions(model,results)

5 Functions

5-1014

ans =
 NodalInitialConditions with properties:

 InitialValue: [7289x1 double]
 InitialDerivative: []

Solve the problem for times 1/2 through 1 in steps of 0.01.

tlist1 = 0.5:0.01:1.0;
results1 = solvepde(model,tlist1);

Plot the solution for times 0.5, 0.7, 0.9, and 1.

sol1 = results1.NodalSolution;

figure

subplot(2,2,1)
pdeplot(model,'XYData',sol1(:,1))
title('Time 0.5')
subplot(2,2,2)
pdeplot(model,'XYData',sol1(:,21))
title('Time 0.7')
subplot(2,2,3)
pdeplot(model,'XYData',sol1(:,41))
title('Time 0.9')
subplot(2,2,4)
pdeplot(model,'XYData',sol1(:,51))
title('Time 1.0')

 setInitialConditions

5-1015

To use the previously obtained solution for a particular solution time instead of the last one, specify
the solution time index as a third parameter of setInitialConditions. For example, use the
solution at time 0.2, which is the 21st element in tlist.

setInitialConditions(model,results,21)

ans =
 NodalInitialConditions with properties:

 InitialValue: [7289x1 double]
 InitialDerivative: []

Solve the problem for times 0.2 through 1 in steps of 0.01.

tlist2 = 0.2:0.01:1.0;
results2 = solvepde(model,tlist2);

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

5 Functions

5-1016

u0 — Initial condition
scalar | column vector of length N | function handle

Initial conditions, specified as a scalar, a column vector of length N, or a function handle. N is the size
of the system of PDEs. See “Equations You Can Solve Using PDE Toolbox” on page 1-3.

• Scalar — Use it to represent a constant initial value for all solution components throughout the
domain.

• Column vector — Use it to represent a constant initial value for each of the N solution components
throughout the domain.

• Function handle — Use it to represent the initial conditions as a function of position. The function
must be of the form

u0 = initfun(location)

Solvers pass location as a structure with fields location.x, location.y, and, for 3-D
problems, location.z. initfun must return a matrix u0 of size N-by-M, where M =
length(location.x).

Example: setInitialConditions(model,10)
Data Types: double | function_handle
Complex Number Support: Yes

ut0 — Initial condition for time derivative
scalar | column vector of length N | function handle

Initial condition for time derivative, specified as a scalar, a column vector of length N, or a function
handle. N is the size of the system of PDEs. See “Equations You Can Solve Using PDE Toolbox” on
page 1-3. You must specify ut0 when there is a nonzero second-order time-derivative coefficient m.

• Scalar — Use it to represent a constant initial value for all solution components throughout the
domain.

• Column vector — Use it to represent a constant initial value for each of the N solution components
throughout the domain.

• Function handle — Use it to represent the initial conditions as a function of position. The function
must be of the form

u0 = initfun(location)

Solvers pass location as a structure with fields location.x, location.y, and, for 3-D
problems, location.z. initfun must return a matrix u0 of size N-by-M, where M =
length(location.x).

Example: setInitialConditions(model,10,@initfun)
Data Types: double | function_handle
Complex Number Support: Yes

RegionType — Geometric region type
'Face' | 'Edge' | 'Vertex' | 'Cell'

Geometric region type, specified as 'Face', 'Edge', 'Vertex', or 'Cell'.

 setInitialConditions

5-1017

When there are multiple initial condition assignments, solvers use the following precedence rules for
determining the initial condition.

• If there are multiple assignments to the same geometric region, solvers use the last applied
setting.

• If there are separate assignments to a geometric region and the boundaries of that region, the
solvers use the specified assignment on the region and choose the assignment on the boundary as
follows. The solvers give an 'Edge' assignment precedence over a 'Face' assignment, even if
you specify a 'Face' assignment after an 'Edge' assignment. The precedence levels are
'Vertex (highest precedence), 'Edge', 'Face', 'Cell' (lowest precedence).

• If there is an assignment made with the results object, solvers use that assignment instead of all
previous assignments.

Example: setInitialConditions(model,10,'Face',1:4)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: setInitialConditions(model,10,'Face',1:4)
Data Types: double

results — PDE solution
StationaryResults object | TimeDependentResults object

PDE solution, specified as a StationaryResults object or a TimeDependentResults object.
Create results using solvepde or createPDEResults.
Example: results = solvepde(model)

iT — Time index
positive integer

Time index, specified as a positive integer.
Example: setInitialConditions(model,results,21)
Data Types: double

Output Arguments
ic — Handle to initial condition
object

Handle to initial condition, returned as an object. ic associates the initial condition with the
geometric region in the case of a geometric assignment or the nodes in the case of a results-based
assignment.

5 Functions

5-1018

Tips
• To ensure that the model has the correct TimeDependent property setting, if possible specify
coefficients before setting initial conditions.

• To avoid assigning initial conditions to a wrong region, ensure that you are using the correct
geometric region IDs by plotting and visually inspecting the geometry.

See Also
findInitialConditions | pdegplot | PDEModel

Topics
“Set Initial Conditions” on page 2-98
“Solve Problems Using PDEModel Objects” on page 2-2
“Equations You Can Solve Using PDE Toolbox” on page 1-3

Introduced in R2016a

 setInitialConditions

5-1019

solve
Package: pde

Solve heat transfer, structural analysis, or electromagnetic analysis problem

Syntax
structuralStaticResults = solve(structuralStatic)
structuralModalResults = solve(structuralModal,'FrequencyRange',
[omega1,omega2])

structuralTransientResults = solve(structuralTransient,tlist)
structuralFrequencyResponseResults = solve(structuralFrequencyResponse,flist)
structuralTransientResults = solve(structuralTransient,tlist,'ModalResults',
modalresults)
structuralFrequencyResponseResults = solve(structuralFrequencyResponse,
flist,'ModalResults',modalresults)

thermalSteadyStateResults = solve(thermalSteadyState)
thermalTransientResults = solve(thermalTransient,tlist)

emagResults = solve(emagmodel)

Description
structuralStaticResults = solve(structuralStatic) returns the solution to the static
structural analysis model represented in structuralStatic.

structuralModalResults = solve(structuralModal,'FrequencyRange',
[omega1,omega2]) returns the solution to the modal analysis model for all modes in the frequency
range [omega1,omega2]. Define omega1 as slightly smaller than the lowest expected frequency and
omega2 as slightly larger than the highest expected frequency. For example, if the lowest expected
frequency is zero, then use a small negative value for omega1.

structuralTransientResults = solve(structuralTransient,tlist) returns the solution
to the transient structural dynamics model represented in structuralTransient.

structuralFrequencyResponseResults = solve(structuralFrequencyResponse,flist)
returns the solution to the frequency response model represented in
structuralFrequencyResponse.

structuralTransientResults = solve(structuralTransient,tlist,'ModalResults',
modalresults) and structuralFrequencyResponseResults = solve(
structuralFrequencyResponse,flist,'ModalResults',modalresults) solve a transient
and a frequency response structural model, respectively, by using the modal superposition method to
speed up computations. First, perform modal analysis to compute natural frequencies and mode
shapes in a particular frequency range. Then, use this syntax to invoke the modal superposition
method. The accuracy of the results depends on the modes in the modal analysis results.

thermalSteadyStateResults = solve(thermalSteadyState) returns the solution to the
steady-state thermal model represented in thermalSteadyState.

5 Functions

5-1020

thermalTransientResults = solve(thermalTransient,tlist) returns the solution to the
transient thermal model represented in thermalTransient at the times tlist.

emagResults = solve(emagmodel) returns the solution to the electromagnetic model
represented in emagmodel.

Examples

Solution to Steady-State Thermal Model

Solve a 3-D steady-state thermal problem.

Create a thermal model for this problem.

thermalmodel = createpde('thermal');

Import and plot the block geometry.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabel','on','FaceAlpha',0.5)
axis equal

Assign material properties.

thermalProperties(thermalmodel,'ThermalConductivity',80);

 solve

5-1021

Apply a constant temperature of 100 °C to the left side of the block (face 1) and a constant
temperature of 300 °C to the right side of the block (face 3). All other faces are insulated by default.

thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]

The solver finds the temperatures and temperature gradients at the nodal locations. To access these
values, use thermalresults.Temperature, thermalresults.XGradients, and so on. For
example, plot temperatures at the nodal locations.

pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)

5 Functions

5-1022

Solution to Transient Thermal Model

Solve a 2-D transient thermal problem.

Create a transient thermal model for this problem.

thermalmodel = createpde('thermal','transient');

Create the geometry and include it in the model.

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal

For the square region, assign these thermal properties:

 solve

5-1023

• Thermal conductivity is 10 W/ m ⋅∘ C
• Mass density is 2 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅ ∘C

thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);

For the diamond region, assign these thermal properties:

• Thermal conductivity is 2 W/ m ⋅∘ C
• Mass density is 1 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅ ∘C

thermalProperties(thermalmodel,'ThermalConductivity',2, ...
 'MassDensity',1, ...
 'SpecificHeat',0.1, ...
 'Face',2);

Assume that the diamond-shaped region is a heat source with a density of 4 W/m2.

internalHeatSource(thermalmodel,4,'Face',2);

Apply a constant temperature of 0 ∘C to the sides of the square plate.

thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);

Set the initial temperature to 0 °C.

thermalIC(thermalmodel,0);

Generate the mesh.

generateMesh(thermalmodel);

The dynamics for this problem are very fast. The temperature reaches a steady state in about 0.1
seconds. To capture the interesting part of the dynamics, set the solution time to
logspace(-2,-1,10). This command returns 10 logarithmically spaced solution times between
0.01 and 0.1.

tlist = logspace(-2,-1,10);

Solve the equation.

thermalresults = solve(thermalmodel,tlist);

Plot the solution with isothermal lines by using a contour plot.

T = thermalresults.Temperature;
pdeplot(thermalmodel,'XYData',T(:,10),'Contour','on','ColorMap','hot')

5 Functions

5-1024

Solution to Static Structural Model

Solve a static structural model representing a bimetallic cable under tension.

Create a static structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01 0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

 solve

5-1025

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

5 Functions

5-1026

 Mesh: [1x1 FEMesh]

The solver finds the values of displacement, stress, strain, and von Mises stress at the nodal locations.
To access these values, use structuralresults.Displacement, structuralresults.Stress,
and so on. The displacement, stress, and strain values at the nodal locations are returned as
FEStruct objects with the properties representing their components. Note that properties of an
FEStruct object are read-only.

structuralresults.Displacement

ans =
 FEStruct with properties:

 ux: [22306x1 double]
 uy: [22306x1 double]
 uz: [22306x1 double]
 Magnitude: [22306x1 double]

structuralresults.Stress

ans =
 FEStruct with properties:

 sxx: [22306x1 double]
 syy: [22306x1 double]
 szz: [22306x1 double]
 syz: [22306x1 double]
 sxz: [22306x1 double]
 sxy: [22306x1 double]

structuralresults.Strain

ans =
 FEStruct with properties:

 exx: [22306x1 double]
 eyy: [22306x1 double]
 ezz: [22306x1 double]
 eyz: [22306x1 double]
 exz: [22306x1 double]
 exy: [22306x1 double]

Plot the deformed shape with the z-component of normal stress.

pdeplot3D(structuralmodel, ...
 'ColorMapData',structuralresults.Stress.szz, ...
 'Deformation',structuralresults.Displacement)

 solve

5-1027

Solution to Transient Structural Model

Solve for the transient response of a thin 3-D plate under a harmonic load at the center.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

5 Functions

5-1028

Zoom in to see the face labels on the small plate at the center.

figure
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])

 solve

5-1029

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.

structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);

Apply a sinusoidal pressure load on the small face at the center of the plate.

structuralBoundaryLoad(structuralmodel,'Face',12, ...
 'Pressure',5E7, ...
 'Frequency',25);

Generate a mesh with linear elements.

generateMesh(structuralmodel,'GeometricOrder','linear','Hmax',0.2);

Specify zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the model.

tlist = linspace(0,1,300);
structuralresults = solve(structuralmodel,tlist);

5 Functions

5-1030

The solver finds the values of the displacement, velocity, and acceleration at the nodal locations. To
access these values, use structuralresults.Displacement, structuralresults.Velocity,
and so on. The displacement, velocity, and acceleration values are returned as FEStruct objects with
the properties representing their components. Note that properties of an FEStruct object are read-
only.

structuralresults.Displacement

ans =
 FEStruct with properties:

 ux: [1873x300 double]
 uy: [1873x300 double]
 uz: [1873x300 double]
 Magnitude: [1873x300 double]

structuralresults.Velocity

ans =
 FEStruct with properties:

 vx: [1873x300 double]
 vy: [1873x300 double]
 vz: [1873x300 double]
 Magnitude: [1873x300 double]

structuralresults.Acceleration

ans =
 FEStruct with properties:

 ax: [1873x300 double]
 ay: [1873x300 double]
 az: [1873x300 double]
 Magnitude: [1873x300 double]

Solution to Modal Analysis Structural Model

Find the fundamental (lowest) mode of a 2-D cantilevered beam, assuming prevalence of the plane-
stress condition.

Specify the following geometric and structural properties of the beam, along with a unit plane-stress
thickness.

length = 5;
height = 0.1;
E = 3E7;
nu = 0.3;
rho = 0.3/386;

Create a model plane-stress model, assign a geometry, and generate a mesh.

structuralmodel = createpde('structural','modal-planestress');
gdm = [3;4;0;length;length;0;0;0;height;height];

 solve

5-1031

g = decsg(gdm,'S1',('S1')');
geometryFromEdges(structuralmodel,g);

Define a maximum element size (five elements through the beam thickness).

hmax = height/5;
msh=generateMesh(structuralmodel,'Hmax',hmax);

Specify the structural properties and boundary constraints.

structuralProperties(structuralmodel,'YoungsModulus',E, ...
 'MassDensity',rho, ...
 'PoissonsRatio',nu);
structuralBC(structuralmodel,'Edge',4,'Constraint','fixed');

Compute the analytical fundamental frequency (Hz) using the beam theory.

I = height^3/12;
analyticalOmega1 = 3.516*sqrt(E*I/(length^4*(rho*height)))/(2*pi)

analyticalOmega1 = 126.9498

Specify a frequency range that includes an analytically computed frequency and solve the model.

modalresults = solve(structuralmodel,'FrequencyRange',[0,1e6])

modalresults =
 ModalStructuralResults with properties:

 NaturalFrequencies: [32x1 double]
 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

The solver finds natural frequencies and modal displacement values at nodal locations. To access
these values, use modalresults.NaturalFrequencies and modalresults.ModeShapes.

modalresults.NaturalFrequencies/(2*pi)

ans = 32×1
105 ×

 0.0013
 0.0079
 0.0222
 0.0433
 0.0711
 0.0983
 0.1055
 0.1462
 0.1930
 0.2455
 ⋮

modalresults.ModeShapes

ans =
 FEStruct with properties:

5 Functions

5-1032

 ux: [6511x32 double]
 uy: [6511x32 double]
 Magnitude: [6511x32 double]

Plot the y-component of the solution for the fundamental frequency.

pdeplot(structuralmodel,'XYData',modalresults.ModeShapes.uy(:,1))
title(['First Mode with Frequency ', ...
 num2str(modalresults.NaturalFrequencies(1)/(2*pi)),' Hz'])
axis equal

Frequency Response Analysis

Perform frequency response analysis of a tuning fork.

First, create a structural model for modal analysis of a solid tuning fork.

model = createpde('structural','frequency-solid');

Import the tuning fork geometry.

importGeometry(model,'TuningFork.stl');

 solve

5-1033

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material
behavior. Specify all physical properties in consistent units.

structuralProperties(model,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure('units','normalized','outerposition',[0 0 1 1])
pdegplot(model,'FaceLabels','on')
view(-50,15)
title 'Geometry with Face Labels'

Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically,
you hold a tuning fork by hand or mount it on a table. To create a simple approximation of this
boundary condition, fix a region near the intersection of tines and the handle (faces 21 and 22).

5 Functions

5-1034

structuralBC(model,'Face',[21,22],'Constraint','fixed');

Specify the pressure loading on a tine (face 11) as a short rectangular pressure pulse. In the
frequency domain, this pressure pulse is a unit load uniformly distributed across all frequencies.

structuralBoundaryLoad(model,'Face',11,'Pressure',1);
flist = linspace(0,4000,150);
mesh = generateMesh(model,'Hmax',0.005);
R = solve(model,2*pi*flist);

Plot the vibration frequency of the tine tip, which is face 12. Find nodes on the tip face and plot the y-
component of the displacement over the frequency, using one of these nodes.

excitedTineTipNodes = findNodes(mesh,'region','Face',12);
tipDisp = R.Displacement.uy(excitedTineTipNodes(1),:);

figure
plot(flist,abs(tipDisp))
xlabel('Frequency');
ylabel('|Y-Displacement|');

 solve

5-1035

Expansion of Cantilever Beam Under Thermal Load

Find the deflection of a 3-D cantilever beam under a nonuniform thermal load. Specify the thermal
load on the structural model using the solution from a transient thermal analysis on the same
geometry and mesh.

Transient Thermal Model Analysis

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Create and plot the geometry.

gm = multicuboid(0.5,0.1,0.05);
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)

Generate a mesh.

mesh = generateMesh(thermalmodel);

Specify the thermal properties of the material.

thermalProperties(thermalmodel,'ThermalConductivity',5e-3, ...
 'MassDensity',2.7*10^(-6), ...
 'SpecificHeat',10);

5 Functions

5-1036

Specify the constant temperatures applied to the left and right ends on the beam.

thermalBC(thermalmodel,'Face',3,'Temperature',100);
thermalBC(thermalmodel,'Face',5,'Temperature',0);

Specify the heat source over the entire geometry.

internalHeatSource(thermalmodel,10);

Set the initial temperature.

thermalIC(thermalmodel,0);

Solve the model.

tlist = [0:1e-4:2e-4];
thermalresults = solve(thermalmodel,tlist)

thermalresults =
 TransientThermalResults with properties:

 Temperature: [3870x3 double]
 SolutionTimes: [0 1.0000e-04 2.0000e-04]
 XGradients: [3870x3 double]
 YGradients: [3870x3 double]
 ZGradients: [3870x3 double]
 Mesh: [1x1 FEMesh]

Plot the temperature distribution for each time step.

for n = 1:numel(thermalresults.SolutionTimes)
 figure
 pdeplot3D(thermalmodel, ...
 'ColorMapData', ...
 thermalresults.Temperature(:,n))
 title(['Temperature at Time = ' ...
 num2str(tlist(n))])
 caxis([0 100])
end

 solve

5-1037

5 Functions

5-1038

 solve

5-1039

Structural Analysis with Thermal Load

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Include the same geometry as for the thermal model.

structuralmodel.Geometry = gm;

Use the same mesh that you used to obtain the thermal solution.

structuralmodel.Mesh = mesh;

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion.

structuralProperties(structuralmodel,'YoungsModulus',1e10, ...
 'PoissonsRatio',0.3, ...'
 'CTE',11.7e-6);

Apply a fixed boundary condition on face 5.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a body load using the transient thermal model solution. By default, structuralBodyLoad
uses the solution for the last time step.

structuralBodyLoad(structuralmodel,'Temperature',thermalresults);

5 Functions

5-1040

Specify the reference temperature.

structuralmodel.ReferenceTemperature = 10;

Solve the structural model.

thermalstressresults = solve(structuralmodel);

Plot the deformed shape of the beam corresponding to the last step of the transient thermal model
solution.

pdeplot3D(structuralmodel, ...
 'ColorMapData', ...
 thermalstressresults.Displacement.Magnitude, ...
 'Deformation', ...
 thermalstressresults.Displacement)
title(['Thermal Expansion at Solution Time = ' ...
 num2str(tlist(end))])
caxis([0 3e-3])

Now specify the body loads as the thermal model solutions for all time steps. For each body load,
solve the structural model and plot the corresponding deformed shape of the beam.

for n = 1:numel(thermalresults.SolutionTimes)
 structuralBodyLoad(structuralmodel, ...
 'Temperature', ...
 thermalresults, ...
 'TimeStep',n);

 solve

5-1041

 thermalstressresults = solve(structuralmodel);
 figure
 pdeplot3D(structuralmodel, ...
 'ColorMapData', ...
 thermalstressresults.Displacement.Magnitude, ...
 'Deformation', ...
 thermalstressresults.Displacement)
 title(['Thermal Results at Solution Time = ' ...
 num2str(tlist(n))])
 caxis([0 3e-3])
end

5 Functions

5-1042

 solve

5-1043

Solution to Transient Structural Model Using Modal Superposition Method

Solve the for transient response at the center of a 3-D beam under a harmonic load on one of its
corners.

Modal Analysis

Create a modal analysis model for a 3-D problem.

modelM = createpde('structural','modal-solid');

Create the geometry and include it in the model. Plot the geometry and display the edge and vertex
labels.

gm = multicuboid(0.05,0.003,0.003);
modelM.Geometry = gm;
pdegplot(modelM,'EdgeLabels','on','VertexLabels','on');
view([95 5])

5 Functions

5-1044

Generate a mesh.

msh = generateMesh(modelM);

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelM,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Specify minimal constraints on one end of the beam to prevent rigid body modes. For example,
specify that edge 4 and vertex 7 are fixed boundaries.

structuralBC(modelM,'Edge',4,'Constraint','fixed');
structuralBC(modelM,'Vertex',7,'Constraint','fixed');

Solve the problem for the frequency range from 0 to 500,000. The recommended approach is to use a
value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0.

Rm = solve(modelM,'FrequencyRange',[-0.1,500000]);

Transient Analysis

Create a transient analysis model for a 3-D problem.

modelD = createpde('structural','transient-solid');

Use the same geometry and mesh as for the modal analysis.

 solve

5-1045

modelD.Geometry = gm;
modelD.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelD,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Specify the same minimal constraints on one end of the beam to prevent rigid body modes.

structuralBC(modelD,'Edge',4,'Constraint','fixed');
structuralBC(modelD,'Vertex',7,'Constraint','fixed');

Apply a sinusoidal force on the corner opposite to the constrained edge and vertex.

structuralBoundaryLoad(modelD,'Vertex',5, ...
 'Force',[0,0,10], ...
 'Frequency',7600);

Specify zero initial displacement and velocity.

structuralIC(modelD,'Velocity',[0;0;0],'Displacement',[0;0;0]);

Specify the relative and absolute tolerances for the solver.

modelD.SolverOptions.RelativeTolerance = 1E-5;
modelD.SolverOptions.AbsoluteTolerance = 1E-9;

Solve the model using the modal results.

tlist = linspace(0,0.004,120);
Rdm = solve(modelD,tlist,'ModalResults',Rm)

Rdm =
 TransientStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Velocity: [1x1 FEStruct]
 Acceleration: [1x1 FEStruct]
 SolutionTimes: [0 3.3613e-05 6.7227e-05 1.0084e-04 1.3445e-04 ...]
 Mesh: [1x1 FEMesh]

Interpolate and plot the displacement at the center of the beam.

intrpUdm = interpolateDisplacement(Rdm,0,0,0.0015);

plot(Rdm.SolutionTimes,intrpUdm.uz)
grid on
xlabel('Time');
ylabel('Center of beam displacement')

5 Functions

5-1046

Solution to 2-D Electrostatic Analysis Model

Solve an electromagnetic problem and find the electric potential and field distribution for a 2-D
geometry representing a plate with a hole.

Create an electromagnetic model for electrostatic analysis.

emagmodel = createpde('electromagnetic','electrostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHolePlanar.stl');
pdegplot(emagmodel,'EdgeLabels','on')

 solve

5-1047

Specify the vacuum permittivity in the SI system of units.

emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.

electromagneticProperties(emagmodel,'RelativePermittivity',1);

Apply the voltage boundary conditions on the edges framing the rectangle and the circle.

electromagneticBC(emagmodel,'Voltage',0,'Edge',1:4);
electromagneticBC(emagmodel,'Voltage',1000,'Edge',5);

Specify the charge density for the entire geometry.

electromagneticSource(emagmodel,'ChargeDensity',5E-9);

Generate the mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 ElectrostaticResults with properties:

5 Functions

5-1048

 ElectricPotential: [1218x1 double]
 ElectricField: [1x1 FEStruct]
 ElectricFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the electric potential and field.

pdeplot(emagmodel,'XYData',R.ElectricPotential, ...
 'FlowData',[R.ElectricField.Ex ...
 R.ElectricField.Ey])
axis equal

Solution to 3-D Magnetostatic Analysis Model

Solve an electromagnetic problem and find the magnetic potential and field distribution for a 3-D
geometry representing a plate with a hole.

Create an electromagnetic model for magnetostatic analysis.

emagmodel = createpde('electromagnetic','magnetostatic');

Import and plot the geometry representing a plate with a hole.

importGeometry(emagmodel,'PlateHoleSolid.stl');
pdegplot(emagmodel,'FaceLabels','on','FaceAlpha',0.3)

 solve

5-1049

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the material.

electromagneticProperties(emagmodel,'RelativePermeability',5000);

Specify the current density for the entire geometry.

electromagneticSource(emagmodel,'CurrentDensity',[0;0;0.5]);

Apply the magnetic potential boundary conditions on the side faces and the face bordering the hole.

electromagneticBC(emagmodel,'MagneticPotential',[0;0;0],'Face',3:6);
electromagneticBC(emagmodel,'MagneticPotential',[0;0;0.01],'Face',7);

Generate a mesh.

generateMesh(emagmodel);

Solve the model.

R = solve(emagmodel)

R =
 MagnetostaticResults with properties:

5 Functions

5-1050

 MagneticPotential: [1x1 FEStruct]
 MagneticField: [1x1 FEStruct]
 MagneticFluxDensity: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

Plot the z-component of the magnetic potential.

pdeplot3D(emagmodel,'ColormapData',R.MagneticPotential.Az)

Plot the magnetic field.

pdeplot3D(emagmodel,'FlowData',[R.MagneticField.Hx ...
 R.MagneticField.Hy ...
 R.MagneticField.Hz])

 solve

5-1051

Input Arguments
structuralStatic — Static structural analysis model
StructuralModel object

Static structural analysis model, specified as a StructuralModel object. The model contains the
geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary
conditions.
Example: structuralmodel = createpde('structural','static-solid')

structuralModal — Modal analysis structural model
StructuralModel object

Modal analysis structural model, specified as a StructuralModel object. The model contains the
geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary
conditions.
Example: structuralmodel = createpde('structural','modal-solid')

structuralTransient — Transient structural analysis model
StructuralModel object

Transient structural analysis model, specified as a StructuralModel object. The model contains the
geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary
conditions.

5 Functions

5-1052

Example: structuralmodel = createpde('structural','transient-solid')

structuralFrequencyResponse — Frequency response structural analysis model
StructuralModel object

Frequency response analysis structural model, specified as a StructuralModel object. The model
contains the geometry, mesh, structural properties of the material, body loads, boundary loads, and
boundary conditions.
Example: structuralmodel = createpde('structural','frequency-solid')

tlist — Solution times
real vector

Solution times, specified as a real vector of monotonically increasing or decreasing values.
Example: 0:20
Data Types: double

flist — Solution frequencies
real vector

Solution frequencies, specified as a real vector of monotonically increasing or decreasing values.
Example: linspace(0,4000,150)
Data Types: double

[omega1,omega2] — Frequency range
vector of two elements

Frequency range, specified as a vector of two elements. Define omega1 as slightly smaller than the
lowest expected frequency and omega2 as slightly larger than the highest expected frequency. For
example, if the lowest expected frequency is zero, then use a small negative value for omega1.
Example: [-0.1,1000]
Data Types: double

modalresults — Modal analysis results
ModalStructuralResults object

Modal analysis results, specified as a ModalStructuralResults object.
Example: modalresults = solve(structuralmodel,'FrequencyRange',[0,1e6])

thermalSteadyState — Steady-state thermal analysis model
ThermalModel object

Steady-state thermal analysis model, specified as a ThermalModel object. The model contains the
geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and
initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

thermalTransient — Transient thermal analysis model
ThermalModel object

 solve

5-1053

Transient thermal analysis model, specified as a ThermalModel object. The model contains the
geometry, mesh, thermal properties of the material, internal heat source, boundary conditions, and
initial conditions.
Example: thermalmodel = createpde('thermal','transient')

emagmodel — Electromagnetic model for electrostatic or magnetostatic analysis
ElectromagneticModel object

Electromagnetic model for electrostatic or magnetostatic analysis, specified as an
ElectromagneticModel object. The model contains the geometry, mesh, material properties,
electromagnetic sources, and boundary conditions.
Example: emagmodel = createpde('electromagnetic','magnetostatic')

Output Arguments
structuralStaticResults — Static structural analysis results
StaticStructuralResults object

Static structural analysis results, returned as a StaticStructuralResults object.

structuralModalResults — Modal structural analysis results
ModalStructuralResults object

Modal structural analysis results, returned as a ModalStructuralResults object.

structuralTransientResults — Transient structural analysis results
TransientStructuralResults object

Transient structural analysis results, returned as a TransientStructuralResults object.

structuralFrequencyResponseResults — Frequency response structural analysis results
FrequencyStructuralResults object

Frequency response structural analysis results, returned as a FrequencyStructuralResults
object.

thermalSteadyStateResults — Steady-state thermal analysis results
SteadyStateThermalResults object

Steady-state thermal analysis results, returned as a SteadyStateThermalResults object.

thermalTransientResults — Transient thermal analysis results
TransientThermalResults object

Transient thermal analysis results, returned as a TransientThermalResults object.

emagResults — Electrostatic or magnetostatic analysis results
ElectrostaticResults object | MagnetostaticResults object

Electrostatic or magnetostatic analysis results, returned as an ElectrostaticResults or
MagnetostaticResults object.

5 Functions

5-1054

Tips
• When you use modal analysis results to solve a transient structural dynamics model, the

modalresults argument must be created in Partial Differential Equation Toolbox version R2019a
or newer.

• For a frequency response model with damping, the results are complex. Use functions such as abs
and angle to obtain real-valued results, such as the magnitude and phase.

See Also
PDEModel | ThermalModel | StructuralModel | ElectromagneticModel |
geometryFromEdges | geometryFromMesh | importGeometry | reduce

Introduced in R2017a

 solve

5-1055

solvepde
Package: pde

Solve PDE specified in a PDEModel

Syntax
result = solvepde(model)
result = solvepde(model,tlist)

Description
result = solvepde(model) returns the solution to the stationary PDE represented in model. A
stationary PDE has the property model.IsTimeDependent = false. That is, the time-derivative
coefficients m and d in model.EquationCoefficients must be 0.

result = solvepde(model,tlist) returns the solution to the time-dependent PDE represented
in model at the times tlist. At least one time-derivative coefficient m or d in
model.EquationCoefficients must be nonzero.

Examples

Solve a Stationary Problem: Poisson's Equation for the L-shaped Membrane

Create a PDE model, and include the geometry of the L-shaped membrane.

model = createpde();
geometryFromEdges(model,@lshapeg);

View the geometry with edge labels.

pdegplot(model,'EdgeLabels','on')
ylim([-1.1,1.1])
axis equal

5 Functions

5-1056

Set zero Dirichlet conditions on all edges.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);

Poisson's equation is

−∇ ⋅ ∇u = 1 .

Toolbox solvers address equations of the form

m∂
2u
∂t2 + d∂u∂t − ∇ c∇u + au = f .

Include the coefficients for Poisson's equation in the model.

specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);

Mesh the model and solve the PDE.

generateMesh(model,'Hmax',0.25);
results = solvepde(model);

 solvepde

5-1057

View the solution.

pdeplot(model,'XYData',results.NodalSolution)

Solve a Time-Dependent Parabolic Equation with Nonconstant Coefficients

Create a model with 3-D rectangular block geometry.

model = createpde();
importGeometry(model,'Block.stl');

Suppose that radiative cooling causes the solution to decrease as the cube of temperature on the
surface of the block.

gfun = @(region,state)-state.u.^3*1e-6;
applyBoundaryCondition(model,'neumann', ...
 'Face',1:model.Geometry.NumFaces, ...
 'g',gfun);

The model coefficients have no source term.

specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',1,...
 'a',0,...
 'f',0);

5 Functions

5-1058

The block starts at a constant temperature of 350.

setInitialConditions(model,350);

Mesh the geometry and solve the model for times 0 through 20.

generateMesh(model);
tlist = 0:20;
results = solvepde(model,tlist);

Plot the solution on the surface of the block at times 1 and 20.

pdeplot3D(model,'ColorMapData',results.NodalSolution(:,2))

figure
pdeplot3D(model,'ColorMapData',results.NodalSolution(:,21))

 solvepde

5-1059

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object. The model contains the geometry, mesh, and problem
coefficients.
Example: model = createpde(1)

tlist — Solution times
real vector

Solution times, specified as a real vector. tlist must be a monotone vector (increasing or
decreasing).
Example: 0:20
Data Types: double

Output Arguments
result — PDE results
StationaryResults object | TimeDependentResults object

5 Functions

5-1060

PDE results, returned as a StationaryResults object or as a TimeDependentResults object. The
type of result depends on whether model represents a stationary problem
(model.IsTimeDependent = false) or a time-dependent problem (model.IsTimeDependent =
true).

Tips
• If the Newton iteration does not converge, solvepde displays the error message Too many

iterations or Stepsize too small.
• If the initial guess produces matrices containing NaN or Inf elements, solvepde displays the

error message Unsuitable initial guess U0 (default: U0 = 0).
• If you have very small coefficients, or very small geometric dimensions, solvepde can fail to

converge, or can converge to an incorrect solution. In this case, you might obtain better results by
scaling the coefficients or geometry dimensions to be of order one.

See Also
applyBoundaryCondition | setInitialConditions | solvepdeeig | specifyCoefficients |
PDEModel

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

 solvepde

5-1061

solvepdeeig
Package: pde

Solve PDE eigenvalue problem specified in a PDEModel

Syntax
result = solvepdeeig(model,evr)

Description
result = solvepdeeig(model,evr) solves the PDE eigenvalue problem in model for
eigenvalues in the range evr. If the range does not contain any eigenvalues, solvepdeeig returns
an EigenResults object with the empty EigenVectors, EigenValues, and Mesh properties.

Examples

Solve an Eigenvalue Problem With 3-D Geometry

Solve for several vibrational modes of the BracketTwoHoles geometry.

The equations of elasticity have three components. Therefore, create a PDE model that has three
components. Import and view the BracketTwoHoles geometry.

model = createpde(3);
importGeometry(model,'BracketTwoHoles.stl');
pdegplot(model,'FaceLabels','on','FaceAlpha',0.4)

5 Functions

5-1062

Set F1, the rear face, to have zero deflection.

applyBoundaryCondition(model,'dirichlet','Face',1,'u',[0;0;0]);

Set the model coefficients to represent a steel bracket. For details, see “Linear Elasticity Equations”
on page 3-146. When specifying the f-coefficient, assume that all body forces are zero.

E = 200e9; % elastic modulus of steel in Pascals
nu = 0.3; % Poisson's ratio
specifyCoefficients(model,'m',0,...
 'd',1,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]);

Find the eigenvalues up to 1e7.

evr = [-Inf,1e7];

Mesh the model and solve the eigenvalue problem.

generateMesh(model);
results = solvepdeeig(model,evr);

 Basis= 10, Time= 21.83, New conv eig= 0
 Basis= 11, Time= 21.97, New conv eig= 0
 Basis= 12, Time= 22.00, New conv eig= 0
 Basis= 13, Time= 22.06, New conv eig= 0

 solvepdeeig

5-1063

 Basis= 14, Time= 22.11, New conv eig= 1
 Basis= 15, Time= 22.17, New conv eig= 2
 Basis= 16, Time= 22.22, New conv eig= 2
 Basis= 17, Time= 22.25, New conv eig= 3
 Basis= 18, Time= 22.30, New conv eig= 4
End of sweep: Basis= 18, Time= 22.31, New conv eig= 4
 Basis= 14, Time= 23.34, New conv eig= 0
End of sweep: Basis= 14, Time= 23.36, New conv eig= 0

How many results did solvepdeeig return?

length(results.Eigenvalues)

ans = 3

Plot the solution on the geometry boundary for the lowest eigenvalue.

V = results.Eigenvectors;
subplot(2,2,1)
pdeplot3D(model,'ColorMapData',V(:,1,1))
title('x Deflection, Mode 1')
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',V(:,2,1))
title('y Deflection, Mode 1')
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',V(:,3,1))
title('z Deflection, Mode 1')

Plot the solution for the highest eigenvalue.

5 Functions

5-1064

figure
subplot(2,2,1)
pdeplot3D(model,'ColorMapData',V(:,1,3))
title('x Deflection, Mode 3')
subplot(2,2,2)
pdeplot3D(model,'ColorMapData',V(:,2,3))
title('y Deflection, Mode 3')
subplot(2,2,3)
pdeplot3D(model,'ColorMapData',V(:,3,3))
title('z Deflection, Mode 3')

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object. The model contains the geometry, mesh, and problem
coefficients.
Example: model = createpde(1)

evr — Eigenvalue range
two-element real vector

 solvepdeeig

5-1065

Eigenvalue range, specified as a two-element real vector. evr(1) specifies the lower limit of the
range of the real part of the eigenvalues, and may be -Inf. evr(2) specifies the upper limit of the
range, and must be finite.
Example: [-Inf;100]
Data Types: double

Output Arguments
result — Eigenvalue results
EigenResults object

Eigenvalue results, returned as an EigenResults object. If the range env does not contain any
eigenvalues, the returned EigenResults object has the empty EigenVectors, EigenValues, and
Mesh properties.

Tips
• The equation coefficients cannot depend on the solution u or its gradient.

See Also
applyBoundaryCondition | solvepde | specifyCoefficients | PDEModel

Topics
“Eigenvalues and Eigenmodes of L-Shaped Membrane” on page 3-278
“Eigenvalues and Eigenmodes of Square” on page 3-290
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

5 Functions

5-1066

specifyCoefficients
Package: pde

Specify coefficients in a PDE model

Syntax
specifyCoefficients(model,Name,Value)
specifyCoefficients(model,Name,Value,RegionType,RegionID)
CA = specifyCoefficients(___)

Description
Coefficients of a PDE

solvepde solves PDEs of the form

m∂
2u
∂t2 + d∂u∂t − ∇ · c∇u + au = f

solvepdeeig solves PDE eigenvalue problems of the form

−∇ · c∇u + au = λdu
or

−∇ · c∇u + au = λ2mu

specifyCoefficients defines the coefficients m, d, c, a, and f in the PDE model.

specifyCoefficients(model,Name,Value) defines the specified coefficients in each Name to
each associated Value, and includes them in model. You must specify all of these names: m, d, c, a,
and f. This syntax applies coefficients to the entire geometry.

Note Include geometry in model before using specifyCoefficients.

specifyCoefficients(model,Name,Value,RegionType,RegionID) assigns coefficients for a
specified geometry region.

CA = specifyCoefficients(___) returns a handle to the coefficient assignment object in
model.

Examples

Specify Poisson's Equation

Specify the coefficients for Poisson's equation −∇ ⋅ ∇u = 1.

solvepde addresses equations of the form

 specifyCoefficients

5-1067

m∂
2u
∂t2 + d∂u∂t − ∇ ⋅ c∇u + au = f .

Therefore, the coefficients for Poisson's equation are m = 0, d = 0, c = 1, a = 0, f = 1. Include these
coefficients in a PDE model of the L-shaped membrane.

model = createpde();
geometryFromEdges(model,@lshapeg);
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',1);

Specify zero Dirichlet boundary conditions, mesh the model, and solve the PDE.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
generateMesh(model,'Hmax',0.25);
results = solvepde(model);

View the solution.

pdeplot(model,'XYData',results.NodalSolution)

5 Functions

5-1068

Coefficient Handle for Nonconstant Coefficients

Specify coefficients for Poisson's equation in 3-D with a nonconstant source term, and obtain the
coefficient object.

The equation coefficients are m = 0, d = 0, c = 1, a = 0. For the nonconstant source term, take
f = y2tanh z /1000.

f = @(location,state)location.y.^2.*tanh(location.z)/1000;

Set the coefficients in a 3-D rectangular block geometry.

model = createpde();
importGeometry(model,'Block.stl');
CA = specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',1,...
 'a',0,...
 'f',f)

CA =
 CoefficientAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 m: 0
 d: 0
 c: 1
 a: 0
 f: @(location,state)location.y.^2.*tanh(location.z)/1000

Set zero Dirichlet conditions on face 1, mesh the geometry, and solve the PDE.

applyBoundaryCondition(model,'dirichlet','Face',1,'u',0);
generateMesh(model);
results = solvepde(model);

View the solution on the surface.

pdeplot3D(model,'ColorMapData',results.NodalSolution)

 specifyCoefficients

5-1069

Specify Coefficients Depending On Subdomain

Create a scalar PDE model with the L-shaped membrane as the geometry. Plot the geometry and
subdomain labels.

model = createpde();
geometryFromEdges(model,@lshapeg);
pdegplot(model,'FaceLabels','on')
axis equal
ylim([-1.1,1.1])

5 Functions

5-1070

Set the c coefficient to 1 in all domains, but the f coefficient to 1 in subdomain 1, 5 in subdomain 2,
and -8 in subdomain 3. Set all other coefficients to 0.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1,'Face',1);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',5,'Face',2);
specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',-8,'Face',3);

Set zero Dirichlet boundary conditions to all edges. Create a mesh, solve the PDE, and plot the result.

applyBoundaryCondition(model,'dirichlet', ...
 'Edge',1:model.Geometry.NumEdges, ...
 'u',0);
generateMesh(model,'Hmax',0.25);
results = solvepde(model);
pdeplot(model,'XYData',results.NodalSolution)

 specifyCoefficients

5-1071

Input Arguments
model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.
Example: model = createpde

Name-Value Pair Arguments

Note You must specify all of these names: m, d, c, a, and f.

Example: specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',@fcoeff)

m — Second-order time derivative coefficient
scalar | column vector | function handle

Second-order time derivative coefficient, specified as a scalar, column vector, or function handle. For
details on the sizes, and for details of the function handle form of the coefficient, see “m, d, or a
Coefficient for specifyCoefficients” on page 2-91.

Specify 0 if the term is not part of your problem.

5 Functions

5-1072

Example: specifyCoefficients('m',@mcoef,'d',0,'c',1,'a',0,'f',1,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

d — First-order time derivative coefficient
scalar | column vector | function handle

First-order time derivative coefficient, specified as a scalar, column vector, or function handle. For
details on the sizes, and for details of the function handle form of the coefficient, see “m, d, or a
Coefficient for specifyCoefficients” on page 2-91.

Note If the m coefficient is nonzero, d must be 0 or a matrix, and not a function handle. See “d
Coefficient When m is Nonzero” on page 5-1074.

Specify 0 if the term is not part of your problem.
Example: specifyCoefficients('m',0,'d',@dcoef,'c',1,'a',0,'f',1,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

c — Second-order space derivative coefficient
scalar | column vector | function handle

Second-order space derivative coefficient, specified as a scalar, column vector, or function handle. For
details on the sizes, and for details of the function handle form of the coefficient, see “c Coefficient
for specifyCoefficients” on page 2-76.
Example: specifyCoefficients('m',0,'d',0,'c',@ccoef,'a',0,'f',1,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

a — Solution multiplier coefficient
scalar | column vector | function handle

Solution multiplier coefficient, specified as a scalar, column vector, or function handle. For details on
the sizes, and for details of the function handle form of the coefficient, see “m, d, or a Coefficient for
specifyCoefficients” on page 2-91.

Specify 0 if the term is not part of your problem.
Example: specifyCoefficients('m',0,'d',0,'c',1,'a',@acoef,'f',1,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

f — Source coefficient
scalar | column vector | function handle

Source coefficient, specified as a scalar, column vector, or function handle. For details on the sizes,
and for details of the function handle form of the coefficient, see “f Coefficient for specifyCoefficients”
on page 2-74.

Specify 0 if the term is not part of your problem.

 specifyCoefficients

5-1073

Example: specifyCoefficients('m',0,'d',0,'c',1,'a',0,'f',@fcoeff,'Face',1:4)
Data Types: double | function_handle
Complex Number Support: Yes

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' or 'Cell'.
Example: specifyCoefficients('m',0,'d',0,'c',1,'a',0,'f',10,'Cell',2)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: specifyCoefficients('m',0,'d',0,'c',1,'a',0,'f',10,'Cell',1:3)
Data Types: double

Output Arguments
CA — Coefficient assignment
CoefficientAssignment object

Coefficient assignment, returned as a CoefficientAssignment object.

More About
d Coefficient When m is Nonzero

The d coefficient takes a special matrix form when m is nonzero. You must specify d as a matrix of a
particular size, and not as a function handle.

d represents a damping coefficient in the case of nonzero m. To specify d, perform these two steps:

1 Call results = assembleFEMatrices(...) for the problem with your original coefficients
and using d = 0. Use the default 'none' method for assembleFEMatrices.

2 Take the d coefficient as a matrix of size results.M. Generally, d is either proportional to
results.M, or is a linear combination of results.M and results.K.

See “Dynamics of Damped Cantilever Beam” on page 3-21.

Tips
• For eigenvalue equations, the coefficients cannot depend on the solution u or its gradient.
• You can transform a partial differential equation into the required form by using Symbolic Math

Toolbox. The pdeCoefficients converts a PDE into the required form and extracts the
coefficients into a structure that can be used by specifyCoefficients.

5 Functions

5-1074

The pdeCoefficients function also can return a structure of symbolic expressions, in which
case you need to use pdeCoefficientsToDouble to convert these expressions to double format
before passing them to specifyCoefficients.

See Also
findCoefficients | PDEModel | pdeCoefficients | pdeCoefficientsToDouble

Topics
“Solve Problems Using PDEModel Objects” on page 2-2
“Put Equations in Divergence Form” on page 2-71

Introduced in R2016a

 specifyCoefficients

5-1075

ModalStructuralResults
Structural modal analysis solution

Description
A ModalStructuralResults object contains the natural frequencies and modal displacement in a
form convenient for plotting and postprocessing.

Modal displacement is reported for the nodes of the triangular or tetrahedral mesh generated by
generateMesh. The modal displacement values at the nodes appear as an FEStruct object in the
ModeShapes property. The properties of this object contain the components of the displacement at
the nodal locations.

You can use a ModalStructuralResults object to approximate solutions for transient dynamics
problems. For details, see solve.

Creation
Solve a modal analysis problem by using the solve function. This function returns a modal structural
solution as a ModalStructuralResults object.

Properties
Properties of an FEStruct object are read-only.

NaturalFrequencies — Natural frequencies
column vector

Natural frequencies of the structure, returned as a column vector.
Data Types: double

ModeShapes — Modal displacement values at nodes
FEStruct object

Modal displacement values at the nodes, returned as an FEStruct object. The properties of this
object contain components of modal displacement at nodal locations.

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

Examples
Solution to Modal Analysis Structural Model

Find the fundamental (lowest) mode of a 2-D cantilevered beam, assuming prevalence of the plane-
stress condition.

5 Functions

5-1076

Specify the following geometric and structural properties of the beam, along with a unit plane-stress
thickness.

length = 5;
height = 0.1;
E = 3E7;
nu = 0.3;
rho = 0.3/386;

Create a model plane-stress model, assign a geometry, and generate a mesh.

structuralmodel = createpde('structural','modal-planestress');
gdm = [3;4;0;length;length;0;0;0;height;height];
g = decsg(gdm,'S1',('S1')');
geometryFromEdges(structuralmodel,g);

Define a maximum element size (five elements through the beam thickness).

hmax = height/5;
msh=generateMesh(structuralmodel,'Hmax',hmax);

Specify the structural properties and boundary constraints.

structuralProperties(structuralmodel,'YoungsModulus',E, ...
 'MassDensity',rho, ...
 'PoissonsRatio',nu);
structuralBC(structuralmodel,'Edge',4,'Constraint','fixed');

Compute the analytical fundamental frequency (Hz) using the beam theory.

I = height^3/12;
analyticalOmega1 = 3.516*sqrt(E*I/(length^4*(rho*height)))/(2*pi)

analyticalOmega1 = 126.9498

Specify a frequency range that includes an analytically computed frequency and solve the model.

modalresults = solve(structuralmodel,'FrequencyRange',[0,1e6])

modalresults =
 ModalStructuralResults with properties:

 NaturalFrequencies: [32x1 double]
 ModeShapes: [1x1 FEStruct]
 Mesh: [1x1 FEMesh]

The solver finds natural frequencies and modal displacement values at nodal locations. To access
these values, use modalresults.NaturalFrequencies and modalresults.ModeShapes.

modalresults.NaturalFrequencies/(2*pi)

ans = 32×1
105 ×

 0.0013
 0.0079
 0.0222
 0.0433

 ModalStructuralResults

5-1077

 0.0711
 0.0983
 0.1055
 0.1462
 0.1930
 0.2455
 ⋮

modalresults.ModeShapes

ans =
 FEStruct with properties:

 ux: [6511x32 double]
 uy: [6511x32 double]
 Magnitude: [6511x32 double]

Plot the y-component of the solution for the fundamental frequency.

pdeplot(structuralmodel,'XYData',modalresults.ModeShapes.uy(:,1))
title(['First Mode with Frequency ', ...
 num2str(modalresults.NaturalFrequencies(1)/(2*pi)),' Hz'])
axis equal

5 Functions

5-1078

See Also
StructuralModel | solve | StaticStructuralResults | TransientStructuralResults

Introduced in R2018a

 ModalStructuralResults

5-1079

FrequencyStructuralResults
Frequency response structural solution and its derived quantities

Description
A FrequencyStructuralResults object contains the displacement, velocity, and acceleration in a
form convenient for plotting and postprocessing.

Displacement, velocity, and acceleration are reported for the nodes of the triangular or tetrahedral
mesh generated by generateMesh. The displacement, velocity, and acceleration values at the nodes
appear as FEStruct objects in the Displacement, Velocity, and Acceleration properties. The
properties of these objects contain the components of the displacement, velocity, and acceleration at
the nodal locations.

To evaluate the stress, strain, von Mises stress, principal stress, and principal strain at the nodal
locations, use evaluateStress, evaluateStrain, evaluateVonMisesStress,
evaluatePrincipalStress, and evaluatePrincipalStrain, respectively.

To evaluate the reaction forces on a specified boundary, use evaluateReaction.

To interpolate the displacement, velocity, acceleration, stress, strain, and von Mises stress to a
custom grid, such as the one specified by meshgrid, use interpolateDisplacement,
interpolateVelocity, interpolateAcceleration, interpolateStress,
interpolateStrain, and interpolateVonMisesStress, respectively.

For a frequency response model with damping, the results are complex. Use functions such as abs
and angle to obtain real-valued results, such as the magnitude and phase. See “Solution to
Frequency Response Structural Model with Damping” on page 5-1081.

Creation
Solve a frequency response problem by using the solve function. This function returns a frequency
response structural solution as a FrequencyStructuralResults object.

Properties
Properties of an FEStruct object are read-only.

Displacement — Displacement values at nodes
FEStruct object

Displacement values at the nodes, returned as an FEStruct object. The properties of this object
contain the components of the displacement at the nodal locations.

Velocity — Velocity values at nodes
FEStruct object

Velocity values at the nodes, returned as an FEStruct object. The properties of this object contain
the components of the velocity at the nodal locations.

5 Functions

5-1080

Acceleration — Acceleration values at nodes
FEStruct object

Acceleration values at the nodes, returned as an FEStruct object. The properties of this object
contain the components of the acceleration at the nodal locations.

SolutionFrequencies — Solution frequencies
real vector

Solution frequencies, returned as a real vector. SolutionFrequencies is the same as the flist
input to solve.
Data Types: double

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

Object Functions
evaluateStress Evaluate stress for dynamic structural analysis problem
evaluateStrain Evaluate strain for dynamic structural analysis problem
evaluateVonMisesStress Evaluate von Mises stress for dynamic structural analysis problem
evaluateReaction Evaluate reaction forces on boundary
evaluatePrincipalStress Evaluate principal stress at nodal locations
evaluatePrincipalStrain Evaluate principal strain at nodal locations
interpolateDisplacement Interpolate displacement at arbitrary spatial locations
interpolateVelocity Interpolate velocity at arbitrary spatial locations for all time or

frequency steps for dynamic structural model
interpolateAcceleration Interpolate acceleration at arbitrary spatial locations for all time or

frequency steps for dynamic structural model
interpolateStress Interpolate stress at arbitrary spatial locations
interpolateStrain Interpolate strain at arbitrary spatial locations
interpolateVonMisesStress Interpolate von Mises stress at arbitrary spatial locations

Examples

Solution to Frequency Response Structural Model with Damping

Solve a frequency response problem with damping. The resulting displacement values are complex.
To obtain the magnitude and phase of displacement, use the abs and angle functions, respectively.
To speed up computations, solve the model using the results of modal analysis.

Modal Analysis

Create a modal analysis model for a 3-D problem.

modelM = createpde('structural','modal-solid');

Create the geometry and include it in the model.

gm = multicuboid(10,10,0.025);
modelM.Geometry = gm;

 FrequencyStructuralResults

5-1081

Generate a mesh.

msh = generateMesh(modelM);

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelM,'YoungsModulus',2E11, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face and
edge labels.

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.5)

figure
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.5)

5 Functions

5-1082

Specify constraints on the sides of the plate (faces 3, 4, 5, and 6) to prevent rigid body motions.

structuralBC(modelM,'Face',[3,4,5,6],'Constraint','fixed');

Solve the problem for the frequency range from -Inf to 12*pi.

Rm = solve(modelM,'FrequencyRange',[-Inf,12*pi]);

Frequency Response Analysis

Create a frequency response analysis model for a 3-D problem.

modelFR = createpde('structural','frequency-solid');

Use the same geometry and mesh as you used for the modal analysis.

modelFR.Geometry = gm;
modelFR.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelFR,'YoungsModulus',2E11, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Specify the same constraints on the sides of the plate to prevent rigid body modes.

structuralBC(modelFR,'Face',[3,4,5,6],'Constraint','fixed');

 FrequencyStructuralResults

5-1083

Specify the pressure loading on top of the plate (face 2) to model an ideal impulse excitation. In the
frequency domain, this pressure pulse is uniformly distributed across all frequencies.

structuralBoundaryLoad(modelFR,'Face',2,'Pressure',1E2);

First, solve the model without damping.

flist = [0,1,1.5,linspace(2,3,100),3.5,4,5,6]*2*pi;
RfrModalU = solve(modelFR,flist,'ModalResults',Rm);

Now, solve the model with damping equal to 2% of critical damping for all modes.

structuralDamping(modelFR,'Zeta',0.02);
RfrModalAll = solve(modelFR,flist,'ModalResults',Rm);

Solve the same model with frequency-dependent damping. In this example, use the solution
frequencies from flist and damping values between 1% and 10% of critical damping.

omega = flist;
zeta = linspace(0.01,0.1,length(omega));
zetaW = @(omegaMode) interp1(omega,zeta,omegaMode);
structuralDamping(modelFR,'Zeta',zetaW);

RfrModalFD = solve(modelFR,flist,'ModalResults',Rm);

Interpolate the displacement at the center of the top surface of the plate for all three cases.

iDispU = interpolateDisplacement(RfrModalU,[0;0;0.025]);
iDispAll = interpolateDisplacement(RfrModalAll,[0;0;0.025]);
iDispFD = interpolateDisplacement(RfrModalFD,[0;0;0.025]);

Plot the magnitude of the displacement. Zoom in on the frequencies around the first mode.

figure
hold on
plot(RfrModalU.SolutionFrequencies,abs(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies,abs(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,abs(iDispFD.Magnitude));
title('Magnitude')
xlim([10 25])
ylim([0 0.5])

5 Functions

5-1084

Plot the phase of the displacement.

figure
hold on
plot(RfrModalU.SolutionFrequencies,angle(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies,angle(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,angle(iDispFD.Magnitude));
title('Phase')

 FrequencyStructuralResults

5-1085

See Also
StructuralModel | solve | StaticStructuralResults | ModalStructuralResults |
TransientStructuralResults

Introduced in R2019b

5 Functions

5-1086

StaticStructuralResults
Static structural solution and its derived quantities

Description
A StaticStructuralResults object contains the displacement, stress, strain, and von Mises stress
in a form convenient for plotting and postprocessing.

Displacements, stresses, and strains are reported for the nodes of the triangular or tetrahedral mesh
generated by generateMesh. Displacement values at the nodes appear as an FEStruct object in the
Displacement property. The properties of this object contain components of displacement at nodal
locations.

Stress and strain values at the nodes appear as FEStruct objects in the Stress and Strain
properties, respectively.

von Mises stress at the nodes appears as a vector in the VonMisesStress property.

To interpolate the displacement, stress, strain, and von Mises stress to a custom grid, such as the one
specified by meshgrid, use interpolateDisplacement, interpolateStress,
interpolateStrain, and interpolateVonMisesStress, respectively.

To evaluate reaction forces on a specified boundary, use evaluateReaction. To evaluate principal
stress and principal strain at nodal locations, use evaluatePrincipalStress and
evaluatePrincipalStrain, respectively.

Creation
Solve a static linear elasticity problem by using the solve function. This function returns a static
structural solution as a StaticStructuralResults object.

Properties
Properties of an FEStruct object are read-only.

Displacement — Displacement values at nodes
FEStruct object

Displacement values at the nodes, returned as an FEStruct object. The properties of this object
contain components of displacement at nodal locations.

Stress — Stress values at nodes
FEStruct object

Stress values at the nodes, returned as an FEStruct object. The properties of this object contain
components of stress at nodal locations.

Strain — Strain values at nodes
FEStruct object

 StaticStructuralResults

5-1087

Strain values at the nodes, returned as an FEStruct object. The properties of this object contain
components of strain at nodal locations.

VonMisesStress — Von Mises stress values at nodes
vector

Von Mises stress values at the nodes, returned as a vector.
Data Types: double

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

Object Functions
interpolateDisplacement Interpolate displacement at arbitrary spatial locations
interpolateStress Interpolate stress at arbitrary spatial locations
interpolateStrain Interpolate strain at arbitrary spatial locations
interpolateVonMisesStress Interpolate von Mises stress at arbitrary spatial locations
evaluateReaction Evaluate reaction forces on boundary
evaluatePrincipalStress Evaluate principal stress at nodal locations
evaluatePrincipalStrain Evaluate principal strain at nodal locations

Examples

Solution to Static Structural Model

Solve a static structural model representing a bimetallic cable under tension.

Create a static structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder([0.01 0.015],0.05);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on', ...
 'CellLabels','on', ...
 'FaceAlpha',0.5)

5 Functions

5-1088

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralmodel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralmodel,'Face',[1,4],'Constraint','fixed');

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralmodel,'Face',[2,5], ...
 'SurfaceTraction',[0;0;100]);

Generate a mesh and solve the problem.

generateMesh(structuralmodel);
structuralresults = solve(structuralmodel)

structuralresults =
 StaticStructuralResults with properties:

 Displacement: [1x1 FEStruct]
 Strain: [1x1 FEStruct]
 Stress: [1x1 FEStruct]
 VonMisesStress: [22306x1 double]

 StaticStructuralResults

5-1089

 Mesh: [1x1 FEMesh]

The solver finds the values of displacement, stress, strain, and von Mises stress at the nodal locations.
To access these values, use structuralresults.Displacement, structuralresults.Stress,
and so on. The displacement, stress, and strain values at the nodal locations are returned as
FEStruct objects with the properties representing their components. Note that properties of an
FEStruct object are read-only.

structuralresults.Displacement

ans =
 FEStruct with properties:

 ux: [22306x1 double]
 uy: [22306x1 double]
 uz: [22306x1 double]
 Magnitude: [22306x1 double]

structuralresults.Stress

ans =
 FEStruct with properties:

 sxx: [22306x1 double]
 syy: [22306x1 double]
 szz: [22306x1 double]
 syz: [22306x1 double]
 sxz: [22306x1 double]
 sxy: [22306x1 double]

structuralresults.Strain

ans =
 FEStruct with properties:

 exx: [22306x1 double]
 eyy: [22306x1 double]
 ezz: [22306x1 double]
 eyz: [22306x1 double]
 exz: [22306x1 double]
 exy: [22306x1 double]

Plot the deformed shape with the z-component of normal stress.

pdeplot3D(structuralmodel, ...
 'ColorMapData',structuralresults.Stress.szz, ...
 'Deformation',structuralresults.Displacement)

5 Functions

5-1090

See Also
StructuralModel | solve | TransientStructuralResults | ModalStructuralResults

Introduced in R2017b

 StaticStructuralResults

5-1091

TransientStructuralResults
Transient structural solution and its derived quantities

Description
A TransientStructuralResults object contains the displacement, velocity, and acceleration in a
form convenient for plotting and postprocessing.

Displacement, velocity, and acceleration are reported for the nodes of the triangular or tetrahedral
mesh generated by generateMesh. The displacement, velocity, and acceleration values at the nodes
appear as FEStruct objects in the Displacement, Velocity, and Acceleration properties. The
properties of these objects contain the components of the displacement, velocity, and acceleration at
the nodal locations.

To evaluate the stress, strain, von Mises stress, principal stress, and principal strain at the nodal
locations, use evaluateStress, evaluateStrain, evaluateVonMisesStress,
evaluatePrincipalStress, and evaluatePrincipalStrain, respectively.

To evaluate the reaction forces on a specified boundary, use evaluateReaction.

To interpolate the displacement, velocity, acceleration, stress, strain, and von Mises stress to a
custom grid, such as the one specified by meshgrid, use interpolateDisplacement,
interpolateVelocity, interpolateAcceleration, interpolateStress,
interpolateStrain, and interpolateVonMisesStress, respectively.

Creation
Solve a dynamic linear elasticity problem by using the solve function. This function returns a
transient structural solution as a TransientStructuralResults object.

Properties
Properties of an FEStruct object are read-only.

Displacement — Displacement values at nodes
FEStruct object

Displacement values at the nodes, returned as an FEStruct object. The properties of this object
contain components of displacement at nodal locations.

Velocity — Velocity values at nodes
FEStruct object

Velocity values at the nodes, returned as an FEStruct object. The properties of this object contain
components of velocity at nodal locations.

Acceleration — Acceleration values at nodes
FEStruct object

5 Functions

5-1092

Acceleration values at the nodes, returned as an FEStruct object. The properties of this object
contain components of acceleration at nodal locations.

SolutionTimes — Solution times
real vector

Solution times, returned as a real vector. SolutionTimes is the same as the tlist input to solve.
Data Types: double

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object. For details, see FEMesh.

Object Functions
evaluateStress Evaluate stress for dynamic structural analysis problem
evaluateStrain Evaluate strain for dynamic structural analysis problem
evaluateVonMisesStress Evaluate von Mises stress for dynamic structural analysis problem
evaluateReaction Evaluate reaction forces on boundary
evaluatePrincipalStress Evaluate principal stress at nodal locations
evaluatePrincipalStrain Evaluate principal strain at nodal locations
interpolateDisplacement Interpolate displacement at arbitrary spatial locations
interpolateVelocity Interpolate velocity at arbitrary spatial locations for all time or

frequency steps for dynamic structural model
interpolateAcceleration Interpolate acceleration at arbitrary spatial locations for all time or

frequency steps for dynamic structural model
interpolateStress Interpolate stress at arbitrary spatial locations
interpolateStrain Interpolate strain at arbitrary spatial locations
interpolateVonMisesStress Interpolate von Mises stress at arbitrary spatial locations

Examples
Solution to Transient Structural Model

Solve for the transient response of a thin 3-D plate under a harmonic load at the center.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

 TransientStructuralResults

5-1093

Zoom in to see the face labels on the small plate at the center.

figure
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])

5 Functions

5-1094

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.

structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);

Apply a sinusoidal pressure load on the small face at the center of the plate.

structuralBoundaryLoad(structuralmodel,'Face',12, ...
 'Pressure',5E7, ...
 'Frequency',25);

Generate a mesh with linear elements.

generateMesh(structuralmodel,'GeometricOrder','linear','Hmax',0.2);

Specify zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0]);

Solve the model.

tlist = linspace(0,1,300);
structuralresults = solve(structuralmodel,tlist);

 TransientStructuralResults

5-1095

The solver finds the values of the displacement, velocity, and acceleration at the nodal locations. To
access these values, use structuralresults.Displacement, structuralresults.Velocity,
and so on. The displacement, velocity, and acceleration values are returned as FEStruct objects with
the properties representing their components. Note that properties of an FEStruct object are read-
only.

structuralresults.Displacement

ans =
 FEStruct with properties:

 ux: [1873x300 double]
 uy: [1873x300 double]
 uz: [1873x300 double]
 Magnitude: [1873x300 double]

structuralresults.Velocity

ans =
 FEStruct with properties:

 vx: [1873x300 double]
 vy: [1873x300 double]
 vz: [1873x300 double]
 Magnitude: [1873x300 double]

structuralresults.Acceleration

ans =
 FEStruct with properties:

 ax: [1873x300 double]
 ay: [1873x300 double]
 az: [1873x300 double]
 Magnitude: [1873x300 double]

See Also
StructuralModel | solve | StaticStructuralResults | ModalStructuralResults

Introduced in R2018a

5 Functions

5-1096

structuralBC
Package: pde

Specify boundary conditions for structural model

Syntax
structuralBC(structuralmodel,RegionType,RegionID,'Constraint',Cval)
structuralBC(structuralmodel,RegionType,RegionID,'Displacement',Dval)
structuralBC(structuralmodel,RegionType,RegionID,'XDisplacement',
XDval,'YDisplacement',YDval,'ZDisplacement',ZDval)
structuralBC(structuralmodel,RegionType,RegionID,'RDisplacement',
RDval,'ZDisplacement',ZDval)

structuralBC(structuralmodel,RegionType,RegionID,'XDisplacement',XDval,
Name,Value)

structuralBC(structuralmodel,RegionType,RegionID,'Constraint','multipoint')
structuralBC(___ ,'Reference',Coords)
structuralBC(___ ,'Reference',Coords,'Radius',R)

structuralBC(___ ,'Label',labeltext)

structuralBC(___ ,'Vectorized','on')

bc = structuralBC(___)

Description
Standard Boundary Constraints and Displacements

structuralBC(structuralmodel,RegionType,RegionID,'Constraint',Cval) specifies one
of the standard structural boundary constraints. Here, Cval can be 'fixed', 'free', 'roller', or
'symmetric'. The default value is 'free'.

Avoid using 'symmetric' for transient and modal analysis, since the symmetric constraint can
prevent the participation of some structural modes.

structuralBC(structuralmodel,RegionType,RegionID,'Displacement',Dval) enforces
displacement on the boundary of type RegionType with RegionID ID numbers.

structuralBC(structuralmodel,RegionType,RegionID,'XDisplacement',
XDval,'YDisplacement',YDval,'ZDisplacement',ZDval) specifies the x-, y-, and z-
components of the enforced displacement.

structuralBC does not require you to specify all three components. Depending on your structural
analysis problem, you can specify one or more components by picking the corresponding arguments
and omitting others.

structuralBC(structuralmodel,RegionType,RegionID,'RDisplacement',
RDval,'ZDisplacement',ZDval) specifies the r- and z-components of the enforced displacement
for an axisymmetric model. The radial component (r-component) must be zero on the axis of rotation.

 structuralBC

5-1097

structuralBC does not require you to specify both components.
Harmonic, Rectangular, Triangular, and Trapezoidal Displacement Pulses

structuralBC(structuralmodel,RegionType,RegionID,'XDisplacement',XDval,
Name,Value)specifies the form and duration of the time-varying value of the x-component of the
enforced displacement. You can also specify the form and duration of the other components of the
displacement as follows:

• structuralBC(...,'YDisplacement',YDval,Name,Value) for the y-component.
• structuralBC(...,'ZDisplacement',ZDval,Name,Value) for the z-component. Use this

syntax for a 3-D or axisymmetric model.
• structuralBC(...,'RDisplacement',RDval,Name,Value) for the radial component in an

axisymmetric model.

Multipoint Constraint

structuralBC(structuralmodel,RegionType,RegionID,'Constraint','multipoint')
sets the multipoint constraint using all degrees of freedom on the combination of geometric regions
specified by RegionType and RegionID. The reference location for the constraint is the geometric
center of all nodes on the combination of all specified geometric regions.

This syntax is required if you intend to use results obtained with the model order reduction technique
in the Simscape Multibody™ Reduced Order Flexible Solid block. Simscape models expect the
connections at all joints to have six degrees of freedom, while Partial Differential Equation Toolbox
uses two or three degrees of freedom at each node. Setting a multipoint constraint ensures that all
nodes and all degrees of freedom for the specified geometric regions have a rigid constraint with the
geometric center of all specified geometric regions altogether as the reference point. The reference
location has six degrees of freedom.

For better performance, specify geometric regions with a minimal number of nodes. For example, use
a set of edges instead of using a face, and a set of vertices instead of using an edge.

structuralBC(___ ,'Reference',Coords) specifies the reference point for the multipoint
constraint instead of using the geometric center of all specified regions as a reference point.

Use this syntax with the input arguments from the previous syntax.

structuralBC(___ ,'Reference',Coords,'Radius',R) restricts the region for multipoint
constraint to nodes within the circle (for a 2-D geometry) or sphere (for a 3-D geometry) of radius R
around the reference point.
Sparse Linear Models for Use with Control System Toolbox

structuralBC(___ ,'Label',labeltext) adds a label for the structural boundary condition to
be used by the linearizeInput function. This function lets you pass boundary conditions to the
linearize function that extracts sparse linear models for use with Control System Toolbox.
Vectorized Evaluation for Function Handles

structuralBC(___ ,'Vectorized','on') uses vectorized function evaluation when you pass a
function handle as an argument. If your function handle computes in a vectorized fashion, then using
this argument saves time. See “Vectorization”. For details on this evaluation, see “Nonconstant
Boundary Conditions” on page 2-116.

Use this syntax with any of the input arguments from previous syntaxes.

5 Functions

5-1098

Structural Boundary Condition Object

bc = structuralBC(___) returns the structural boundary condition object using any of the input
arguments from previous syntaxes.

Examples

Apply Fixed Boundaries and Specify Surface Traction

Apply fixed boundaries and traction on two ends of a bimetallic cable.

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create nested cylinders to model a bimetallic cable.

gm = multicylinder([0.01,0.015],0.05);

Assign the geometry to the structural model and plot the geometry.

structuralModel.Geometry = gm;
pdegplot(structuralModel,'CellLabels','on', ...
 'FaceLabels','on', ...
 'FaceAlpha',0.4)

 structuralBC

5-1099

For each metal, specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralModel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralModel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralModel,'Face',[1,4],'Constraint','fixed')

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: [1 4]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralModel, ...
 'Face',[2,5], ...
 'SurfaceTraction',[0;0;100])

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: [2 5]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

5 Functions

5-1100

 Boundary Loads
 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
 TranslationalStiffness: []
 Label: []

Specify Displacements

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create a block geometry.

gm = multicuboid(0.2,0.1,0.05);

Assign the geometry to the structural model and plot the geometry.

structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceLabels','on','FaceAlpha',0.5)

Specify the Young's modulus, Poisson's ratio, and mass density.

 structuralBC

5-1101

structuralProperties(structuralModel,'YoungsModulus',74e9,...
 'PoissonsRatio',0.42,...
 'MassDensity',19.29e3);

Specify the gravity load on the beam.

structuralBodyLoad(structuralModel, ...
 'GravitationalAcceleration',[0;0;-9.8]);

Specify that face 5 is a fixed boundary.

structuralBC(structuralModel,'Face',5,'Constraint','fixed');

Specify z-displacement on face 3 of the model. By leaving the x- and y-displacements unspecified, you
enable face 3 to move in the x- and y-directions.

structuralBC(structuralModel,'Face',3,'ZDisplacement',0.0001);

Generate a mesh and solve the model.

generateMesh(structuralModel);
R = solve(structuralModel);

Plot the deformed shape with the x-component of normal stress.

pdeplot3D(structuralModel,'ColorMapData',R.Stress.sxx, ...
 'Deformation',R.Displacement)

5 Functions

5-1102

Now specify all three displacements on the same face. Here, the z-displacement is the same, but the
x- and y-displacements are both zero. Face 3 cannot move in the x- and y-directions.

structuralBC(structuralModel,'Face',3, ...
 'Displacement',[0;0;0.0001]);
R = solve(structuralModel);
pdeplot3D(structuralModel,'ColorMapData',R.Stress.sxx, ...
 'Deformation',R.Displacement)

Thus, specifying 'Displacement',[0;0;0.0001] is equivalent to specifying
'XDisplacement',0,'YDisplacement',0,'ZDisplacement',0.0001.

structuralBC(structuralModel,'Face',3,'XDisplacement',0, ...
 'YDisplacement',0, ...
 'ZDisplacement',0.0001);
R = solve(structuralModel);
pdeplot3D(structuralModel,'ColorMapData',R.Stress.sxx, ...
 'Deformation',R.Displacement)

 structuralBC

5-1103

Static Analysis of Spinning Disk with Press-Fit at Hub

Analyze a spinning disk with radial compression at the hub due to press-fit. The inner radius of the
disk is 0.05, and the outer radius is 0.2. The thickness of the disk is 0.05 with an interference fit of
50E-6. For this analysis, simplify the 3-D axisymmetric model to a 2-D model.

Create a static structural analysis model for solving an axisymmetric problem.

structuralmodel = createpde('structural','static-axisymmetric');

The 2-D model is a rectangular strip whose x-dimension extends from the hub to the outer surface,
and whose y-dimension extends over the height of the disk. Create the geometry by specifying the
coordinates of the strip's four corners. For axisymmetric models, the toolbox assumes that the axis of
rotation is the vertical axis passing through r = 0, which is equivalent to x = 0.

g = decsg([3 4 0.05 0.2 0.2 0.05 -0.025 -0.025 0.025 0.025]');

Include the geometry in the model.

geometryFromEdges(structuralmodel,g);

Plot the geometry with the edge and vertex labels.

figure
pdegplot(structuralmodel,'EdgeLabels','on','VertexLabels','on')

5 Functions

5-1104

xlim([0 0.3])
ylim([-0.05 0.05])

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(structuralmodel,'YoungsModulus',210e9, ...
 'PoissonsRatio',0.28, ...
 'MassDensity',7700);

Apply centrifugal load due to spinning of the disk. Assume that the disk is spinning at 104.7 rad/s.

structuralBodyLoad(structuralmodel,'AngularVelocity',1047);

Apply radial displacement at the hub of the disk to model press-fit.

structuralBC(structuralmodel,'Edge',4,'RDisplacement',50e-6);

Fix axial displacement of a point on the hub to prevent rigid body motion.

structuralBC(structuralmodel,'Vertex',1,'ZDisplacement',0);

Generate a mesh.

generateMesh(structuralmodel);

Solve the model.

structuralresults = solve(structuralmodel);

 structuralBC

5-1105

Plot the radial displacement of the disk.

figure
pdeplot(structuralmodel, ...
 'XYData',structuralresults.Displacement.ur, ...
 'ColorMap','jet')
axis equal
xlim([0 0.3])
ylim([-0.05 0.05])

Plot circumferential (hoop) stress.

figure
pdeplot(structuralmodel, ...
 'XYData',structuralresults.Stress.sh, ...
 'ColorMap','jet')
axis equal
xlim([0 0.3])
ylim([-0.05 0.05])

5 Functions

5-1106

Specify Nonconstant Displacement by Using Function Handle

Use a function handle to specify a harmonically varying excitation in a beam.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 structuralBC

5-1107

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite to the fixed end of the
beam.

yDisplacementFunc = ...
@(location,state) ones(size(location.y))*1E-4*sin(50*state.time);
structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',yDisplacementFunc);

Apply Sinusoidal Displacement by Specifying Frequency

Specify a harmonically varying excitation by specifying its frequency.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

5 Functions

5-1108

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Fix one end of the beam.

structuralBC(structuralmodel,'Face',5,'Constraint','fixed');

Apply a sinusoidal displacement along the y-direction on the end opposite to the fixed end of the
beam.

structuralBC(structuralmodel,'Face',3, ...
 'YDisplacement',1E-4, ...
 'Frequency',50);

 structuralBC

5-1109

Specify Displacement at Corner of Rectangle

Fix one corner of a rectangular plate to restrain all rigid body motions of the model.

Create a structural model for static plane-stress analysis.

model = createpde('structural','static-planestress');

Create the geometry and include it in the structural model.

length = 1;
width = 0.5;
radius = 0.1;
R1 = [3 4 -length length length -length ...
 -width -width width width]';
C1 = [1 0 0 radius 0 0 0 0 0 0]';
gdm = [R1 C1];
ns = char('R1','C1');
g = decsg(gdm,'R1- C1',ns');
geometryFromEdges(model,g);

Plot the geometry, displaying edge labels.

figure
pdegplot(model,'EdgeLabels','on');
axis([-1.2*length 1.2*length ...
 -1.2*width 1.2*width])

5 Functions

5-1110

Plot the geometry, displaying vertex labels.

figure
pdegplot(model,'VertexLabels','on');
axis([-1.2*length 1.2*length ...
 -1.2*width 1.2*width])

Specify the Young's modulus and Poisson's ratio of the material.

structuralProperties(model,'YoungsModulus',210E9,'PoissonsRatio',0.3);

Set the x-component of displacement on the left edge of the plate to zero to resist the applied load.

structuralBC(model,'Edge',3,'XDisplacement',0);

Apply the surface traction with a nonzero x-component on the right edge of the plate.

structuralBoundaryLoad(model,'Edge',1,'SurfaceTraction',[100000 0]);

Set the y-component of displacement at the bottom-left corner (vertex 3) to zero to restraint the rigid
body motion.

structuralBC(model,'Vertex',3,'YDisplacement',0);

Generate the mesh, using Hmax to control the mesh size. A fine mesh lets you capture the gradation
in the solution accurately.

generateMesh(model,'Hmax',radius/6);

 structuralBC

5-1111

Solve the problem.

R = solve(model);

Plot the x-component of the normal stress distribution.

pdeplot(model,'XYData',R.Stress.sxx);
axis equal
colormap jet
title 'Normal Stress Along x-Direction';

Set Multipoint Constraint and Obtain ROM Results Compatible with Simscape Multibody™

Set multipoint constraints on two opposite sides of a beam.

Create a transient structural model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'EdgeLabels','on','FaceAlpha',0.5)

5 Functions

5-1112

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);

Generate a mesh.

generateMesh(structuralmodel);

Set the multipoint constraint on the right side of the beam. For better performance, set the constraint
on the set of edges bounding the right side of the beam instead of setting it on the entire face.

structuralBC(structuralmodel,'Edge',[4,6,9,10], ...
 'Constraint','multipoint')

ans =
 StructuralBC with properties:

 RegionType: 'Edge'
 RegionID: [4 6 9 10]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []

 structuralBC

5-1113

 Constraint: "multipoint"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

 Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []

 Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []

Using the same approach, set the multipoint constraint on the left side of the beam.

structuralBC(structuralmodel,'Edge',[2,8,11,12], ...
 'Constraint','multipoint')

ans =
 StructuralBC with properties:

 RegionType: 'Edge'
 RegionID: [2 8 11 12]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "multipoint"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

 Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []

5 Functions

5-1114

 Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []

Reduce the model to all modes in the frequency range [-Inf,500000] and the interface degrees of
freedom.

R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000]);

Input Arguments
structuralmodel — Structural model
StructuralModel object

Structural model, specified as a StructuralModel object. The model contains the geometry, mesh,
structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

RegionType — Geometric region type
'Vertex' | 'Edge' | 'Face' (for a 3-D model only)

Geometric region type, specified as 'Vertex', 'Edge', or, for a 3-D model, 'Face'.

You cannot use the following geometric region types if you specify the 'roller' or 'symmetric'
value for the boundary constraint Cval:

• 'Edge' for a 3-D model
• 'Vertex' for a 2-D or 3-D model

Example: structuralBC(structuralmodel,'Face',[2,5],'XDisplacement',0.1)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: structuralBC(structuralmodel,'Face',[2,5],'XDisplacement',0.01)
Data Types: double

Displacement

Dval — Enforced displacement
numeric vector | function handle

Enforced displacement, specified as a numeric vector or function handle. A numeric vector must
contain two elements for a 2-D model (including axisymmetric models) and three elements for a 3-D
model. The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D
model. Each column of the matrix must correspond to an enforced displacement vector at the
boundary coordinates provided by the solver. In case of a transient or frequency response analysis,

 structuralBC

5-1115

Dval also can be a function of time or frequency, respectively. For details, see “More About” on page
5-1120.

Note that when you specify Dval for an axisymmetric model, the radial displacement on the axis of
rotation must always be zero.
Example: structuralBC(structuralmodel,'Face',[2,5],'Displacement',[0;0;0.01])
Data Types: double | function_handle

XDval — x-component of enforced displacement
number | function handle

x-component of enforced displacement, specified as a number or function handle. The function must
return a row vector. Each element of this vector corresponds to the x-component value of the
enforced displacement at the boundary coordinates provided by the solver. In case of a transient or
frequency response analysis, XDval also can be a function of time or frequency, respectively. For
details, see “More About” on page 5-1120.
Example: structuralBC(structuralmodel,'Face',[2,5],'XDisplacement',0.01)
Data Types: double | function_handle

YDval — y-component of enforced displacement
number | function handle

y-component of enforced displacement, specified as a number or function handle. The function must
return a row vector. Each element of this vector corresponds to the y-component value of the
enforced displacement at the boundary coordinates provided by the solver. In case of a transient or
frequency response analysis, YDval also can be a function of time or frequency, respectively. For
details, see “More About” on page 5-1120.
Example: structuralBC(structuralmodel,'Face',[2,5],'YDisplacement',0.01)
Data Types: double | function_handle

ZDval — z-component of enforced displacement
number | function handle

z-component of enforced displacement, specified as a number or function handle. The function must
return a row vector. Each element of this vector corresponds to the z-component value of the
enforced displacement at the boundary coordinates provided by the solver. For a transient or
frequency response analysis, ZDval also can be a function of time or frequency, respectively. For
details, see “More About” on page 5-1120.

You can specify ZDval for a 3-D or axisymmetric model.
Example: structuralBC(structuralmodel,'Face',[2,5],'ZDisplacement',0.01)
Data Types: double | function_handle

RDval — r-component of enforced displacement
number | function handle

r-component of enforced displacement, specified as a number or function handle. The function must
return a row vector. Each element of this vector corresponds to the r-component value of the
enforced displacement at the boundary coordinates provided by the solver. For a transient or

5 Functions

5-1116

frequency response analysis, RDval also can be a function of time or frequency, respectively. For
details, see “More About” on page 5-1120.

You can specify RDval only for an axisymmetric model. RDval must be zero on the axis of rotation.
Example: structuralBC(structuralmodel,'Face',[2,5],'RDisplacement',0.01)
Data Types: double | function_handle

Cval — Standard structural boundary constraints
'free' (default) | 'fixed' | 'roller' | 'symmetric' | 'multipoint'

Standard structural boundary constraints, specified as 'free','fixed','roller', 'symmetric',
or 'multipoint'.

You cannot use the 'roller' and 'symmetric' values with the following geometric region types:

• 'Edge' for a 3-D model
• 'Vertex' for a 2-D or 3-D model

Example: structuralBC(structuralmodel,'Face',[2,5],'Constraint','fixed')
Data Types: char | string

Coords — Reference point location for multipoint constraint
2-by-1 numeric vector | 3-by-1 numeric vector

Reference point location for the multipoint constraint, specified as a 2-by-1 (for a 2-D geometry) or 3-
by-1 (for a 3-D geometry) numeric vector.
Example: structuralBC(structuralmodel,'Vertex',
[1,3,5:10],'Constraint','multipoint','Reference',[0;0;1])

Data Types: double

R — Radius of circle (for 2-D geometry) or sphere (for 3-D geometry) around reference
point location for multipoint constraint
positive number

Radius of a circle (for a 2-D geometry) or a sphere (for a 3-D geometry) around the reference point
location for the multipoint constraint, specified as a positive number.
Example: structuralBC(structuralmodel,'Vertex',
[1,3,5:10],'Constraint','multipoint','Reference',[0;0;1],'Radius',0.2)

Data Types: double

labeltext — Label for structural boundary condition
character vector | string

Label for the structural boundary condition, specified as a character vector or a string.
Data Types: char | string

Name-Value Pair Arguments

Use one or more name-value pair arguments to specify the form and duration of the time-varying
value of a component of displacement. Specify the displacement value using one of the following

 structuralBC

5-1117

arguments: XDval, YDval, ZDval, or RDval. You cannot use these name-value pair arguments to
specify more than one time-varying component or to specify the Dval value.

You can model rectangular, triangular, and trapezoidal displacement pulses. If the start time is 0, you
do not need to specify it.

• For a rectangular pulse, specify the start and end times.
• For a triangular pulse, specify the start time and any two of the following times: rise time, fall

time, and end time. You also can specify all three times, but they must be consistent.
• For a trapezoidal pulse, specify all four times.

You can model a harmonic displacement by specifying its frequency and initial phase. If the initial
phase is 0, you do not need to specify it.

5 Functions

5-1118

Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)

Rectangular, Triangular, or Trapezoidal Pulse

StartTime — Start time for displacement component
0 (default) | positive number

Start time for the displacement component, specified as 0 or a positive number. Specify this argument
only for transient structural models.
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'StartTime',1,'EndTime',3)

Data Types: double

EndTime — End time for displacement component
positive number

End time for the displacement component, specified as a positive number equal or greater than the
start time value. Specify this argument only for transient structural models.
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'StartTime',1,'EndTime',3)

Data Types: double

RiseTime — Rise time for displacement component
positive number

Rise time for the displacement component, specified as a positive number. Specify this argument only
for transient structural models.
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)

 structuralBC

5-1119

Data Types: double

FallTime — Fall time for displacement component
positive number

Fall time for the displacement component, specified as a positive number. Specify this argument only
for transient structural models.
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)

Data Types: double

Harmonic Displacement

Frequency — Frequency of sinusoidal displacement component
positive number

Frequency of a sinusoidal displacement component value, specified as a positive number in radians
per unit of time. Specify this argument only for transient structural models.
Example:
structuralBC(structuralmodel,'Face','XDisplacement',0.01,'Frequency',25)

Data Types: double

Phase — Frequency of sinusoidal displacement component
0 (default) | positive number

Phase of a sinusoidal displacement component value, specified as a positive number in radians.
Specify this argument only for transient structural models.
Example: structuralBC(structuralmodel,'Face',
[2,5],'XDisplacement',0.01,'Frequency',25,'Phase',pi/6)

Data Types: double

Output Arguments
bc — Handle to boundary condition
StructuralBC object

Handle to the boundary condition, returned as a StructuralBC object. See StructuralBC Properties.

More About
Degrees of Freedom (DoFs)

In Partial Differential Equation Toolbox, each node of a 2-D or 3-D geometry has two or three degrees
of freedom (DoFs), respectively. DoFs correspond to translational displacements. If the number of
mesh points in a model is NumNodes, then the toolbox assigns the IDs to the degrees of freedom as
follows:

• Numbers from 1 to NumNodes correspond to an x-displacement at each node.
• Numbers from NumNodes+1 to 2*NumNodes correspond to a y-displacement at each node.

5 Functions

5-1120

• Numbers from 2*NumNodes+1 to 3*NumNodes correspond to a z-displacement at each node of a
3-D geometry.

Specifying Nonconstant Parameters of a Structural Model

Use a function handle to specify the following structural parameters when they depend on space and,
depending of the type of structural analysis, either time or frequency:

• Surface traction on the boundary
• Pressure normal to the boundary
• Concentrated force at a vertex
• Distributed spring stiffness for each translational direction used to model elastic foundation
• Enforced displacement and its components
• Initial displacement and velocity (can depend on space only)

For example, use function handles to specify the pressure load, x-component of the enforced
displacement, and the initial displacement for this model.

structuralBoundaryLoad(model,'Face',12, ...
 'Pressure',@myfunPressure)
structuralBC(model,'Face',2, ...
 'XDisplacement',@myfunBC)
structuralIC(model,'Face',12, ...
 'Displacement',@myfunIC)

For all parameters, except the initial displacement and velocity, the function must be of the form:

function structuralVal = myfun(location,state)

For the initial displacement and velocity the function must be of the form:

function structuralVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial displacement or initial velocity). To
use additional arguments in your function, wrap your function (that takes additional arguments) with
an anonymous function that takes only the location and state arguments. For example:

structuralVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
structuralBC(model,'Face',2,'XDisplacement',structuralVal)

structuralVal = ...
@(location) myfunWithAdditionalArgs(location,arg1,arg2...)
structuralIC(model,'Face',2,'Displacement',structuralVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points

 structuralBC

5-1121

• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points
• state — A structure containing these fields for dynamic structural problems:

• state.time contains the time at evaluation points.
• state.frequency contains the frequency at evaluation points.

state.time and state.frequency are scalars.

Boundary constraints and loads get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.time or state.frequency (depending of the type of structural analysis)

Initial conditions get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

If a parameter represents a vector value, such as surface traction, spring stiffness, force, or
displacement, your function must return a two-row matrix for a 2-D model and a three-row matrix for
a 3-D model. Each column of the matrix corresponds to the parameter value (a vector) at the
boundary coordinates provided by the solver.

If a parameter represents a scalar value, such as pressure or a displacement component, your
function must return a row vector where each element corresponds to the parameter value (a scalar)
at the boundary coordinates provided by the solver.

If boundary conditions depend on state.time or state.frequency, ensure that your function
returns a matrix of NaN of the correct size when state.frequency or state.time are NaN. Solvers
check whether a problem is nonlinear or time dependent by passing NaN state values and looking for
returned NaN values.

Tips
• Restrain all rigid body motions by specifying as many boundary conditions as needed. If you do

not restrain all rigid body motions, the entire geometry can freely rotate or move. The resulting
linear system of equations is singular. The system can take a long time to converge, or it might not
converge at all. If the system converges, the solution includes a large rigid body motion in
addition to deformation.

5 Functions

5-1122

See Also
StructuralModel | structuralProperties | structuralDamping | structuralBodyLoad |
structuralBoundaryLoad | structuralSEInterface | reduce | solve |
reconstructSolution

Introduced in R2017b

 structuralBC

5-1123

StructuralBC Properties
Boundary condition or boundary load for structural analysis model

Description
A StructuralBC object specifies the type of PDE boundary condition or boundary load on a set of
geometry boundaries. A StructuralModel object contains a vector of StructuralBC objects in its
BoundaryConditions.StructuralBCAssignments property.

To specify boundary conditions for your model, use the structuralBC function. To specify boundary
loads, use structuralBoundaryLoad.

Properties
Properties of StructuralBC

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, returned as 'Face' for a 3-D geometry or 'Edge' for a 2-D geometry.
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, returned as a vector of positive integers. Find the region IDs by using
pdegplot with 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) set to 'on'.
Data Types: double

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, returned as 'off' or 'on'. This evaluation applies when you pass a
function handle as an argument. To save time in the function handle evaluation, specify 'on',
assuming that your function handle computes in a vectorized fashion. See “Vectorization”. For details
on this evaluation, see “Nonconstant Boundary Conditions” on page 2-116.
Data Types: char | string

Boundary Constraints and Enforced Displacements

Displacement — Enforced displacement
numeric vector | function handle

Enforced displacement, returned as a numeric vector or function handle. The numeric vector must
contain two elements for a 2-D model and three elements for a 3-D model. The function must return a
two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix
must correspond to the enforced displacement vector at the boundary coordinates provided by the
solver.

5 Functions

5-1124

Data Types: double | function_handle

XDisplacement — x-component of enforced displacement
number | function handle

x-component of the enforced displacement, returned as a number or function handle. The function
must return a row vector. Each column of the vector must correspond to the value of the x-component
of the enforced displacement at the boundary coordinates provided by the solver.

For axisymmetric models, this property contains the radial component (r-component) of the enforced
displacement.
Data Types: double | function_handle

YDisplacement — y-component of enforced displacement
number | function handle

y-component of the enforced displacement, returned as a number or function handle. The function
must return a row vector. Each column of the vector must correspond to the value of the y-component
of the enforced displacement at the boundary coordinates provided by the solver.

For axisymmetric models, this property contains the axial component (z-component) of the enforced
displacement.
Data Types: double | function_handle

ZDisplacement — z-component of enforced displacement
number | function handle

z-component of the enforced displacement, returned as a number or function handle. The function
must return a row vector. Each column of the vector must correspond to the value of the z-component
of the enforced displacement at the boundary coordinates provided by the solver.
Data Types: double | function_handle

Constraint — Standard structural boundary constraints
'free' | 'fixed' | 'roller' | 'symmetric' | 'multipoint'

Standard structural boundary constraints, returned as 'free','fixed','roller', 'symmetric',
or 'multipoint'.
Data Types: char

Radius — Radius of circle (for 2-D geometry) or sphere (for 3-D geometry) around
reference point location for multipoint constraint
positive number

Radius of a circle (for a 2-D geometry) or a sphere (for a 3-D geometry) around the reference point
location for the multipoint constraint, returned as a positive number.
Data Types: double

Reference — Reference point location for multipoint constraint
2-by-1 numeric vector | 3-by-1 numeric vector

Reference point location for the multipoint constraint, returned as a 2-by-1 (for a 2-D geometry) or 3-
by-1 (for a 3-D geometry) numeric vector.

 StructuralBC Properties

5-1125

Data Types: double

Boundary Loads

Force — Concentrated force
numeric vector | function handle

Concentrated force at a vertex, returned as a numeric vector or function handle.
Data Types: double | function_handle

SurfaceTraction — Normal and tangential distributed forces on boundary
numeric vector | function handle

Normal and tangential distributed forces on the boundary (in the global Cartesian coordinates
system), returned as a numeric vector or function handle. The numeric vector must contain two
elements for a 2-D model and three elements for a 3-D model. The function must return a two-row
matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix must
correspond to the surface traction vector at the boundary coordinates provided by the solver.
Data Types: double | function_handle

Pressure — Pressure normal to boundary
number | function handle

Pressure normal to the boundary, returned as a number or function handle. The function must return
a row vector in which each column corresponds to the value of pressure at the boundary coordinates
provided by the solver. A positive value of pressure acts in the direction of the outward normal to the
boundary.
Data Types: double | function_handle

TranslationalStiffness — Distributed spring stiffness
numeric vector | function handle

Distributed spring stiffness for each translational direction used to model an elastic foundation,
returned as a numeric vector or function handle. The numeric vector must contain two elements for a
2-D model and three elements for a 3-D model. The custom function must return a two-row matrix for
a 2-D model and a three-row matrix for a 3-D model. Each column of this matrix corresponds to the
stiffness vector at the boundary coordinates provided by the solver.
Data Types: double | function_handle

Time Variation of Force, Pressure, or Enforced Displacement

StartTime — Start time for displacement component, pressure, or concentrated force load
nonnegative number

Start time for a displacement component, the pressure, or the concentrated force load, returned as a
nonnegative number.
Data Types: double

EndTime — End time for displacement component, pressure, or concentrated force load
nonnegative number

End time for a displacement component, the pressure, or the concentrated force load, returned as a
nonnegative number.

5 Functions

5-1126

Data Types: double

RiseTime — Rise time for displacement component, pressure, or concentrated force load
nonnegative number

Rise time for a displacement component, the pressure, or the concentrated force load, returned as a
nonnegative number.
Data Types: double

FallTime — Fall time for displacement component, pressure, or concentrated force load
nonnegative number

Fall time for a displacement component, the pressure, or the concentrated force load, returned as a
nonnegative number.
Data Types: double

Sinusoidal Variation of Force, Pressure, or Enforced Displacement

Frequency — Frequency of sinusoidal displacement component, sinusoidal pressure, or
concentrated force
positive number

Frequency of a sinusoidal displacement component, the sinusoidal pressure, or the concentrated
force, returned as a positive number, in radians per unit of time.
Data Types: double

Phase — Phase of sinusoidal displacement component, sinusoidal pressure, or
concentrated force
nonnegative number

Phase of a sinusoidal displacement component, the sinusoidal pressure, or the concentrated force,
returned as a nonnegative number, in radians per unit of time.
Data Types: double

Label — Label for use with linearizeInput
character vector | string

Label for use with linearizeInput, returned as a character vector or a string.
Data Types: char | string

See Also
findStructuralBC | structuralBC | structuralBoundaryLoad | structuralSEInterface |
StructuralSEIAssignment Properties

Introduced in R2017b

 StructuralBC Properties

5-1127

structuralIC
Package: pde

Set initial conditions for a transient structural model

Syntax
structuralIC(structuralmodel,'Displacement',u0,'Velocity',v0)
structuralIC(___ RegionType,RegionID)
structuralIC(structuralmodel,Sresults)
structuralIC(structuralmodel,Sresults,iT)
struct_ic = structuralIC(___)

Description
structuralIC(structuralmodel,'Displacement',u0,'Velocity',v0) sets initial
displacement and velocity for the entire geometry.

structuralIC(___ RegionType,RegionID) sets initial displacement and velocity for a particular
geometry region using the arguments from the previous syntax.

structuralIC(structuralmodel,Sresults) sets initial displacement and velocity using the
solution Sresults from a previous structural analysis on the same geometry. If Sresults is
obtained by solving a transient structural problem, then structuralIC uses the solution Sresults
for the last time-step.

structuralIC(structuralmodel,Sresults,iT) uses the solution Sresults for the time-step
iT from a previous structural analysis on the same geometry.

struct_ic = structuralIC(___) returns a handle to the structural initial conditions object.

Examples

Specify Initial Velocity

Specify initial velocity values for the entire geometry and for a particular face.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry and include it into the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

5 Functions

5-1128

Specify the zero initial velocity on the entire geometry. When you specify only the initial velocity or
initial displacement, structuralIC assumes that the omitted parameter is zero. For example, here
the initial displacement is also zero.

structuralIC(structuralmodel,'Velocity',[0;0;0])

ans =
 GeometricStructuralICs with properties:

 RegionType: 'Cell'
 RegionID: 1
 InitialDisplacement: []
 InitialVelocity: [3x1 double]

Update the initial velocity on face 2 to model impulsive excitation.

structuralIC(structuralmodel,'Face',2,'Velocity',[0;60;0])

ans =
 GeometricStructuralICs with properties:

 RegionType: 'Face'
 RegionID: 2
 InitialDisplacement: []
 InitialVelocity: [3x1 double]

 structuralIC

5-1129

Specify Nonconstant Initial Displacement by Using Function Handle

Specify initial z-displacement to be dependent on the coordinates x and y.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry and include it into the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

Specify the zero initial displacement on the entire geometry.

structuralIC(structuralmodel,'Displacement',[0;0;0])

ans =
 GeometricStructuralICs with properties:

 RegionType: 'Cell'
 RegionID: 1
 InitialDisplacement: [3x1 double]

5 Functions

5-1130

 InitialVelocity: []

Now change the initial displacement in the z-direction on face 2 to a function of the coordinates x and
y:

u 0 =
0
0

x2 + y2

Write the following function file. Save it to a location on your MATLAB® path.

function uinit = initdisp(location)

M = length(location.x);

uinit = zeros(3,M);

uinit(3,:) = location.x.^2 + location.y.^2;

Pass the initial displacement to your structural model.

structuralIC(structuralmodel,'Face',2,'Displacement',@initdisp)

ans =
 GeometricStructuralICs with properties:

 RegionType: 'Face'
 RegionID: 2
 InitialDisplacement: @initdisp
 InitialVelocity: []

Use Static Solution as Initial Condition

Use a static solution as an initial condition for a dynamic structural model.

Create a static model.

staticmodel = createpde('structural','static-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.06,0.005,0.01);
staticmodel.Geometry = gm;
pdegplot(staticmodel,'FaceLabels','on','FaceAlpha',0.5)
view(50,20)

 structuralIC

5-1131

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(staticmodel,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Apply the boundary condition and static load.

structuralBC(staticmodel,'Face',5,'Constraint','fixed');
structuralBoundaryLoad(staticmodel,'Face',3, ...
 'SurfaceTraction', ...
 [0;1E6;0]);

Generate a mesh and solve the model.

generateMesh(staticmodel,'Hmax',0.02);
Rstatic = solve(staticmodel);

Create a dynamic model and assign geometry.

dynamicmodel = createpde('structural','transient-solid');
gm = multicuboid(0.06,0.005,0.01);
dynamicmodel.Geometry = gm;

Apply the boundary condition.

structuralBC(dynamicmodel,'Face',5,'Constraint','fixed');

Generate a mesh.

5 Functions

5-1132

generateMesh(dynamicmodel,'Hmax',0.02);

Specify the initial condition using the static solution.

structuralIC(dynamicmodel,Rstatic)

ans =
 NodalStructuralICs with properties:

 InitialDisplacement: [113x3 double]
 InitialVelocity: [113x3 double]

Input Arguments
structuralmodel — Transient structural model
StructuralModel object

Transient structural model, specified as a StructuralModel object. The model contains the
geometry, mesh, structural properties of the material, body loads, boundary loads, boundary
conditions, and initial conditions.
Example: structuralmodel = createpde('structural','transient-solid')

u0 — Initial displacement
numeric vector | function handle

Initial displacement, specified as a numeric vector or function handle. A numeric vector must contain
two elements for a 2-D model and three elements for a 3-D model. The elements represent the
components of initial displacement.

Use a function handle to specify spatially varying initial displacement. The function must return a
two-row matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix
corresponds to the initial displacement at the coordinates provided by the solver. For details, see
“More About” on page 5-1135.
Example: structuralIC(structuralmodel,'Face',[2,5],'Displacement',[0;0;0.01])
Data Types: double | function_handle

v0 — Initial velocity
numeric vector | function handle

Initial velocity, specified as a numeric vector or function handle. A numeric vector must contain two
elements for a 2-D model and three elements for a 3-D model. The elements represent the
components of initial velocity.

Use a function handle to specify spatially varying initial velocity. The function must return a two-row
matrix for a 2-D model and a three-row matrix for a 3-D model. Each column of the matrix
corresponds to the initial velocity at the coordinates provided by the solver. For details, see “More
About” on page 5-1135.
Example: structuralIC(structuralmodel,'Face',[2,5],'Displacement',
[0;0;0.01],'Velocity',[0;60;0])

Data Types: double | function_handle

 structuralIC

5-1133

RegionType — Geometric region type
'Face' | 'Edge' | 'Vertex' | 'Cell'

Geometric region type, specified as 'Face', 'Edge', 'Vertex', or 'Cell'.

When you apply multiple initial condition assignments, the solver uses these precedence rules for
determining the initial condition.

• For multiple assignments to the same geometric region, the solver uses the last applied setting.
• For separate assignments to a geometric region and the boundaries of that region, the solver uses

the specified assignment on the region and chooses the assignment on the boundary as follows.
The solver gives an 'Edge' assignment precedence over a 'Face' assignment, even if you
specify a 'Face' assignment after an 'Edge' assignment. The precedence levels are 'Vertex
(highest precedence), 'Edge', 'Face', 'Cell' (lowest precedence).

• For an assignment made with the results object, the solver uses that assignment instead of all
previous assignments.

Example: structuralIC(structuralmodel,'Face',[2,5],'Displacement',
[0;0;0.01],'Velocity',[0;60;0])

Data Types: char

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: structuralIC(structuralmodel,'Face',[2,5],'Displacement',
[0;0;0.01],'Velocity',[0;60;0])

Data Types: double

Sresults — Structural model solution
StaticStructuralResults object | TransientStructuralResults object

Structural model solution, specified as a StaticStructuralResults or
TransientStructuralResults object. Create Sresults by using solve.

iT — Time index
positive integer

Time index, specified as a positive integer.
Example: structuralIC(structuralmodel,Sresults,21)
Data Types: double

Output Arguments
struct_ic — Handle to initial conditions
GeometricStructuralICs object | NodalStructuralICs object

Handle to initial conditions, returned as a GeometricStructuralICs or NodalStructuralICs
object. See GeometricStructuralICs Properties and NodalStructuralICs Properties.

5 Functions

5-1134

structuralIC associates the structural initial condition with the geometric region in the case of a
geometric assignment, or the nodes in the case of a results-based assignment.

More About
Specifying Nonconstant Parameters of a Structural Model

Use a function handle to specify the following structural parameters when they depend on space and,
depending of the type of structural analysis, either time or frequency:

• Surface traction on the boundary
• Pressure normal to the boundary
• Concentrated force at a vertex
• Distributed spring stiffness for each translational direction used to model elastic foundation
• Enforced displacement and its components
• Initial displacement and velocity (can depend on space only)

For example, use function handles to specify the pressure load, x-component of the enforced
displacement, and the initial displacement for this model.

structuralBoundaryLoad(model,'Face',12, ...
 'Pressure',@myfunPressure)
structuralBC(model,'Face',2, ...
 'XDisplacement',@myfunBC)
structuralIC(model,'Face',12, ...
 'Displacement',@myfunIC)

For all parameters, except the initial displacement and velocity, the function must be of the form:

function structuralVal = myfun(location,state)

For the initial displacement and velocity the function must be of the form:

function structuralVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial displacement or initial velocity). To
use additional arguments in your function, wrap your function (that takes additional arguments) with
an anonymous function that takes only the location and state arguments. For example:

structuralVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
structuralBC(model,'Face',2,'XDisplacement',structuralVal)

structuralVal = ...
@(location) myfunWithAdditionalArgs(location,arg1,arg2...)
structuralIC(model,'Face',2,'Displacement',structuralVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points

 structuralIC

5-1135

• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points
• state — A structure containing these fields for dynamic structural problems:

• state.time contains the time at evaluation points.
• state.frequency contains the frequency at evaluation points.

state.time and state.frequency are scalars.

Boundary constraints and loads get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.time or state.frequency (depending of the type of structural analysis)

Initial conditions get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

If a parameter represents a vector value, such as surface traction, spring stiffness, force, or
displacement, your function must return a two-row matrix for a 2-D model and a three-row matrix for
a 3-D model. Each column of the matrix corresponds to the parameter value (a vector) at the
boundary coordinates provided by the solver.

If a parameter represents a scalar value, such as pressure or a displacement component, your
function must return a row vector where each element corresponds to the parameter value (a scalar)
at the boundary coordinates provided by the solver.

If boundary conditions depend on state.time or state.frequency, ensure that your function
returns a matrix of NaN of the correct size when state.frequency or state.time are NaN. Solvers
check whether a problem is nonlinear or time dependent by passing NaN state values and looking for
returned NaN values.

See Also
StructuralModel | structuralProperties | structuralDamping | structuralBodyLoad |
structuralBoundaryLoad | structuralBC | structuralSEInterface | solve | reduce |
findStructuralIC | GeometricStructuralICs Properties | NodalStructuralICs Properties

Introduced in R2018a

5 Functions

5-1136

structuralDamping
Specify damping parameters for transient or frequency response structural model

Syntax
structuralDamping(structuralmodel,'Alpha',a,'Beta',b)
structuralDamping(structuralmodel,'Zeta',z)
damping = structuralDamping(___)

Description
structuralDamping(structuralmodel,'Alpha',a,'Beta',b) specifies proportional
(Rayleigh) damping parameters a and b for a structuralmodel object.

For a frequency response model with damping, the results are complex. Use the abs and angle
functions to obtain real-valued magnitude and phase, respectively.

structuralDamping(structuralmodel,'Zeta',z) specifies the modal damping ratio. Use this
parameter when you solve a transient or frequency response model using the results of modal
analysis.

damping = structuralDamping(___) returns the damping parameters object, using any of the
previous input syntaxes.

Examples

Rayleigh Damping Parameters

Specify proportional (Rayleigh) damping parameters for a beam.

Create a transient structural model.

 structuralModel = createpde('structural','transient-solid');

Import and plot the geometry.

 gm = importGeometry(structuralModel,'SquareBeam.stl');
 pdegplot(structuralModel,'FaceAlpha',0.5)

 structuralDamping

5-1137

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(structuralModel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Specify the Rayleigh damping parameters.

structuralDamping(structuralModel,'Alpha',10,'Beta',2)

ans =
 StructuralDampingAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 DampingModel: "proportional"
 Alpha: 10
 Beta: 2
 Zeta: []

5 Functions

5-1138

Solution to Frequency Response Structural Model with Damping

Solve a frequency response problem with damping. The resulting displacement values are complex.
To obtain the magnitude and phase of displacement, use the abs and angle functions, respectively.
To speed up computations, solve the model using the results of modal analysis.

Modal Analysis

Create a modal analysis model for a 3-D problem.

modelM = createpde('structural','modal-solid');

Create the geometry and include it in the model.

gm = multicuboid(10,10,0.025);
modelM.Geometry = gm;

Generate a mesh.

msh = generateMesh(modelM);

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelM,'YoungsModulus',2E11, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face and
edge labels.

pdegplot(gm,'FaceLabels','on','FaceAlpha',0.5)

 structuralDamping

5-1139

figure
pdegplot(gm,'EdgeLabels','on','FaceAlpha',0.5)

5 Functions

5-1140

Specify constraints on the sides of the plate (faces 3, 4, 5, and 6) to prevent rigid body motions.

structuralBC(modelM,'Face',[3,4,5,6],'Constraint','fixed');

Solve the problem for the frequency range from -Inf to 12*pi.

Rm = solve(modelM,'FrequencyRange',[-Inf,12*pi]);

Frequency Response Analysis

Create a frequency response analysis model for a 3-D problem.

modelFR = createpde('structural','frequency-solid');

Use the same geometry and mesh as you used for the modal analysis.

modelFR.Geometry = gm;
modelFR.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelFR,'YoungsModulus',2E11, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',8000);

Specify the same constraints on the sides of the plate to prevent rigid body modes.

structuralBC(modelFR,'Face',[3,4,5,6],'Constraint','fixed');

 structuralDamping

5-1141

Specify the pressure loading on top of the plate (face 2) to model an ideal impulse excitation. In the
frequency domain, this pressure pulse is uniformly distributed across all frequencies.

structuralBoundaryLoad(modelFR,'Face',2,'Pressure',1E2);

First, solve the model without damping.

flist = [0,1,1.5,linspace(2,3,100),3.5,4,5,6]*2*pi;
RfrModalU = solve(modelFR,flist,'ModalResults',Rm);

Now, solve the model with damping equal to 2% of critical damping for all modes.

structuralDamping(modelFR,'Zeta',0.02);
RfrModalAll = solve(modelFR,flist,'ModalResults',Rm);

Solve the same model with frequency-dependent damping. In this example, use the solution
frequencies from flist and damping values between 1% and 10% of critical damping.

omega = flist;
zeta = linspace(0.01,0.1,length(omega));
zetaW = @(omegaMode) interp1(omega,zeta,omegaMode);
structuralDamping(modelFR,'Zeta',zetaW);

RfrModalFD = solve(modelFR,flist,'ModalResults',Rm);

Interpolate the displacement at the center of the top surface of the plate for all three cases.

iDispU = interpolateDisplacement(RfrModalU,[0;0;0.025]);
iDispAll = interpolateDisplacement(RfrModalAll,[0;0;0.025]);
iDispFD = interpolateDisplacement(RfrModalFD,[0;0;0.025]);

Plot the magnitude of the displacement. Zoom in on the frequencies around the first mode.

figure
hold on
plot(RfrModalU.SolutionFrequencies,abs(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies,abs(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,abs(iDispFD.Magnitude));
title('Magnitude')
xlim([10 25])
ylim([0 0.5])

5 Functions

5-1142

Plot the phase of the displacement.

figure
hold on
plot(RfrModalU.SolutionFrequencies,angle(iDispU.Magnitude));
plot(RfrModalAll.SolutionFrequencies,angle(iDispAll.Magnitude));
plot(RfrModalFD.SolutionFrequencies,angle(iDispFD.Magnitude));
title('Phase')

 structuralDamping

5-1143

Input Arguments
structuralmodel — Transient or frequency response structural model
StructuralModel object

Transient or frequency response structural model, specified as a StructuralModel object. The
model contains the geometry, mesh, structural properties of the material, body loads, boundary loads,
boundary conditions, and initial conditions.
Example: structuralmodel = createpde('structural','transient-solid')

a — Mass proportional damping
nonnegative number

Mass proportional damping, specified as a nonnegative number.
Data Types: double

b — Stiffness proportional damping
nonnegative number

Stiffness proportional damping, specified as a nonnegative number.
Data Types: double

z — Modal damping ratio
nonnegative number | function handle

5 Functions

5-1144

Modal damping ratio, specified as a nonnegative number or a function handle. Use a function handle
when each mode has its own damping ratio. The function must accept a vector of natural frequencies
as an input argument and return a vector of corresponding damping ratios. It must cover the full
frequency range for all modes used for modal solution. For details, see “Modal Damping Depending
on Frequency” on page 5-1145.
Data Types: double | function_handle

Output Arguments
damping — Handle to damping parameters
StructuralDampingAssignment object

Handle to damping parameters, returned as a StructuralDampingAssignment object. See
StructuralDampingAssignment Properties.

More About
Modal Damping Depending on Frequency

To use the individual value of modal damping for each mode, specify z as a function of frequency.

function z = dampingFcn(omega)

Typically, the damping ratio function is a linear interpolation of frequency versus the modal damping
parameter:

structuralDamping(modelD,'Zeta',@(omegaMode) ...
 interp1(omega,zeta,omegaMode))

Here, omega is a vector of frequencies, and zeta is a vector of corresponding damping ratio values.

See Also
StructuralModel | structuralProperties | structuralBodyLoad |
structuralBoundaryLoad | structuralBC | solve | findStructuralDamping |
StructuralDampingAssignment Properties

Introduced in R2018a

 structuralDamping

5-1145

findStructuralDamping
Package: pde

Find damping model assigned to structural dynamics model

Syntax
dma = findStructuralDamping(structuralmodel.DampingModels)

Description
dma = findStructuralDamping(structuralmodel.DampingModels) returns the damping
model and its parameters assigned to the structural dynamics model. The toolbox supports the
proportional (Rayleigh) damping model and the modal damping model. The parameters of the
proportional damping model are the mass and stiffness proportional damping parameters. The
parameter of the modal damping model is the modal damping ratio.

Use this function to find which damping model and parameters are currently active if you made
multiple damping assignments.

Examples

Find Damping Model Assignment

Find the damping model assignment for a 3-D model.

Create a transient structural model.

structuralModel = createpde('structural','transient-solid');

Import and plot the geometry.

importGeometry(structuralModel,'Block.stl');
pdegplot(structuralModel,'CellLabels','on')

5 Functions

5-1146

Specify the stiffness proportional damping parameter.

structuralDamping(structuralModel,'Beta',40);

Now specify the mass proportional damping parameter.

structuralDamping(structuralModel,'Alpha',10);

Check the damping parameter assignment for structuralModel. Notice that the Beta parameter
is empty.

findStructuralDamping(structuralModel.DampingModels)

ans =
 StructuralDampingAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 DampingModel: "proportional"
 Alpha: 10
 Beta: []
 Zeta: []

When you specify damping parameters by calling the structuralDamping function several times,
the toolbox uses the last assignment. Specify both the mass and stiffness parameters.

structuralDamping(structuralModel,'Alpha',10,'Beta',40);

 findStructuralDamping

5-1147

Check the damping parameter assignment for structuralModel.

findStructuralDamping(structuralModel.DampingModels)

ans =
 StructuralDampingAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 DampingModel: "proportional"
 Alpha: 10
 Beta: 40
 Zeta: []

Input Arguments
structuralmodel.DampingModels — Damping model
DampingModels property of StructuralModel object

Damping model of the structural model, specified as a DampingModels property of a
StructuralModel object.

Output Arguments
dma — Damping model assignment
StructuralDampingAssignment object

Damping model assignment, returned as a StructuralDampingAssignment object. For details, see
StructuralDampingAssignment Properties.

See Also
structuralDamping | StructuralDampingAssignment Properties

Introduced in R2018a

5 Functions

5-1148

StructuralDampingAssignment Properties
Damping assignment for a structural analysis model

Description
A StructuralDampingAssignment object contains the damping model and its parameters for a
structural analysis model. A StructuralModel container has a vector of
StructuralDampingAssignment objects in its
DampingModels.StructuralDampingAssignments property.

To set damping parameters for your structural model, use the structuralDamping function.

Properties
Properties

RegionType — Region type
'Face' | 'Cell'

Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
positive integer

Region ID, returned as a positive integer. The toolbox defines damping parameters for the entire
geometry.
Data Types: double

DampingModel — Damping model type
'proportional' | 'modal'

Damping model type, returned as 'proportional' or 'modal'.
Data Types: double

Alpha — Mass proportional damping parameter
nonnegative number

Mass proportional damping parameter, returned as a nonnegative number.
Data Types: double

Beta — Stiffness proportional damping parameter
nonnegative number

Stiffness proportional damping parameter, returned as a nonnegative number.
Data Types: double

 StructuralDampingAssignment Properties

5-1149

Zeta — Modal damping ratio
nonnegative number | function handle

Modal damping ratio, returned as a nonnegative number or a function handle. Use a function handle
when each mode has its own damping ratio. The function must accept a vector of natural frequencies
as an input argument and return a vector of corresponding damping ratios. It must cover the full
frequency range for all modes used for modal solution.
Data Types: double | function_handle

See Also
structuralDamping | findStructuralDamping

Introduced in R2018a

5 Functions

5-1150

StructuralMaterialAssignment Properties
Structural material property assignments

Description
A StructuralMaterialAssignment object contains the description of material properties of a
structural analysis model. A StructuralModel container has a vector of
StructuralMaterialAssignment objects in its MaterialProperties.MaterialAssignments
property.

To create the material properties assignments for your structural analysis model, use the
structuralProperties function.

Properties
Properties of StructuralMaterialAssignment

RegionType — Region type
'Face' | 'Cell'

Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function, setting the 'FaceLabels' name-value pair to
'on'.
Data Types: double

YoungsModulus — Young's modulus
positive number

Young's modulus of the material, returned as a positive number.
Data Types: double

PoissonsRatio — Poisson's ratio
positive number

Poisson's ratio of the material, returned as a positive number.
Data Types: double

MassDensity — Mass density
positive number

Mass density of the material, returned as a positive number. This property is required when modeling
gravitational effects.

 StructuralMaterialAssignment Properties

5-1151

Data Types: double

See Also
findStructuralProperties | structuralProperties

Introduced in R2017b

5 Functions

5-1152

structuralBodyLoad
Package: pde

Specify body load for structural model

Syntax
structuralBodyLoad(structuralmodel,'GravitationalAcceleration',GAval)

structuralBodyLoad(structuralmodel,'AngularVelocity',omega)

structuralBodyLoad(structuralmodel,'Temperature',Tval)
structuralBodyLoad(structuralmodel,'Temperature',Tresults)
structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',iT)

structuralBodyLoad(structuralmodel, ___)

structuralBodyLoad(___ ,'Label',labeltext)

bodyLoad = structuralBodyLoad(___)

Description
structuralBodyLoad(structuralmodel,'GravitationalAcceleration',GAval) specifies
acceleration due to gravity as a body load for a static or transient structural model. Structural models
for modal analysis cannot have body loads.

structuralBodyLoad(structuralmodel,'AngularVelocity',omega) specifies an angular
velocity to model centrifugal loading for an axisymmetric structural model.

structuralBodyLoad(structuralmodel,'Temperature',Tval) specifies a thermal load on a
static structural analysis model.

Tip If Tval is the temperature itself, and not a change in temperature, you must specify a reference
temperature using structuralmodel.ReferenceTemperature. Otherwise, the toolbox uses the
default value (zero) for the reference temperature. For details, see StructuralModel.

structuralBodyLoad(structuralmodel,'Temperature',Tresults) uses the steady-state or
transient thermal analysis results Tresults to specify a thermal load on a static structural analysis
model. If Tresults is the solution of a transient thermal problem, then this syntax uses the
temperature and its gradients from the last time step.

structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',iT) uses
the transient thermal analysis results Tresults and the time step index iT to specify a thermal load
on a static structural analysis model.

structuralBodyLoad(structuralmodel, ___) specifies several body loads for the same
structural model. Use any arguments from the previous syntaxes applicable to your
structuralmodel. For example, specify the gravity and thermal loads as

 structuralBodyLoad

5-1153

structuralBodyLoad(structuralmodel,'GravitationalAcceleration',
[0;0;-9.8],'Temperature',300). Do not use subsequent function calls when assigning several
body loads because the toolbox uses only the last assignment.

structuralBodyLoad(___ ,'Label',labeltext) adds a label for the structural body load to be
used by the linearizeInput function. This function lets you pass body loads to the linearize
function that extracts sparse linear models for use with Control System Toolbox.

bodyLoad = structuralBodyLoad(___) returns the body load object.

Examples

Gravity Load on Beam

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create and plot the geometry.

gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)

Specify the Young's modulus, Poisson's ratio, and mass density. The mass density value is required for
modeling gravitational effects.

5 Functions

5-1154

structuralProperties(structuralModel,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2.7E-6);

Specify the gravity load on the beam.

structuralBodyLoad(structuralModel, ...
 'GravitationalAcceleration',[0;0;-9.8])

ans =
 BodyLoadAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: [3x1 double]
 AngularVelocity: []
 Temperature: []
 TimeStep: []
 Label: []

Static Analysis of Spinning Disk with Press-Fit at Hub

Analyze a spinning disk with radial compression at the hub due to press-fit. The inner radius of the
disk is 0.05, and the outer radius is 0.2. The thickness of the disk is 0.05 with an interference fit of
50E-6. For this analysis, simplify the 3-D axisymmetric model to a 2-D model.

Create a static structural analysis model for solving an axisymmetric problem.

structuralmodel = createpde('structural','static-axisymmetric');

The 2-D model is a rectangular strip whose x-dimension extends from the hub to the outer surface,
and whose y-dimension extends over the height of the disk. Create the geometry by specifying the
coordinates of the strip's four corners. For axisymmetric models, the toolbox assumes that the axis of
rotation is the vertical axis passing through r = 0, which is equivalent to x = 0.

g = decsg([3 4 0.05 0.2 0.2 0.05 -0.025 -0.025 0.025 0.025]');

Include the geometry in the model.

geometryFromEdges(structuralmodel,g);

Plot the geometry with the edge and vertex labels.

figure
pdegplot(structuralmodel,'EdgeLabels','on','VertexLabels','on')
xlim([0 0.3])
ylim([-0.05 0.05])

 structuralBodyLoad

5-1155

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(structuralmodel,'YoungsModulus',210e9, ...
 'PoissonsRatio',0.28, ...
 'MassDensity',7700);

Apply centrifugal load due to spinning of the disk. Assume that the disk is spinning at 104.7 rad/s.

structuralBodyLoad(structuralmodel,'AngularVelocity',1047);

Apply radial displacement at the hub of the disk to model press-fit.

structuralBC(structuralmodel,'Edge',4,'RDisplacement',50e-6);

Fix axial displacement of a point on the hub to prevent rigid body motion.

structuralBC(structuralmodel,'Vertex',1,'ZDisplacement',0);

Generate a mesh.

generateMesh(structuralmodel);

Solve the model.

structuralresults = solve(structuralmodel);

Plot the radial displacement of the disk.

5 Functions

5-1156

figure
pdeplot(structuralmodel, ...
 'XYData',structuralresults.Displacement.ur, ...
 'ColorMap','jet')
axis equal
xlim([0 0.3])
ylim([-0.05 0.05])

Plot circumferential (hoop) stress.

figure
pdeplot(structuralmodel, ...
 'XYData',structuralresults.Stress.sh, ...
 'ColorMap','jet')
axis equal
xlim([0 0.3])
ylim([-0.05 0.05])

 structuralBodyLoad

5-1157

Constant Thermal Load

Specify a constant temperature rise for a thermal stress analysis of a bimetallic cantilever beam.

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Create and plot the geometry.

gm = multicuboid(0.5,0.04,[0.03,0.03],'Zoffset',[0,0.03]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on')

5 Functions

5-1158

Set the reference temperature. This temperature corresponds to the state of zero thermal stress of
the model.

structuralmodel.ReferenceTemperature = 20

structuralmodel =
 StructuralModel with properties:

 AnalysisType: 'static-solid'
 Geometry: [1x1 DiscreteGeometry]
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 ReferenceTemperature: 20
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Apply the constant temperature as a structural body load.

structuralBodyLoad(structuralmodel,'Temperature',300)

ans =
 BodyLoadAssignment with properties:

 RegionType: 'Cell'
 RegionID: [1 2]

 structuralBodyLoad

5-1159

 GravitationalAcceleration: []
 AngularVelocity: []
 Temperature: 300
 TimeStep: []
 Label: []

Thermal Load as Steady-State Thermal Model Solution

Specify a thermal load using the solution from a steady-state thermal analysis on the same geometry
and mesh.

Steady-State Thermal Model Analysis

Create a steady-state thermal model.

thermalmodel = createpde('thermal','steadystate');

Create and plot the geometry.

gm = multicuboid(0.5,0.1,0.05);
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)

Generate a mesh.

5 Functions

5-1160

generateMesh(thermalmodel);

Specify the thermal conductivity of the material.

thermalProperties(thermalmodel,'ThermalConductivity',5e-3);

Specify constant temperatures on the left and right ends on the beam.

thermalBC(thermalmodel,'Face',3,'Temperature',100);
thermalBC(thermalmodel,'Face',5,'Temperature',0);

Specify the heat source over the entire geometry.

internalHeatSource(thermalmodel,10);

Solve the model.

thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [3870x1 double]
 XGradients: [3870x1 double]
 YGradients: [3870x1 double]
 ZGradients: [3870x1 double]
 Mesh: [1x1 FEMesh]

Plot the temperature distribution.

pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)

 structuralBodyLoad

5-1161

Static Structural Analysis with Thermal Load

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Include the same geometry as for the thermal model.

structuralmodel.Geometry = gm;

Apply the solution of the thermal model analysis as a body load for the structural model.

structuralBodyLoad(structuralmodel,'Temperature',thermalresults)

ans =
 BodyLoadAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: []
 AngularVelocity: []
 Temperature: [1x1 pde.SteadyStateThermalResults]
 TimeStep: []
 Label: []

5 Functions

5-1162

Thermal Load as Transient Thermal Model Solution

Specify a thermal load using the solution from a transient thermal analysis on the same geometry and
mesh.

Transient Thermal Model Analysis

Create a transient thermal model.

thermalmodel = createpde('thermal','transient');

Create and plot the geometry.

gm = multicuboid(0.5,0.1,0.05);
thermalmodel.Geometry = gm;
pdegplot(thermalmodel,'FaceLabels','on','FaceAlpha',0.5)

Generate a mesh.

generateMesh(thermalmodel);

Specify the thermal properties of the material.

thermalProperties(thermalmodel,'ThermalConductivity',5e-3, ...
 'MassDensity',2.7*10^(-6), ...
 'SpecificHeat',10);

Specify the constant temperatures on the left and right ends on the beam.

 structuralBodyLoad

5-1163

thermalBC(thermalmodel,'Face',3,'Temperature',100);
thermalBC(thermalmodel,'Face',5,'Temperature',0);

Specify the heat source over the entire geometry.

internalHeatSource(thermalmodel,10);

Set the initial temperature.

thermalIC(thermalmodel,0);

Solve the model.

tlist = [0:1e-4:2e-4];
thermalresults = solve(thermalmodel,tlist)

thermalresults =
 TransientThermalResults with properties:

 Temperature: [3870x3 double]
 SolutionTimes: [0 1.0000e-04 2.0000e-04]
 XGradients: [3870x3 double]
 YGradients: [3870x3 double]
 ZGradients: [3870x3 double]
 Mesh: [1x1 FEMesh]

Plot the temperature distribution for each time step.

for n = 1:numel(thermalresults.SolutionTimes)
 figure
 pdeplot3D(thermalmodel,'ColorMapData', ...
 thermalresults.Temperature(:,n))
 title(['Time = ' num2str(tlist(n))])
 caxis([0 100])
end

5 Functions

5-1164

 structuralBodyLoad

5-1165

5 Functions

5-1166

Static Structural Analysis with Thermal Load

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Include the same geometry as for the thermal model.

structuralmodel.Geometry = gm;

Apply the solution of the thermal model analysis as a body load for the structural model. By default,
structuralBodyLoad uses the thermal model solution for the last time step.

structuralBodyLoad(structuralmodel,'Temperature',thermalresults);

You also can specify the time step you want to use. For example, apply the thermal model solution for
the second time step as a body load for the structural model.

structuralBodyLoad(structuralmodel,'Temperature',thermalresults, ...
 'TimeStep',2);

Input Arguments
structuralmodel — Static or transient structural model
StructuralModel object

 structuralBodyLoad

5-1167

Static or transient structural model, specified as a StructuralModel object. The model contains the
geometry, mesh, structural properties of the material, body loads, boundary loads, and boundary
conditions.
Example: structuralmodel = createpde('structural','transient-solid')

GAval — Acceleration due to gravity
numeric vector

Acceleration due to gravity, specified as a numeric vector. GAval must be specified in units consistent
with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,'GravitationalAcceleration',
[0;0;-9.8])

Data Types: double

omega — Angular velocity for axisymmetric model
positive number

Angular velocity for an axisymmetric model, specified as a positive number. omega must be specified
in units consistent with those of the geometry and material properties.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing
through r = 0, which is equivalent to x = 0.
Example: structuralBodyLoad(structuralmodel,'AngularVelocity',2.3)
Data Types: double

Tval — Constant thermal load
real number

Constant thermal load on a static structural model, specified as a real number. Tval must be
specified in units consistent with those of the geometry and material properties.
Example: structuralBodyLoad(structuralmodel,'Temperature',300)
Data Types: double

Tresults — Thermal model solution
StaticThermalResults object | TransientThermalResults object

Thermal model solution applied as a body load on a static structural model, specified as a
StaticThermalResults or TransientThermalResults object. Create Tresults by using
solve.
Example: Tresults = solve(thermalmodel);
structuralBodyLoad(structuralmodel,'Temperature',Tresults)

iT — Time index
positive integer

Time index, specified as a positive integer.
Example:
structuralBodyLoad(structuralmodel,'Temperature',Tresults,'TimeStep',21)

Data Types: double

5 Functions

5-1168

labeltext — Label for structural body load
character vector | string

Label for the structural body load, specified as a character vector or a string.
Data Types: char | string

Output Arguments
bodyLoad — Handle to body load
BodyLoadAssignment object

Handle to body load, returned as a BodyLoadAssignment object. See BodyLoadAssignment
Properties.

See Also
StructuralModel | structuralProperties | structuralDamping |
structuralBoundaryLoad | structuralBC | BodyLoadAssignment Properties

Introduced in R2017b

 structuralBodyLoad

5-1169

structuralBoundaryLoad
Package: pde

Specify boundary loads for structural model

Syntax
structuralBoundaryLoad(structuralmodel,RegionType,RegionID,'SurfaceTraction',
STval,'Pressure',Pval,'TranslationalStiffness',TSval)
structuralBoundaryLoad(structuralmodel,'Vertex',VertexID,'Force',Fval)

structuralBoundaryLoad(___ ,'Vectorized','on')

structuralBoundaryLoad(___ ,'Pressure',Pval,Name,Value)
structuralBoundaryLoad(structuralmodel,'Vertex',VertexID,'Force',Fval,
Name,Value)

structuralBoundaryLoad(___ ,'Label',labeltext)

boundaryLoad = structuralBoundaryLoad(___)

Description
structuralBoundaryLoad(structuralmodel,RegionType,RegionID,'SurfaceTraction',
STval,'Pressure',Pval,'TranslationalStiffness',TSval) specifies the surface traction,
pressure, and translational stiffness on the boundary of type RegionType with RegionID ID
numbers.

• Surface traction is determined as distributed normal and tangential forces acting on a boundary,
resolved along the global Cartesian coordinate system.

• Pressure must be specified in the direction that is normal to the boundary. A positive pressure
value acts into the boundary (for example, compression). A negative pressure value acts away
from the boundary (for example, suction).

• Translational stiffness is a distributed spring stiffness for each translational direction.
Translational stiffness is used to model an elastic foundation.

structuralBoundaryLoad does not require you to specify all three boundary loads. Depending on
your structural analysis problem, you can specify one or more boundary loads by picking the
corresponding arguments and omitting others. You can specify translational stiffness for any
structural model. To specify pressure or surface traction, structuralmodel must be a static,
transient, or frequency response model. Structural models for modal analysis cannot have pressure or
surface traction.

The default boundary load is a stress-free boundary condition.

structuralBoundaryLoad(structuralmodel,'Vertex',VertexID,'Force',Fval) specifies
concentrated force at a vertex with the VertexID number. You can specify force only if
structuralmodel is a static, transient, or frequency response model. Structural models for modal
analysis cannot have concentrated force.

5 Functions

5-1170

structuralBoundaryLoad(___ ,'Vectorized','on') uses vectorized function evaluation when
you pass a function handle as an argument. If your function handle computes in a vectorized fashion,
then using this argument saves time. See “Vectorization”. For details on this evaluation, see
“Nonconstant Boundary Conditions” on page 2-116.

Use this syntax with any of the input arguments from previous syntaxes.

structuralBoundaryLoad(___ ,'Pressure',Pval,Name,Value) lets you specify the form and
duration of a nonconstant pressure pulse and harmonic excitation for a transient structural model
without creating a function handle. When using this syntax, you must specify the model, region type
and region ID, and pressure. Surface traction and translational stiffness are optional arguments. This
syntax does not work for static, modal analysis, and frequency response models.

structuralBoundaryLoad(structuralmodel,'Vertex',VertexID,'Force',Fval,
Name,Value) lets you specify the form and duration of a nonconstant concentrated force and
harmonic excitation for a transient structural model without creating a function handle.

structuralBoundaryLoad(___ ,'Label',labeltext) adds a label for the structural boundary
load to be used by the linearizeInput function. This function lets you pass boundary loads to the
linearize function that extracts sparse linear models for use with Control System Toolbox.

boundaryLoad = structuralBoundaryLoad(___) returns the boundary load object.

Examples

Apply Fixed Boundaries and Specify Surface Traction

Apply fixed boundaries and traction on two ends of a bimetallic cable.

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create nested cylinders to model a bimetallic cable.

gm = multicylinder([0.01,0.015],0.05);

Assign the geometry to the structural model and plot the geometry.

structuralModel.Geometry = gm;
pdegplot(structuralModel,'CellLabels','on', ...
 'FaceLabels','on', ...
 'FaceAlpha',0.4)

 structuralBoundaryLoad

5-1171

For each metal, specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralModel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28);
structuralProperties(structuralModel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3);

Specify that faces 1 and 4 are fixed boundaries.

structuralBC(structuralModel,'Face',[1,4],'Constraint','fixed')

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: [1 4]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Label: []

5 Functions

5-1172

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

Specify the surface traction for faces 2 and 5.

structuralBoundaryLoad(structuralModel, ...
 'Face',[2,5], ...
 'SurfaceTraction',[0;0;100])

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: [2 5]
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
 TranslationalStiffness: []
 Label: []

Specify Translational Stiffness

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create a block geometry.

gm = multicuboid(20,10,5);

Assign the geometry to the structural model and plot the geometry.

structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceLabels','on','FaceAlpha',0.5)

 structuralBoundaryLoad

5-1173

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralModel,'YoungsModulus',30, ...
 'PoissonsRatio',0.3);

The bottom face of the block rests on an elastic foundation (a spring). To model this foundation,
specify the translational stiffness.

structuralBoundaryLoad(structuralModel, ...
 'Face',1, ...
 'TranslationalStiffness',[0;0;30])

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 1
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

5 Functions

5-1174

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: [3x1 double]
 Label: []

Apply Concentrated Force at Point

Specify a force value at a vertex of a geometry.

Create a structural model for static analysis of a solid (3-D) problem.

model = createpde('structural','static-solid');

Create the geometry, which consists of two cuboids stacked on top of each other.

gm = multicuboid(0.2,0.01,[0.01 0.01],'Zoffset',[0 0.01]);

Include the geometry in the structural model.

model.Geometry = gm;

Plot the geometry and display the face labels. Rotate the geometry so that you can see the face labels
on the left side.

figure
pdegplot(model,'FaceLabels','on');
view([-67 5])

 structuralBoundaryLoad

5-1175

Plot the geometry and display the vertex labels. Rotate the geometry so that you can see the vertex
labels on the right side.

figure
pdegplot(model,'VertexLabels','on','FaceAlpha',0.5)
xlim([-0.01 0.1])
zlim([-0.01 0.02])
view([60 5])

5 Functions

5-1176

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(model,'YoungsModulus',201E9,'PoissonsRatio',0.3);

Specify that faces 5 and 10 are fixed boundaries.

structuralBC(model,'Face',[5 10],'Constraint','fixed');

Specify the concentrated force at vertex 6.

structuralBoundaryLoad(model,'Vertex',6,'Force',[0;10^4;0])

ans =
 StructuralBC with properties:

 RegionType: 'Vertex'
 RegionID: 6
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 structuralBoundaryLoad

5-1177

 Boundary Loads
 Force: [3x1 double]
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

Specify Pressure for Frequency Response Model

Use a function handle to specify a frequency-dependent pressure for a frequency response model.

Create a frequency response model for a 3-D problem.

fmodel = createpde('structural','frequency-solid');

Import and plot the geometry.

importGeometry(fmodel,'TuningFork.stl');
figure
pdegplot(fmodel,'FaceLabels','on')

Specify the pressure loading on a tine (face 11) as a short rectangular pressure pulse. In the
frequency domain, this pressure pulse is a unit load uniformly distributed across all frequencies.

5 Functions

5-1178

structuralBoundaryLoad(fmodel,'Face',11,'Pressure',1);

Now specify a frequency-dependent pressure load, for example, p = e− ω− 1000 2/100000.

pLoad = @(location,state) exp(-(state.frequency-1E3).^2/1E5);
structuralBoundaryLoad(fmodel,'Face',12,'Pressure',pLoad);

Specify Nonconstant Pressure For Transient Model by Using Function Handle

Use a function handle to specify a harmonically varying pressure at the center of a thin 3-D plate.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry consisting of a thin 3-D plate with a small plate at the center. Include the
geometry in the model and plot it.

gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

Zoom in to see the face labels on the small plate at the center.

 structuralBoundaryLoad

5-1179

figure
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.

structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);

Apply a harmonically varying pressure load on the small face at the center of the plate.

plungerLoad = @(location,state)5E7.*sin(25.*state.time);
structuralBoundaryLoad(structuralmodel,'Face',12,'Pressure',plungerLoad)

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 12
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []

5 Functions

5-1180

 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: @(location,state)5E7.*sin(25.*state.time)
 TranslationalStiffness: []
 Label: []

 Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []

 Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []

Apply Sinusoidal Pressure by Specifying Frequency

Specify a harmonically varying pressure at the center of a thin 3-D plate by specifying its frequency.

Create a transient dynamic model for a 3-D problem.

structuralmodel = createpde('structural','transient-solid');

Create a geometry consisting of a thin 3-D plate with a small plate at the center. Include the
geometry in the model and plot it.

gm = multicuboid([5,0.05],[5,0.05],0.01);
structuralmodel.Geometry=gm;
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.5)

 structuralBoundaryLoad

5-1181

Zoom in to see the face labels on the small plate at the center.

figure
pdegplot(structuralmodel,'FaceLabels','on','FaceAlpha',0.25)
axis([-0.2 0.2 -0.2 0.2 -0.1 0.1])

5 Functions

5-1182

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',210E9,...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Specify that all faces on the periphery of the thin 3-D plate are fixed boundaries.

structuralBC(structuralmodel,'Constraint','fixed','Face',5:8);

Apply a harmonically varying pressure load on the small face at the center of the plate.

structuralBoundaryLoad(structuralmodel,'Face',12, ...
 'Pressure',5E7, ...
 'Frequency',25)

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 12
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []

 structuralBoundaryLoad

5-1183

 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 50000000
 TranslationalStiffness: []
 Label: []

 Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: []
 EndTime: []
 RiseTime: []
 FallTime: []

 Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: 25
 Phase: []

Apply Rectangular Pressure Pulse on Boundary

Create a transient structural model.

structuralModel = createpde('structural','transient-solid');

Import and plot the geometry.

importGeometry(structuralModel,'BracketWithHole.stl');
pdegplot(structuralModel,'FaceLabels','on')
view(-20,10)

5 Functions

5-1184

Specify the Young's modulus and Poisson's ratio.

structuralProperties(structuralModel,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3,...
 'MassDensity',7800);

Specify that face 4 is a fixed boundary.

structuralBC(structuralModel,'Face',4,'Constraint','fixed');

Apply a rectangular pressure pulse on face 7 in the direction normal to the face.

structuralBoundaryLoad(structuralModel,'Face',7,'Pressure',10^5,...
 'StartTime',0.1,'EndTime',0.5)

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 7
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []

 structuralBoundaryLoad

5-1185

 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: 100000
 TranslationalStiffness: []
 Label: []

 Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: 0.1000
 EndTime: 0.5000
 RiseTime: []
 FallTime: []

 Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []

Apply Rectangular Force Pulse at Point

Specify a short concentrated force pulse at a vertex of a geometry.

Create a structural model for static analysis of a solid (3-D) problem.

structuralmodel = createpde('structural','transient-solid');

Create the geometry, which consists of two cuboids stacked on top of each other.

gm = multicuboid(0.2,0.01,[0.01 0.01],'Zoffset',[0 0.01]);

Include the geometry in the structural model.

structuralmodel.Geometry = gm;

Plot the geometry and display the face labels. Rotate the geometry so that you can see the face labels
on the left side.

figure
pdegplot(structuralmodel,'FaceLabels','on');
view([-67 5])

5 Functions

5-1186

Plot the geometry and display the vertex labels. Rotate the geometry so that you can see the vertex
labels on the right side.

figure
pdegplot(structuralmodel,'VertexLabels','on','FaceAlpha',0.5)
xlim([-0.01 0.1])
zlim([-0.01 0.02])
view([60 5])

 structuralBoundaryLoad

5-1187

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',201E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800);

Specify that faces 5 and 10 are fixed boundaries.

structuralBC(structuralmodel,'Face',[5 10],'Constraint','fixed');

Specify a short concentrated force pulse at vertex 6.

structuralBoundaryLoad(structuralmodel,'Vertex',6, ...
 'Force',[0;1000;0], ...
 'StartTime',1,'EndTime',1.05)

ans =
 StructuralBC with properties:

 RegionType: 'Vertex'
 RegionID: 6
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []

5 Functions

5-1188

 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: [3×1 double]
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

 Time Variation of Force, Pressure, or Enforced Displacement
 StartTime: 1
 EndTime: 1.0500
 RiseTime: []
 FallTime: []

 Sinusoidal Variation of Force, Pressure, or Enforced Displacement
 Frequency: []
 Phase: []

Specify zero initial displacement and velocity.

structuralIC(structuralmodel,'Displacement',[0;0;0],'Velocity',[0;0;0])

ans =
 GeometricStructuralICs with properties:

 RegionType: 'Cell'
 RegionID: [1 2]
 InitialDisplacement: [3×1 double]
 InitialVelocity: [3×1 double]

Generate a fine mesh.

generateMesh(structuralmodel,'Hmax',0.02);

Because the load is zero for the initial time span and is applied for only a short time, solve the model
for two time spans. Use the first time span to find the solution before the force pulse.

structuralresults1 = solve(structuralmodel,0:1E-2:1);

Use the second time span to find the solution during and after the force pulse.

structuralIC(structuralmodel,structuralresults1)

ans =
 NodalStructuralICs with properties:

 InitialDisplacement: [511×3 double]
 InitialVelocity: [511×3 double]

structuralresults2 = solve(structuralmodel, ...
 [1.001:0.001:1.01 1.02:1E-2:2]);

 structuralBoundaryLoad

5-1189

Plot the displacement value at the node corresponding to vertex 6, where you applied the
concentrated force pulse.

loadedNd = findNodes(structuralmodel.Mesh,'region','Vertex',6);
plot(structuralresults2.SolutionTimes, ...
 structuralresults2.Displacement.uy(loadedNd,:))

Input Arguments
structuralmodel — Structural model
StructuralModel object

Structural model, specified as a StructuralModel object. The model contains the geometry, mesh,
structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, specified as 'Edge' for a 2-D model or 'Face' for a 3-D model.
Example: structuralBoundaryLoad(structuralmodel,'Face',[2,5],'SurfaceTraction',
[0,0,100])

Data Types: char | string

5 Functions

5-1190

RegionID — Geometric region ID
positive integer | vector of positive integers

Geometric region ID, specified as a positive integer or vector of positive integers. Find the region IDs
by using pdegplot.
Example: structuralBoundaryLoad(structuralmodel,'Face',[2,5],'SurfaceTraction',
[0,0,100])

Data Types: double

VertexID — Vertex ID
positive integer | vector of positive integers

Vertex ID, specified as a positive integer or vector of positive integers. Find the vertex IDs using
pdegplot.
Example: structuralBoundaryLoad(structuralmodel,'Vertex',6,'Force',[0;10^4;0])
Data Types: double

STval — Distributed normal and tangential forces on boundary
numeric vector | function handle

Distributed normal and tangential forces on the boundary, resolved along the global Cartesian
coordinate system, specified as a numeric vector or function handle. A numeric vector must contain
two elements for a 2-D model and three elements for a 3-D model.

The function must return a two-row matrix for a 2-D model and a three-row matrix for a 3-D model.
Each column of the matrix must correspond to the surface traction vector at the boundary
coordinates provided by the solver. In case of a transient or frequency response analysis, STval also
can be a function of time or frequency, respectively. For details, see “More About” on page 5-1195.
Example: structuralBoundaryLoad(structuralmodel,'Face',[2,5],'SurfaceTraction',
[0;0;100])

Data Types: double | function_handle

Pval — Pressure normal to boundary
number | function handle

Pressure normal to the boundary, specified as a number or function handle. A positive-value pressure
acts into the boundary (for example, compression), while a negative-value pressure acts away from
the boundary (for example, suction).

If you specify Pval as a function handle, the function must return a row vector where each column
corresponds to the value of pressure at the boundary coordinates provided by the solver. In case of a
transient structural model, Pval also can be a function of time. In case of a frequency response
structural model, Pval can be a function of frequency (when specified as a function handle) or a
constant pressure with the same magnitude for a broad frequency spectrum. For details, see “More
About” on page 5-1195.
Example: structuralBoundaryLoad(structuralmodel,'Face',[2,5],'Pressure',10^5)
Data Types: double | function_handle

TSval — Distributed spring stiffness
numeric vector | function handle

 structuralBoundaryLoad

5-1191

Distributed spring stiffness for each translational direction used to model elastic foundation, specified
as a numeric vector or function handle. A numeric vector must contain two elements for a 2-D model
and three elements for a 3-D model. The custom function must return a two-row matrix for a 2-D
model and a three-row matrix for a 3-D model. Each column of this matrix corresponds to the stiffness
vector at the boundary coordinates provided by the solver. In case of a transient or frequency
response analysis, TSval also can be a function of time or frequency, respectively. For details, see
“More About” on page 5-1195.
Example: structuralBoundaryLoad(structuralmodel,'Edge',
[2,5],'TranslationalStiffness',[0;5500])

Data Types: double | function_handle

Fval — Concentrated force
numeric vector | function handle

Concentrated force at a vertex, specified as a numeric vector or function handle. Use a function
handle to specify concentrated force that depends time or frequency. For details, see “More About”
on page 5-1195.
Example: structuralBoundaryLoad(structuralmodel,'Vertex',5,'Force',[0;0;10])
Data Types: double | function_handle

labeltext — Label for structural boundary load
character vector | string

Label for the structural boundary load, specified as a character vector or a string.
Data Types: char | string

Name-Value Pair Arguments

Use one or more of the name-value pair arguments to specify the form and duration of the pressure
or concentrated force pulse and harmonic excitation for a transient structural model only. Specify
the pressure or force value using the Pval or Fval argument, respectively.

You can model rectangular, triangular, and trapezoidal pressure or concentrated force pulses. If the
start time is 0, you can omit specifying it.

• For a rectangular pulse, specify the start and end times.
• For a triangular pulse, specify the start time and any two of the following times: rise time, fall

time, and end time. You also can specify all three times, but they must be consistent.
• For a trapezoidal pulse, specify all four times.

5 Functions

5-1192

You can model a harmonic pressure or concentrated force load by specifying its frequency and initial
phase. If the initial phase is 0, you can omit specifying it.

Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)

 structuralBoundaryLoad

5-1193

Rectangular, Triangular, or Trapezoidal Pulse

StartTime — Start time for pressure or concentrated force load
nonnegative number

Start time for pressure or concentrated force load, specified as a nonnegative number. Specify this
argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'StartTime',1,'EndTime',3)

Data Types: double

EndTime — End time for pressure or concentrated force load
nonnegative number

End time for pressure or concentrated force load, specified as a nonnegative number equal or greater
than the start time value. Specify this argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'StartTime',1,'EndTime',3)

Data Types: double

RiseTime — Rise time for pressure or concentrated force load
nonnegative number

Rise time for pressure or concentrated force load, specified as a nonnegative number. Specify this
argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)

Data Types: double

FallTime — Fall time for pressure or concentrated force load
nonnegative number

Fall time for pressure or concentrated force load, specified as a nonnegative number. Specify this
argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'RiseTime',0.5,'FallTime',0.5,'EndTime',3)

Data Types: double

Harmonic Pressure or Force

Frequency — Frequency of sinusoidal pressure or concentrated force
positive number

Frequency of sinusoidal pressure or concentrated force, specified as a positive number, in radians per
unit of time. Specify this argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'Frequency',25)

Data Types: double

5 Functions

5-1194

Phase — Phase of sinusoidal pressure or concentrated force
nonnegative number

Phase of sinusoidal pressure or concentrated force, specified as a nonnegative number, in radians.
Specify this argument only for transient structural models.
Example: structuralBoundaryLoad(structuralmodel,'Face',
[2,5],'Pressure',10^5,'Frequency',25,'Phase',pi/6)

Data Types: double

Output Arguments
boundaryLoad — Handle to boundary load
StructuralBC object

Handle to boundary load, returned as a StructuralBC object. See StructuralBC Properties.

More About
Specifying Nonconstant Parameters of a Structural Model

Use a function handle to specify the following structural parameters when they depend on space and,
depending of the type of structural analysis, either time or frequency:

• Surface traction on the boundary
• Pressure normal to the boundary
• Concentrated force at a vertex
• Distributed spring stiffness for each translational direction used to model elastic foundation
• Enforced displacement and its components
• Initial displacement and velocity (can depend on space only)

For example, use function handles to specify the pressure load, x-component of the enforced
displacement, and the initial displacement for this model.

structuralBoundaryLoad(model,'Face',12, ...
 'Pressure',@myfunPressure)
structuralBC(model,'Face',2, ...
 'XDisplacement',@myfunBC)
structuralIC(model,'Face',12, ...
 'Displacement',@myfunIC)

For all parameters, except the initial displacement and velocity, the function must be of the form:

function structuralVal = myfun(location,state)

For the initial displacement and velocity the function must be of the form:

function structuralVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial displacement or initial velocity). To

 structuralBoundaryLoad

5-1195

use additional arguments in your function, wrap your function (that takes additional arguments) with
an anonymous function that takes only the location and state arguments. For example:

structuralVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
structuralBC(model,'Face',2,'XDisplacement',structuralVal)

structuralVal = ...
@(location) myfunWithAdditionalArgs(location,arg1,arg2...)
structuralIC(model,'Face',2,'Displacement',structuralVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points
• state — A structure containing these fields for dynamic structural problems:

• state.time contains the time at evaluation points.
• state.frequency contains the frequency at evaluation points.

state.time and state.frequency are scalars.

Boundary constraints and loads get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.time or state.frequency (depending of the type of structural analysis)

Initial conditions get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

If a parameter represents a vector value, such as surface traction, spring stiffness, force, or
displacement, your function must return a two-row matrix for a 2-D model and a three-row matrix for
a 3-D model. Each column of the matrix corresponds to the parameter value (a vector) at the
boundary coordinates provided by the solver.

If a parameter represents a scalar value, such as pressure or a displacement component, your
function must return a row vector where each element corresponds to the parameter value (a scalar)
at the boundary coordinates provided by the solver.

5 Functions

5-1196

If boundary conditions depend on state.time or state.frequency, ensure that your function
returns a matrix of NaN of the correct size when state.frequency or state.time are NaN. Solvers
check whether a problem is nonlinear or time dependent by passing NaN state values and looking for
returned NaN values.

See Also
StructuralModel | structuralProperties | structuralDamping | structuralBodyLoad |
structuralBC | StructuralBC Properties

Introduced in R2017b

 structuralBoundaryLoad

5-1197

StructuralModel
Structural model object

Description
A StructuralModel object contains information about a structural analysis problem: the geometry,
material properties, damping parameters, body loads, boundary loads, boundary constraints,
superelement interfaces, initial displacement and velocity, and mesh.

Creation
To create a StructuralModel object, use createpde and specify 'structural' as its first
argument .

Properties
AnalysisType — Type of structural analysis
'static-solid' | 'static-planestress' | 'static-planestrain' | 'static-
axisymmetric' | 'transient-solid' | 'transient-planestress' | 'transient-
planestrain' | 'transient-axisymmetric' | 'modal-solid' | 'modal-planestress' |
'modal-planestrain' | 'modal-axisymmetric' | 'frequency-solid' | 'frequency-
planestress' | 'frequency-planestrain' | 'frequency-axisymmetric'

Type of structural analysis, returned as one of these values.

Static analysis:

• 'static-solid' for static structural analysis of a solid (3-D) problem
• 'static-planestress' for static structural analysis of a plane-stress problem
• 'static-planestrain' for static structural analysis of a plane-strain problem
• 'static-axisymmetric' for static structural analysis of an axisymmetric (2-D) problem

Transient analysis:

• 'transient-solid' for transient structural analysis of a solid (3-D) problem
• 'transient-planestress' for transient structural analysis of a plane-stress problem
• 'transient-planestrain' for transient structural analysis of a plane-strain problem
• 'transient-axisymmetric' for transient structural analysis of an axisymmetric (2-D) problem

Modal analysis:

• 'modal-solid' for modal analysis of a solid (3-D) problem
• 'modal-planestress' for modal analysis of a plane-stress problem
• 'modal-planestrain' for modal analysis of a plane-strain problem

5 Functions

5-1198

• 'modal-axisymmetric' for modal analysis of an axisymmetric (2-D) problem

Frequency response analysis:

• 'frequency-solid' for frequency response analysis of a solid (3-D) problem
• 'frequency-planestress' for frequency response analysis of a plane-stress problem
• 'frequency-planestrain' for frequency response analysis of a plane-strain problem
• 'frequency-axisymmetric' for frequency response analysis of an axisymmetric (2-D) problem

Example: model = createpde('structural','static-solid')
Data Types: char

Geometry — Geometry description
AnalyticGeometry | DiscreteGeometry

Geometry description, returned as AnalyticGeometry for a 2-D geometry or DiscreteGeometry
for a 2-D or 3-D geometry.

MaterialProperties — Material properties
StructuralMaterialAssignment object containing material property assignments

Material properties within the domain, returned as a StructuralMaterialAssignment object
containing the material property assignments. For details, see StructuralMaterialAssignment
Properties.

To create the material properties assignments for your structural analysis model, use the
structuralProperties function.

BodyLoads — Loads acting on domain or subdomain
BodyLoadAssignment object containing body load assignments

Loads acting on the domain or subdomain, returned as a BodyLoadAssignment object containing
body load assignments. For details, see BodyLoadAssignment Properties.

To create body load assignments for your structural analysis model, use the structuralBodyLoad
function.

BoundaryConditions — Structural loads and boundary conditions
StructuralBC object containing boundary condition assignments

Structural loads and boundary conditions applied to the geometry, returned as a StructuralBC
object containing the boundary condition assignments. For details, see StructuralBC Properties.

To specify boundary conditions for your model, use the structuralBC function. To specify boundary
loads, use structuralBoundaryLoad.

DampingModels — Damping model for transient dynamic analysis
StructuralDampingAssignment object containing damping assignments

Damping model for transient dynamic analysis, returned as a StructuralDampingAssignment
object containing damping assignments. For details, see StructuralDampingAssignment Properties.

To set damping parameters for your structural model, use the structuralDamping function.

 StructuralModel

5-1199

ReferenceTemperature — Reference temperature for thermal load
0 (default) | number

Reference temperature for a thermal load, specified as a number. The reference temperature
corresponds to state of zero thermal stress of the model. The default value 0 implies that the thermal
load is specified in terms of the temperature change and its derivatives.

To specify the reference temperature for a thermal load in your static structural model, assign the
property value directly, for example, structuralmodel.ReferenceTemperature = 10. To specify
the thermal load itself, use the structuralBodyLoad function.
Data Types: double

InitialConditions — Initial displacement and velocity
GeometricStructuralICs object | NodalStructuralICs object

Initial displacement and velocity, returned as a GeometricStructuralICs or
NodalStructuralICs object. For details, see GeometricStructuralICs Properties and
NodalStructuralICs Properties.

To set initial conditions for your transient structural model, use the structuralIC function.

SuperelementInterfaces — Superelement interfaces for component mode synthesis
StructuralSEIAssignment object containing superelement interfaces assignments

Superelement interfaces for the component mode synthesis, returned as a
StructuralSEIAssignment object containing superelement interface assignments. For details, see
StructuralSEIAssignment Properties.

To specify superelement interfaces for your frequency response structural model, use the
structuralSEInterface function.

Mesh — Mesh for solution
FEMesh object

Mesh for solution, returned as a FEMesh object. For property details, see FEMesh.

To create the mesh, use the generateMesh function.

LinearizeInputs — Inputs for linearized model
structure array

Inputs for a linearized model, returned as a structure array. The inputs are used by the linearize
that extracts mechss model from a structural model.

LinearizeOutputs — Outputs for linearized model
structure array

Inputs for a linearized model, returned as a structure array. The outputs are used by the linearize
that extracts mechss model from a structural model.

SolverOptions — Algorithm options for PDE solvers
PDESolverOptions object

5 Functions

5-1200

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of
PDESolverOptions include absolute and relative tolerances for internal ODE solvers, maximum
solver iterations, and so on.

Object Functions
geometryFromEdges Create 2-D geometry from decomposed geometry matrix
geometryFromMesh Create 2-D or 3-D geometry from mesh
importGeometry Import 2-D or 3-D geometry from STL data
structuralBC Specify boundary conditions for structural model
structuralSEInterface Specify structural superelement interface for component mode synthesis
structuralBodyLoad Specify body load for structural model
structuralBoundaryLoad Specify boundary loads for structural model
structuralIC Set initial conditions for a transient structural model
structuralProperties Assign structural properties of material for structural model
solve Solve heat transfer, structural analysis, or electromagnetic analysis

problem
reduce Reduce structural model

Examples

Create and Populate Structural Analysis Model

Create a static structural model for solving a solid (3-D) problem.

structuralModel = createpde('structural','static-solid')

structuralModel =
 StructuralModel with properties:

 AnalysisType: 'static-solid'
 Geometry: []
 MaterialProperties: []
 BodyLoads: []
 BoundaryConditions: []
 ReferenceTemperature: []
 SuperelementInterfaces: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create and plot the geometry.

gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)

 StructuralModel

5-1201

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(structuralModel,'Cell',1,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2.7E-6)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 210000
 PoissonsRatio: 0.3000
 MassDensity: 2.7000e-06
 CTE: []

Specify the gravity load on the rod.

structuralBodyLoad(structuralModel, ...
 'GravitationalAcceleration',[0;0;-9.8])

ans =
 BodyLoadAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 GravitationalAcceleration: [3x1 double]

5 Functions

5-1202

 AngularVelocity: []
 Temperature: []
 TimeStep: []
 Label: []

Specify that face 6 is a fixed boundary.

structuralBC(structuralModel,'Face',6,'Constraint','fixed')

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 6
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: "fixed"
 Radius: []
 Reference: []
 Label: []

 Boundary Loads
 Force: []
 SurfaceTraction: []
 Pressure: []
 TranslationalStiffness: []
 Label: []

Specify the surface traction for face 5.

structuralBoundaryLoad(structuralModel, ...
 'Face',5, ...
 'SurfaceTraction',[0;0;100])

ans =
 StructuralBC with properties:

 RegionType: 'Face'
 RegionID: 5
 Vectorized: 'off'

 Boundary Constraints and Enforced Displacements
 Displacement: []
 XDisplacement: []
 YDisplacement: []
 ZDisplacement: []
 Constraint: []
 Radius: []
 Reference: []
 Label: []

 Boundary Loads

 StructuralModel

5-1203

 Force: []
 SurfaceTraction: [3x1 double]
 Pressure: []
 TranslationalStiffness: []
 Label: []

Generate a mesh.

generateMesh(structuralModel)

ans =
 FEMesh with properties:

 Nodes: [3x7800 double]
 Elements: [10x4857 double]
 MaxElementSize: 0.0208
 MinElementSize: 0.0104
 MeshGradation: 1.5000
 GeometricOrder: 'quadratic'

View the properties of structuralModel.

structuralModel

structuralModel =
 StructuralModel with properties:

 AnalysisType: 'static-solid'
 Geometry: [1x1 DiscreteGeometry]
 MaterialProperties: [1x1 StructuralMaterialAssignmentRecords]
 BodyLoads: [1x1 BodyLoadAssignmentRecords]
 BoundaryConditions: [1x1 StructuralBCRecords]
 ReferenceTemperature: []
 SuperelementInterfaces: []
 Mesh: [1x1 FEMesh]
 SolverOptions: [1x1 pde.PDESolverOptions]

See Also
createpde | generateMesh | geometryFromEdges | geometryFromMesh | importGeometry |
pdegplot | pdeplot | pdeplot3D | solve | structuralBC | structuralBodyLoad |
structuralBoundaryLoad | structuralProperties | structuralSEInterface | reduce

Introduced in R2017b

5 Functions

5-1204

structuralProperties
Package: pde

Assign structural properties of material for structural model

Syntax
structuralProperties(structuralmodel,'YoungsModulus',YMval,'PoissonsRatio',
PRval)
structuralProperties(___ ,'MassDensity',MDval)
structuralProperties(___ ,'CTE',CTEval)
structuralProperties(___ ,RegionType,RegionID)
mtl = structuralProperties(___)

Description
structuralProperties(structuralmodel,'YoungsModulus',YMval,'PoissonsRatio',
PRval) assigns the Young's modulus and Poisson's ratio for the entire geometry. Use this syntax if
your model is static and does not account for gravitational and thermal effects.

Tip A structural model supports only homogeneous isotropic materials. Therefore, all material
properties must be numeric scalars.

structuralProperties(___ ,'MassDensity',MDval) assigns the mass density of the material
for the entire geometry, and can include any of the arguments used in the previous syntax. Specify
the mass density of the material if your model is transient or modal, or if it accounts for gravitational
effects.

structuralProperties(___ ,'CTE',CTEval) assigns the coefficient of thermal expansion for a
thermal stress analysis. Use this syntax if your model is static and accounts for thermal effects.

structuralProperties(___ ,RegionType,RegionID) assigns material properties for the
specified geometry region.

mtl = structuralProperties(___) returns the material properties object.

Examples

Structural Material Properties for Static Model Accounting for Gravity

Create a structural model.

structuralModel = createpde('structural','static-solid');

Import and plot the geometry.

importGeometry(structuralModel,'BracketWithHole.stl');
pdegplot(structuralModel,'FaceAlpha',0.5)

 structuralProperties

5-1205

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(structuralModel,'YoungsModulus',200e9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',7800)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 2.0000e+11
 PoissonsRatio: 0.3000
 MassDensity: 7800
 CTE: []

Structural Material Properties for Modal Analysis

Create a structural model for modal analysis.

structuralModel = createpde('structural','modal-solid');

Create and plot the geometry.

5 Functions

5-1206

gm = multicuboid(0.5,0.1,0.1);
structuralModel.Geometry = gm;
pdegplot(structuralModel,'FaceAlpha',0.5)

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(structuralModel,'YoungsModulus',210E3, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2.7E-6)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 210000
 PoissonsRatio: 0.3000
 MassDensity: 2.7000e-06
 CTE: []

Structural Material Properties for Thermal Stress Analysis

Specify the coefficients of thermal expansion for a bimetallic cantilever beam. The bottom layer is
steel. The top layer is copper.

 structuralProperties

5-1207

Create a static structural model.

structuralmodel = createpde('structural','static-solid');

Create and plot the geometry.

gm = multicuboid(0.5,0.04,[0.03,0.03],'Zoffset',[0,0.03]);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'CellLabels','on')

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for the bottom cell
C1.

structuralProperties(structuralmodel,'Cell',1', ...
 'YoungsModulus',210e9, ...
 'PoissonsRatio',0.28, ...
 'CTE',1.3e-5)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 2.1000e+11
 PoissonsRatio: 0.2800
 MassDensity: []
 CTE: 1.3000e-05

5 Functions

5-1208

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for the top cell C2.

structuralProperties(structuralmodel,'Cell',2', ...
 'YoungsModulus',110e9, ...
 'PoissonsRatio',0.37, ...
 'CTE',2.4e-5)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 2
 YoungsModulus: 1.1000e+11
 PoissonsRatio: 0.3700
 MassDensity: []
 CTE: 2.4000e-05

Structural Material Properties for Each Geometric Region

Create a structural model.

structuralModel = createpde('structural','static-solid');

Create nested cylinders to model a bimetallic cable.

gm = multicylinder([0.01,0.015],0.05);

Assign the geometry to the structural model and plot the geometry.

structuralModel.Geometry = gm;
pdegplot(structuralModel,'CellLabels','on','FaceAlpha',0.4)

 structuralProperties

5-1209

Specify the Young's modulus and Poisson's ratio for each metal.

structuralProperties(structuralModel,'Cell',1,'YoungsModulus',110E9, ...
 'PoissonsRatio',0.28)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 1
 YoungsModulus: 1.1000e+11
 PoissonsRatio: 0.2800
 MassDensity: []
 CTE: []

structuralProperties(structuralModel,'Cell',2,'YoungsModulus',210E9, ...
 'PoissonsRatio',0.3)

ans =
 StructuralMaterialAssignment with properties:

 RegionType: 'Cell'
 RegionID: 2
 YoungsModulus: 2.1000e+11
 PoissonsRatio: 0.3000
 MassDensity: []

5 Functions

5-1210

 CTE: []

Input Arguments
structuralmodel — Structural model
StructuralModel object

Structural model, specified as a StructuralModel object. The model contains the geometry, mesh,
structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

YMval — Young's modulus
positive number

Young's modulus of the material, specified as a positive number.
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0.
3)

Data Types: double

PRval — Poisson's ratio
number greater than 0 and less than 0.5

Poisson's ratio of the material, specified as a number greater than 0 and less than 0.5.
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0.
3)

Data Types: double

MDval — Mass density
positive number

Mass density of the material, specified as a positive number. This argument is required for transient
and modal models. MDval is also required when modeling gravitational effects.
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0.
3,'MassDensity',11.7e-6)

Data Types: double

CTEval — Coefficient of thermal expansion
real number

Coefficient of thermal expansion, specified as a real number. This argument is required for thermal
stress analysis. Thermal stress analysis requires the structural model to be static.
Example:
structuralProperties(structuralmodel,'YoungsModulus',210e3,'PoissonsRatio',0.
3,'MassDensity',2.7e-6,'CTE',11.7e-6)

 structuralProperties

5-1211

Data Types: double

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' for a 2-D model or 'Cell' for a 3-D model.
Example:
structuralProperties(structuralmodel,'Cell',1,'YoungsModulus',110E9,'Poissons
Ratio',0.3)

Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot
with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example:
structuralProperties(structuralmodel,'Cell',1:3,'YoungsModulus',110E9,'Poisso
nsRatio',0.3)

Data Types: double

Output Arguments
mtl — Handle to material properties
StructuralMaterialAssignment object

Handle to material properties, returned as a StructuralMaterialAssignment object. See
StructuralMaterialAssignment Properties.

mtl associates the material properties with the geometric region.

See Also
StructuralModel | createpde | structuralBodyLoad | structuralDamping |
structuralBoundaryLoad | structuralBC | StructuralMaterialAssignment Properties

Introduced in R2017b

5 Functions

5-1212

structuralSEInterface
Package: pde

Specify structural superelement interface for component mode synthesis

Syntax
structuralSEInterface(structuralmodel,RegionType,RegionID)
sei = structuralSEInterface(___)

Description
structuralSEInterface(structuralmodel,RegionType,RegionID) defines the specified
geometric region RegionType, RegionID as a superelement interface for component mode
synthesis. For better performance, specify geometric regions with a minimal number of nodes. For
example, use a set of edges instead of a face, or a set of vertices instead of an edge.

If you intend to use a reduced-order model in Simscape Multibody, use structuralBC instead of
structuralSEInterface.

sei = structuralSEInterface(___) returns the superelement interface assignment object
using the previous syntax.

Examples

Superelement Interfaces for Component Mode Synthesis

Define the two ends of the beam as structural superelement interfaces. The reduced-order modeling
technique retains the degrees of freedom on these boundaries while condensing all other degrees of
freedom.

Create a structural model for modal analysis of a 3-D problem.

structuralmodel = createpde('structural','modal-solid');

Create a geometry and include it in the model. Plot the geometry.

gm = multicuboid(0.1,0.01,0.01);
structuralmodel.Geometry = gm;
pdegplot(structuralmodel,'EdgeLabels','on','FaceAlpha',0.5)

 structuralSEInterface

5-1213

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(structuralmodel,'YoungsModulus',70E9, ...
 'PoissonsRatio',0.3, ...
 'MassDensity',2700);

Generate a mesh.

generateMesh(structuralmodel);

Specify the ends of the beam as structural superelement interfaces. For better performance, use the
set of edges bounding each side of the beam instead of using the entire face.

structuralSEInterface(structuralmodel,'Edge',[4,6,9,10]);
structuralSEInterface(structuralmodel,'Edge',[2,8,11,12]);

Reduce the model to all modes in the frequency range [-Inf,500000] and the interface degrees of
freedom.

R = reduce(structuralmodel,'FrequencyRange',[-Inf,500000])

R =
 ReducedStructuralModel with properties:

 K: [166x166 double]
 M: [166x166 double]
 NumModes: 22
 RetainedDoF: [144x1 double]

5 Functions

5-1214

 ReferenceLocations: []
 Mesh: [1x1 FEMesh]

Input Arguments
structuralmodel — Structural model
StructuralModel object

Structural model, specified as a StructuralModel object. The model contains the geometry, mesh,
structural properties of the material, body loads, boundary loads, and boundary conditions.
Example: structuralmodel = createpde('structural','transient-solid')

RegionType — Geometric region type
'Vertex' | 'Edge' | 'Face' (for a 3-D model only)

Geometric region type, specified as 'Vertex', 'Edge', or, for a 3-D model, 'Face'.
Example: structuralSEInterface(structuralmodel,'Face',[2,5])
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: structuralSEInterface(structuralmodel,'Face',[2,5])
Data Types: double

Output Arguments
sei — Handle to superelement interface
StructuralSEIAssignment object

Superelement interface assignment, returned as a StructuralSEIAssignment object. See
StructuralSEIAssignment Properties.

See Also
StructuralModel | structuralBC | reduce | reconstructSolution | solve |
ReducedStructuralModel | StructuralSEIAssignment Properties

Introduced in R2019b

 structuralSEInterface

5-1215

StructuralSEIAssignment Properties
Superelement interface assignment for structural model

Description
A StructuralSEIAssignment object contains a description of the superelement interfaces for a
structural analysis model. A StructuralModel container has a vector of
StructuralSEIAssignment objects in its
SuperelementInterfaces.StructuralSEIAssignments property.

Properties
Properties of StructuralSEIAssignment

RegionType — Region type
'Vertex' | 'Edge' | 'Face' (for a 3-D model only)

Region type, returned as 'Vertex', 'Edge', or, for a 3-D model, 'Face'.
Data Types: char | string

RegionID — Region ID
positive integer

Geometric region ID, returned as a positive integer. Find the region IDs by using pdegplot.
Data Types: double

See Also
structuralSEInterface | structuralBC | reduce | reconstructSolution | solve |
ReducedStructuralModel | StructuralModel | StructuralBC Properties

Introduced in R2019b

5 Functions

5-1216

StationaryResults
Time-independent PDE solution and derived quantities

Description
A StationaryResults object contains the solution of a PDE and its gradients in a form convenient
for plotting and postprocessing.

• A StationaryResults object contains the solution and its gradient calculated at the nodes of
the triangular or tetrahedral mesh, generated by generateMesh.

• Solution values at the nodes appear in the NodalSolution property.
• The three components of the gradient of the solution values at the nodes appear in the

XGradients, YGradients, and ZGradients properties.
• The array dimensions of NodalSolution, XGradients, YGradients, and ZGradients enable

you to extract solution and gradient values for specified equation indices in a PDE system.

To interpolate the solution or its gradient to a custom grid (for example, specified by meshgrid), use
interpolateSolution or evaluateGradient.

Creation
There are several ways to create a StationaryResults object:

• Solve a time-independent problem using the solvepde function. This function returns a PDE
solution as a StationaryResults object. This is the recommended approach.

• Solve a time-independent problem using the assempde or pdenonlin function. Then use the
createPDEResults function to obtain a StationaryResults object from a PDE solution
returned by assempde or pdenonlin. Note that assempde and pdenonlin are legacy functions.
They are not recommended for solving PDE problems.

Properties
Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object.

NodalSolution — Solution values at the nodes
vector | array

Solution values at the nodes, returned as a vector or array. For details about the dimensions of
NodalSolution, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double

XGradients — x-component of gradient at the nodes
vector | array

 StationaryResults

5-1217

x-component of the gradient at the nodes, returned as a vector or array. For details about the
dimensions of XGradients, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double

YGradients — y-component of gradient at the nodes
vector | array

y-component of the gradient at the nodes, returned as a vector or array. For details about the
dimensions of YGradients, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double

ZGradients — z-component of gradient at the nodes
vector | array

z-component of the gradient at the nodes, returned as a vector or array. For details about the
dimensions of ZGradients, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double

Object Functions
evaluateCGradient Evaluate flux of PDE solution
evaluateGradient Evaluate gradients of PDE solutions at arbitrary points
interpolateSolution Interpolate PDE solution to arbitrary points

Examples

Obtain a StationaryResults Object from solvepde

Create a PDE model for a system of three equations. Import the geometry of a bracket and plot the
face labels.

model = createpde(3);
importGeometry(model,'BracketWithHole.stl');

figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

5 Functions

5-1218

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

 StationaryResults

5-1219

Set boundary conditions such that face 4 is immobile, and face 8 has a force in the negative z
direction.

applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face',8,'g',[0,0,-1e4]);

Set coefficients that represent the equations of linear elasticity. See “Linear Elasticity Equations” on
page 3-146.

E = 200e9;
nu = 0.3;
specifyCoefficients(model,'m',0,...
 'd',0,...
 'c',elasticityC3D(E,nu),...
 'a',0,...
 'f',[0;0;0]);

Create a mesh.

generateMesh(model,'Hmax',1e-2);

Solve the PDE.

results = solvepde(model)

results =
 StationaryResults with properties:

5 Functions

5-1220

 NodalSolution: [14002x3 double]
 XGradients: [14002x3 double]
 YGradients: [14002x3 double]
 ZGradients: [14002x3 double]
 Mesh: [1x1 FEMesh]

Access the solution at the nodal locations.

u = results.NodalSolution;

Plot the solution for the z-component, which is component 3.

pdeplot3D(model,'ColorMapData',u(:,3))

Results from createPDEResults

Obtain a StationaryResults object from a legacy solver together with createPDEResults.

Create a PDE model for a system of three equations. Import the geometry of a bracket and plot the
face labels.

model = createpde(3);
importGeometry(model,'BracketWithHole.stl');

 StationaryResults

5-1221

figure
pdegplot(model,'FaceLabels','on')
view(30,30)
title('Bracket with Face Labels')

figure
pdegplot(model,'FaceLabels','on')
view(-134,-32)
title('Bracket with Face Labels, Rear View')

5 Functions

5-1222

Set boundary conditions such that F4 is immobile, and F8 has a force in the negative z direction.

applyBoundaryCondition(model,'dirichlet','Face',4,'u',[0,0,0]);
applyBoundaryCondition(model,'neumann','Face',8,'g',[0,0,-1e4]);

Set coefficients for a legacy solver that represent the equations of linear elasticity. See “Linear
Elasticity Equations” on page 3-146.

E = 200e9;
nu = 0.3;
c = elasticityC3D(E,nu);
a = 0;
f = [0;0;0];

Create a mesh.

generateMesh(model,'Hmax',1e-2);

Solve the problem using a legacy solver.

u = assempde(model,c,a,f);

Create a StationaryResults object from the solution.

results = createPDEResults(model,u)

results =
 StationaryResults with properties:

 StationaryResults

5-1223

 NodalSolution: [14002x3 double]
 XGradients: [14002x3 double]
 YGradients: [14002x3 double]
 ZGradients: [14002x3 double]
 Mesh: [1x1 FEMesh]

Access the solution at the nodal locations.

u = results.NodalSolution;

Plot the solution for the z-component, which is component 3.

pdeplot3D(model,'ColorMapData',u(:,3))

See Also
solvepde | interpolateSolution | evaluateGradient | evaluateCGradient |
EigenResults | TimeDependentResults

Topics
“Poisson's Equation on Unit Disk” on page 3-204
“Minimal Surface Problem” on page 3-216
“Solve Problems Using PDEModel Objects” on page 2-2

5 Functions

5-1224

Introduced in R2016a

 StationaryResults

5-1225

SteadyStateThermalResults
Steady-state thermal solution and derived quantities

Description
A SteadyStateThermalResults object contains the temperature and temperature gradient values
in a form convenient for plotting and postprocessing.

The temperature and its gradients are calculated at the nodes of the triangular or tetrahedral mesh
generated by generateMesh. Temperature values at the nodes appear in the Temperature property.
The three components of the temperature gradient at the nodes appear in the XGradients,
YGradients, and ZGradients properties.

To interpolate the temperature or its gradients to a custom grid (for example, specified by
meshgrid), use interpolateTemperature or evaluateTemperatureGradient.

To evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations, use
evaluateHeatFlux. To evaluate integrated heat flow rate normal to a specified boundary, use
evaluateHeatRate.

Creation
Solve a steady-state thermal problem using the solve function. This function returns a steady-state
thermal solution as a SteadyStateThermalResults object.

Properties
All Steady-State Thermal Models

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as an FEMesh object.

Temperature — Temperature values at nodes
vector

Temperature values at nodes, returned as a vector.
Data Types: double

Non-Axisymmetric Steady-State Thermal Models

XGradients — x-component of temperature gradient at nodes
vector

x-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

5 Functions

5-1226

YGradients — y-component of temperature gradient at nodes
vector

y-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

ZGradients — z-component of temperature gradient at nodes
vector

z-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

Axisymmetric Steady-State Thermal Models

RGradients — r-component of temperature gradient at nodes
vector

r-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

ZGradients — z-component of temperature gradient at nodes for axisymmetric model
vector

z-component of the temperature gradient at nodes, returned as a vector.
Data Types: double

Object Functions
evaluateHeatFlux Evaluate heat flux of a thermal solution at nodal or arbitrary spatial

locations
evaluateHeatRate Evaluate integrated heat flow rate normal to specified boundary
evaluateTemperatureGradient Evaluate temperature gradient of a thermal solution at arbitrary

spatial locations
interpolateTemperature Interpolate temperature in a thermal result at arbitrary spatial

locations

Examples

Solution to Steady-State Thermal Model

Solve a 3-D steady-state thermal problem.

Create a thermal model for this problem.

thermalmodel = createpde('thermal');

Import and plot the block geometry.

importGeometry(thermalmodel,'Block.stl');
pdegplot(thermalmodel,'FaceLabel','on','FaceAlpha',0.5)
axis equal

 SteadyStateThermalResults

5-1227

Assign material properties.

thermalProperties(thermalmodel,'ThermalConductivity',80);

Apply a constant temperature of 100 °C to the left side of the block (face 1) and a constant
temperature of 300 °C to the right side of the block (face 3). All other faces are insulated by default.

thermalBC(thermalmodel,'Face',1,'Temperature',100);
thermalBC(thermalmodel,'Face',3,'Temperature',300);

Mesh the geometry and solve the problem.

generateMesh(thermalmodel);
thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [12691x1 double]
 XGradients: [12691x1 double]
 YGradients: [12691x1 double]
 ZGradients: [12691x1 double]
 Mesh: [1x1 FEMesh]

The solver finds the temperatures and temperature gradients at the nodal locations. To access these
values, use thermalresults.Temperature, thermalresults.XGradients, and so on. For
example, plot temperatures at the nodal locations.

5 Functions

5-1228

pdeplot3D(thermalmodel,'ColorMapData',thermalresults.Temperature)

Solution to Steady-State Axisymmetric Thermal Model

Analyze heat transfer in a rod with a circular cross-section and internal heat generation by
simplifying a 3-D axisymmetric model to a 2-D model.

Create a steady-state thermal model for solving an axisymmetric problem.

thermalmodel = createpde('thermal','steadystate-axisymmetric');

The 2-D model is a rectangular strip whose x-dimension extends from the axis of symmetry to the
outer surface and whose y-dimension extends over the actual length of the rod (from -1.5 m to 1.5
m). Create the geometry by specifying the coordinates of its four corners. For axisymmetric models,
the toolbox assumes that the axis of rotation is the vertical axis passing through r = 0.

g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');

Include the geometry in the model.

geometryFromEdges(thermalmodel,g);

Plot the geometry with the edge labels.

 SteadyStateThermalResults

5-1229

figure
pdegplot(thermalmodel,'EdgeLabels','on')
axis equal

The rod is composed of a material with these thermal properties.

k = 40; % thermal conductivity, W/(m*C)
q = 20000; % heat source, W/m^3

For a steady-state analysis, specify the thermal conductivity of the material.

thermalProperties(thermalmodel,'ThermalConductivity',k);

Specify the internal heat source.

internalHeatSource(thermalmodel,q);

Define the boundary conditions. There is no heat transferred in the direction normal to the axis of
symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is
kept at a constant temperature T = 100 °C.

thermalBC(thermalmodel,'Edge',2,'Temperature',100);

Specify the convection boundary condition on the outer boundary (edge 3). The surrounding
temperature at the outer boundary is 100 °C, and the heat transfer coefficient is 50 W/ m ⋅∘ C .

5 Functions

5-1230

thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);

The heat flux at the bottom of the rod (edge 4) is 5000 W/m2.

thermalBC(thermalmodel,'Edge',4,'HeatFlux',5000);

Generate the mesh.

msh = generateMesh(thermalmodel);
figure
pdeplot(thermalmodel)
axis equal

Solve the problem.

thermalresults = solve(thermalmodel)

thermalresults =
 SteadyStateThermalResults with properties:

 Temperature: [259x1 double]
 RGradients: [259x1 double]
 ZGradients: [259x1 double]
 Mesh: [1x1 FEMesh]

 SteadyStateThermalResults

5-1231

The solver finds the temperatures and temperature gradients at the nodal locations. To access these
values, use thermalresults.Temperature, thermalresults.RGradients, and
thermalresults.ZGradients. For example, plot temperatures at the nodal locations.

T = thermalresults.Temperature;
figure
pdeplot(thermalmodel,'XYData',T,'Contour','on')
axis equal
title 'Steady-State Temperature'

See Also
evaluateHeatFlux | evaluateHeatRate | evaluateTemperatureGradient |
interpolateTemperature | TransientThermalResults

Introduced in R2017a

5 Functions

5-1232

ThermalBC Properties
Boundary condition for thermal model

Description
A ThermalBC object specifies the type of PDE boundary condition on a set of geometry boundaries. A
ThermalModel object contains a vector of ThermalBC objects in its
BoundaryConditions.ThermalBCAssignments property.

Specify boundary conditions for your model using the thermalBC function.

Properties
Properties

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge' for 2-D geometry

Geometric region type, returned as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, returned as a vector of positive integers. Find the region IDs by using
pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Data Types: double

Temperature — Temperature boundary condition
number | function handle

Temperature boundary condition, returned as a number or a function handle. Use a function handle
to specify spatially or temporally varying temperature.
Data Types: double | function_handle

HeatFlux — Heat flux boundary condition
number | function handle

Heat flux boundary condition, returned as a number or a function handle. Use a function handle to
specify a spatially or temporally varying heat flux or a nonlinear heat flux.
Data Types: double | function_handle

ConvectionCoefficient — Coefficient for convection to ambient heat transfer condition
number | function handle

Convection to ambient boundary condition, returned as a number or a function handle. Use a function
handle to specify a spatially or temporally varying convection coefficient or a nonlinear convection
coefficient. Specify ambient temperature using the AmbientTemperature argument.

 ThermalBC Properties

5-1233

Data Types: double | function_handle

Emissivity — Radiation emissivity coefficient
number in the range (0,1)

Radiation emissivity coefficient, returned as a number in the range (0,1). Use a function handle to
specify spatially or temporally varying emissivity or nonlinear emissivity. Specify ambient
temperature using the AmbientTemperature argument and the Stefan-Boltzmann constant using
the thermal model properties.
Data Types: double | function_handle

AmbientTemperature — Ambient temperature
number

Ambient temperature, returned as a number. The ambient temperature value is required for
specifying convection and radiation boundary conditions.
Data Types: double

Vectorized — Vectorized function evaluation
'off' (default) | 'on'

Vectorized function evaluation, returned as 'on' or 'off'. This evaluation applies when you pass a
function handle as an argument. To save time in function handle evaluation, specify 'on', assuming
that your function handle computes in a vectorized fashion. See “Vectorization”. For details of this
evaluation, see “Nonconstant Boundary Conditions” on page 2-116.
Data Types: char | string

Label — Label for use with linearizeInput
character vector | string

Label for use with linearizeInput, returned as a character vector or a string.
Data Types: char | string

See Also
thermalBC | findThermalBC | ThermalModel

Introduced in R2017a

5 Functions

5-1234

ThermalMaterialAssignment Properties
Thermal material properties assignments

Description
A ThermalMaterialAssignment object contains the description of a thermal model’s material
properties. A ThermalModel container has a vector of ThermalMaterialAssignment objects in its
MaterialProperties.MaterialAssignments property.

Create material properties assignments for your thermal model using the thermalProperties
function.

Properties
Properties

RegionType — Region type
'Face' | 'Cell'

Region type, returned as 'Face' for a 2-D region, or 'Cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function. Set the 'FaceLabels' name-value pair to
'on'.
Data Types: double

ThermalConductivity — Thermal conductivity of the material
nonnegative number | function handle

Thermal conductivity of the material, returned as a nonnegative number or a function handle.
Data Types: double | function_handle

MassDensity — Mass density of the material
nonnegative number | function handle

Mass density of the material, returned as a nonnegative number or a function handle.
Data Types: double | function_handle

SpecificHeat — Specific heat of the material
nonnegative number | function handle

Specific heat of the material, returned as a nonnegative number or a function handle.
Data Types: double | function_handle

 ThermalMaterialAssignment Properties

5-1235

Tips
• When there are multiple assignments to the same geometric region, the toolbox uses the last

applied setting.
• To avoid assigning material properties to a wrong region, ensure that you are using the correct

geometric region IDs by plotting and visually inspecting the geometry.

See Also
findThermalProperties | thermalProperties

Introduced in R2017a

5 Functions

5-1236

ThermalModel
Thermal model object

Description
A ThermalModel object contains information about a heat transfer problem: the geometry, material
properties, internal heat sources, temperature on the boundaries, heat fluxes through the boundaries,
mesh, and initial conditions.

Creation
Create a ThermalModel object using createpde with the first argument 'thermal'.

Properties
AnalysisType — Type of thermal analysis
'steadystate' | 'transient' | 'steadystate-axisymmetric' | 'transient-
axisymmetric'

Type of thermal analysis, returned as 'steadystate', 'transient', 'steadystate-
axisymmetric', or 'transient-axisymmetric'.

Geometry — Geometry description
AnalyticGeometry | DiscreteGeometry

Geometry description, returned as AnalyticGeometry for a 2-D geometry or DiscreteGeometry
for a 2-D or 3-D geometry.

MaterialProperties — Material properties within the domain
object containing material property assignments

Material properties within the domain, returned as an object containing the material property
assignments.

HeatSources — Heat source within the domain or subdomain
object containing heat source assignments

Heat source within the domain or subdomain, returned as an object containing heat source
assignments.

BoundaryConditions — Boundary conditions applied to the geometry
object containing boundary condition assignments

Boundary conditions applied to the geometry, returned as an object containing the boundary
condition assignments.

InitialConditions — Initial temperature or initial guess
object containing the initial temperature assignments within the geometric domain

 ThermalModel

5-1237

Initial temperature or initial guess, returned as an object containing the initial temperature
assignments within the geometric domain.

Mesh — Mesh for solution
FEMesh object

Mesh for solution, returned as a FEMesh object. You create the mesh using the generateMesh
function.

StefanBoltzmannConstant — Constant of proportionality in Stefan-Boltzmann law
governing radiation heat transfer
number

Constant of proportionality in Stefan-Boltzmann law governing radiation heat transfer, returned as a
number. This value must be consistent with the units of the model. Values of the Stefan-Boltzmann
constant in commonly used system of units are:

• SI – 5.670367e-8 W/(m2·K4)
• CGS – 5.6704e-5 erg/(cm2·s·K4)
• US customary – 1.714e-9 BTU/(hr·ft2·R4)

LinearizeInputs — Inputs for linearized model
structure array

Inputs for a linearized model, returned as a structure array. The inputs are used by the linearize
that extracts a sparss model from a thermal model.

LinearizeOutputs — Outputs for linearized model
structure array

Inputs for a linearized model, returned as a structure array. The outputs are used by the linearize
that extracts a sparss model from a thermal model.

SolverOptions — Algorithm options for PDE solvers
PDESolverOptions object

Algorithm options for the PDE solvers, returned as a PDESolverOptions object. The properties of
PDESolverOptions include absolute and relative tolerances for internal ODE solvers, maximum
solver iterations, and so on.

Object Functions
geometryFromEdges Create 2-D geometry from decomposed geometry matrix
geometryFromMesh Create 2-D or 3-D geometry from mesh
importGeometry Import 2-D or 3-D geometry from STL data
thermalProperties Assign thermal properties of a material for a thermal model
internalHeatSource Specify internal heat source for a thermal model
thermalBC Specify boundary conditions for a thermal model
thermalIC Set initial conditions or initial guess for a thermal model
generateMesh Create triangular or tetrahedral mesh
solve Solve heat transfer, structural analysis, or electromagnetic analysis problem

Examples

5 Functions

5-1238

Create and Populate a Thermal Model

Create a transient thermal model container.

thermalmodel = createpde('thermal','transient')

thermalmodel =
 ThermalModel with properties:

 AnalysisType: "transient"
 Geometry: []
 MaterialProperties: []
 HeatSources: []
 StefanBoltzmannConstant: []
 BoundaryConditions: []
 InitialConditions: []
 Mesh: []
 SolverOptions: [1x1 pde.PDESolverOptions]

Create the geometry and include it in the model.

g = @squareg;
geometryFromEdges(thermalmodel,g)

ans =
 AnalyticGeometry with properties:

 NumCells: 0
 NumFaces: 1
 NumEdges: 4
 NumVertices: 4
 Vertices: [4x2 double]

Assign material properties.

thermalProperties(thermalmodel,'ThermalConductivity',79.5,...
 'MassDensity',7850,...
 'SpecificHeat',450,...
 'Face',1)

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'face'
 RegionID: 1
 ThermalConductivity: 79.5000
 MassDensity: 7850
 SpecificHeat: 450

Specify that the entire geometry generates heat at the rate 25 W/m^3.

internalHeatSource(thermalmodel,25)

ans =
 HeatSourceAssignment with properties:

 ThermalModel

5-1239

 RegionType: 'face'
 RegionID: 1
 HeatSource: 25
 Label: []

Apply insulated boundary conditions on three edges and the free convection boundary condition on
the right edge.

thermalBC(thermalmodel,'Edge',[1,3,4],'HeatFlux',0);
thermalBC(thermalmodel,'Edge',2,...
 'ConvectionCoefficient',5000,...
 'AmbientTemperature',25)

ans =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: 2
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: 5000
 Emissivity: []
 AmbientTemperature: 25
 Vectorized: 'off'
 Label: []

Set the initial conditions: uniform room temperature across domain and higher temperature on the
left edge.

thermalIC(thermalmodel,25);
thermalIC(thermalmodel,100,'Edge',4)

ans =
 GeometricThermalICs with properties:

 RegionType: 'edge'
 RegionID: 4
 InitialTemperature: 100

Specify the Stefan-Boltzmann constant.

thermalmodel.StefanBoltzmannConstant = 5.670367e-8;

Generate mesh.

generateMesh(thermalmodel)

ans =
 FEMesh with properties:

 Nodes: [2x1541 double]
 Elements: [6x734 double]
 MaxElementSize: 0.1131
 MinElementSize: 0.0566
 MeshGradation: 1.5000

5 Functions

5-1240

 GeometricOrder: 'quadratic'

thermalmodel now contains the following properties.

thermalmodel

thermalmodel =
 ThermalModel with properties:

 AnalysisType: "transient"
 Geometry: [1x1 AnalyticGeometry]
 MaterialProperties: [1x1 MaterialAssignmentRecords]
 HeatSources: [1x1 HeatSourceAssignmentRecords]
 StefanBoltzmannConstant: 5.6704e-08
 BoundaryConditions: [1x1 ThermalBCRecords]
 InitialConditions: [1x1 ThermalICRecords]
 Mesh: [1x1 FEMesh]
 SolverOptions: [1x1 pde.PDESolverOptions]

See Also
createpde | generateMesh | geometryFromEdges | geometryFromMesh | importGeometry |
internalHeatSource | thermalProperties | pdegplot | pdeplot | pdeplot3D | thermalBC |
thermalIC

Introduced in R2017a

 ThermalModel

5-1241

thermalProperties
Package: pde

Assign thermal properties of a material for a thermal model

Syntax
thermalProperties(thermalmodel,'ThermalConductivity',TCval,'MassDensity',
MDval,'SpecificHeat',SHval)
thermalProperties(___ ,RegionType,RegionID)
mtl = thermalProperties(___)

Description
thermalProperties(thermalmodel,'ThermalConductivity',TCval,'MassDensity',
MDval,'SpecificHeat',SHval) assigns material properties, such as thermal conductivity, mass
density, and specific heat. For transient analysis, specify all three properties. For steady-state
analysis, specifying thermal conductivity is enough. This syntax sets material properties for the entire
geometry.

For a nonconstant or nonlinear material, specify TCval, MDval, and SHval as function handles.

thermalProperties(___ ,RegionType,RegionID) assigns material properties for a specified
geometry region.

mtl = thermalProperties(___) returns the material properties object.

Examples

Assign Thermal Conductivity

Assign material properties for a steady-state thermal model.

model = createpde('thermal','steadystate');
gm = importGeometry(model,'SquareBeam.stl');
thermalProperties(model,'ThermalConductivity',0.08)

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 0.0800
 MassDensity: []
 SpecificHeat: []

5 Functions

5-1242

Assign Thermal Conductivity, Mass Density, and Specific Heat

Assign material properties for transient analysis.

thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'SquareBeam.stl');
thermalProperties(thermalmodel,'ThermalConductivity',0.2,...
 'MassDensity',2.7*10^(-6),...
 'SpecificHeat',920)

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 0.2000
 MassDensity: 2.7000e-06
 SpecificHeat: 920

Assign Thermal Conductivities for Each Geometric Region

Create a steady-state thermal model.

thermalModel = createpde('thermal');

Create nested cylinders to model a two-layered insulated pipe section, consisting of inner metal pipe
surrounded by insulated material.

gm = multicylinder([20,25,35],20,'Void',[1,0,0]);

Assign geometry to the thermal model and plot the geometry.

thermalModel.Geometry = gm;
pdegplot(thermalModel,'CellLabels','on','FaceAlpha',0.5)

 thermalProperties

5-1243

Specify thermal conductivities for metal and insulation.

thermalProperties(thermalModel,'Cell',1,'ThermalConductivity',0.4)

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 1
 ThermalConductivity: 0.4000
 MassDensity: []
 SpecificHeat: []

thermalProperties(thermalModel,'Cell',2,'ThermalConductivity',0.0015)

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'cell'
 RegionID: 2
 ThermalConductivity: 0.0015
 MassDensity: []
 SpecificHeat: []

5 Functions

5-1244

Specify Nonconstant Thermal Properties

Use function handles to specify a thermal conductivity that depends on temperature and specific heat
that depends on coordinates.

Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a
circular cross section. The 2-D model is a rectangular strip whose y-dimension extends from the axis
of symmetry to the outer surface, and whose x-dimension extends over the actual length of the rod.

thermalmodel = createpde('thermal','transient');

g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);

Specify the thermal conductivity as a linear function of temperature, k = 40 + 0 . 003T.

k = @(location,state)40 + 0.003*state.u;

Specify the specific heat as a linear function of the y-coordinate, cp = 500y.

cp = @(location,state)500*location.y;

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',k,...
 'MassDensity',2.7*10^(-6),...
 'SpecificHeat',cp)

ans =
 ThermalMaterialAssignment with properties:

 RegionType: 'face'
 RegionID: 1
 ThermalConductivity: @(location,state)40+0.003*state.u
 MassDensity: 2.7000e-06
 SpecificHeat: @(location,state)500*location.y

Input Arguments
thermalmodel — Thermal model
ThermalModel object

Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh,
thermal properties of the material, internal heat source, boundary conditions, and initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

RegionType — Geometric region type
'Face' for a 2-D model | 'Cell' for a 3-D model

Geometric region type, specified as 'Face' or 'Cell'.
Example: thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100)
Data Types: char | string

 thermalProperties

5-1245

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: thermalProperties(thermalmodel,'Cell',1:3,'ThermalConductivity',100)
Data Types: double

TCval — Thermal conductivity of the material
positive number | matrix | function handle

Thermal conductivity of the material, specified as a positive number, a matrix, or a function handle.
You can specify thermal conductivity for a steady-state or transient model. In case of orthotropic
thermal conductivity, use a thermal conductivity matrix.

Use a function handle to specify the thermal conductivity that depends on space, time, or
temperature. For details, see “More About” on page 5-1247.
Example: thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100) or
thermalProperties(thermalmodel,'ThermalConductivity',[80;10;80]) for orthotropic
thermal conductivity
Data Types: double | function_handle

MDval — Mass density of the material
positive number | function handle

Mass density of the material, specified as a positive number or a function handle. Specify this
property for a transient thermal conduction analysis model.

Use a function handle to specify the mass density that depends on space, time, or temperature. For
details, see “More About” on page 5-1247.
Example:
thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100,'MassDensit
y',2730e-9,'SpecificHeat',910)

Data Types: double | function_handle

SHval — Specific heat of the material
positive number | function handle

Specific heat of the material, specified as a positive number or a function handle. Specify this
property for a transient thermal conduction analysis model.

Use a function handle to specify the specific heat that depends on space, time, or temperature. For
details, see “More About” on page 5-1247.
Example:
thermalProperties(thermalmodel,'Cell',1,'ThermalConductivity',100,'MassDensit
y',2730e-9,'SpecificHeat',910)

Data Types: double | function_handle

5 Functions

5-1246

Output Arguments
mtl — Handle to material properties
ThermalMaterialAssignment object

Handle to material properties, returned as a ThermalMaterialAssignment object. See
ThermalMaterialAssignment Properties.

mtl associates material properties with the geometric region.

More About
Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature,
and time:

• Thermal conductivity of the material
• Mass density of the material
• Specific heat of the material
• Internal heat source
• Temperature on the boundary
• Heat flux through the boundary
• Convection coefficient on the boundary
• Radiation emissivity coefficient on the boundary
• Initial temperature (can depend on space only)

For example, use function handles to specify the thermal conductivity, internal heat source,
convection coefficient, and initial temperature for this model.

thermalProperties(model,'ThermalConductivity', ...
 @myfunConductivity)
internalHeatSource(model,'Face',2,@myfunHeatSource)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfunBC, ...
 'AmbientTemperature',27)
thermalIC(model,@myfunIC)

For all parameters, except the initial temperature, the function must be of the form:

function thermalVal = myfun(location,state)

For the initial temperature the function must be of the form:

function thermalVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial temperature). To use additional
arguments in your function, wrap your function (that takes additional arguments) with an anonymous
function that takes only the location and state arguments. For example:

 thermalProperties

5-1247

thermalVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
thermalBC(model,'Edge',3,'Temperature',thermalVal)

thermalVal = @(location) myfunWithAdditionalArgs(location,arg1,arg2...)
thermalIC(model,thermalVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points
• state — A structure containing these fields for transient or nonlinear problems:

• state.u — Temperatures at the corresponding points of the location structure
• state.ux — Estimates of the x-component of temperature gradients at the corresponding

points of the location structure
• state.uy — Estimates of the y-component of temperature gradients at the corresponding

points of the location structure
• state.uz — For a 3-D or an axisymmetric geometry, estimates of the z-component of

temperature gradients at the corresponding points of the location structure
• state.ur — For an axisymmetric geometry, estimates of the r-component of temperature

gradients at the corresponding points of the location structure
• state.time — Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat
source get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID
• state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation
emissivity coefficient) get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.u, state.time

Initial temperature gets the following data from the solver:

5 Functions

5-1248

• location.x, location.y, location.z, location.r
• Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector
thermalVal with the number of columns equal to the number of evaluation points, for example, M =
length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal
to 1, Ndim, Ndim*(Ndim+1)/2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D
problems. The number of columns must equal the number of evaluation points, for example, M =
length(location.y). For details about dimensions of the matrix, see “c Coefficient for
specifyCoefficients” on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of
the correct size when state.u or state.time are NaN. Solvers check whether a problem is time
dependent by passing NaN state values and looking for returned NaN values.

See Also
internalHeatSource | specifyCoefficients | ThermalMaterialAssignment Properties

Topics
“Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux” on page 3-243

Introduced in R2017a

 thermalProperties

5-1249

translate
Package: pde

Translate geometry

Syntax
translate(g,s)
h = translate(g,s)

Description
translate(g,s) translates the geometry g by the distance s.

h = translate(g,s) returns a handle h to the resulting geometry object g. If the original
geometry is a DiscreteGeometry object, then the function modifies the original geometry and
returns the handle h to the modified DiscreteGeometry geometry object. If the original geometry is
an AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In
this case, the original geometry remains unchanged.

Examples

Move 2-D Geometry Along Coordinate Axes

Translate a geometry by different distances along the x- and y-axes.

Create a model.

model = createpde;

Import and plot a geometry.

g = importGeometry(model,'PlateHolePlanar.stl');
pdegplot(g)

5 Functions

5-1250

Mesh the geometry and plot the mesh.

generateMesh(model);

figure
pdemesh(model)

 translate

5-1251

Translate the 2-D geometry by 1 along the x-axis and by 2 along the y-axis. Plot the result.

translate(g,[1 2]);
pdegplot(g)

5 Functions

5-1252

Plot the geometry and mesh. The translate function modifies a geometry, but it does not modify a
mesh.

figure
pdegplot(g)
hold on
pdemesh(model)

 translate

5-1253

After modifying the geometry, always regenerate the mesh.

generateMesh(model);

figure
pdegplot(g)
hold on
pdemesh(model)

5 Functions

5-1254

Input Arguments
g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

s — Translation distance
vector of two or three nonzero real numbers

Translation distance, specified as a vector of two or three real numbers. The distance is a vector of
two elements for a 2-D geometry or three elements for a 3-D geometry. The elements specify the
distance along the x-, y-, and, for a 3-D geometry, z-axes.

Output Arguments
h — Resulting geometry
handle

Resulting geometry, returned as a handle. If the original geometry g is a DiscreteGeometry object,
then h is a handle to the modified DiscreteGeometry geometry object g. If g is an
AnalyticGeometry object, then h is a handle to a new DiscreteGeometry geometry object. In this
case, the original geometry g remains unchanged.

 translate

5-1255

Tips
• translate modifies a geometry, but it does not modify a mesh. After modifying a geometry,

regenerate the mesh to ensure a proper mesh association with the new geometry.
• If g is an AnalyticGeometry object, and you want to replace it with the resulting discrete

geometry, assign the output to the original geometry, for example, g = translate(g,[1 2]).

See Also
rotate | scale | AnalyticGeometry Properties | DiscreteGeometry Properties | pdegplot |
importGeometry | geometryFromMesh | generateMesh

Introduced in R2020a

5 Functions

5-1256

TimeDependentResults
Time-dependent PDE solution and derived quantities

Description
A TimeDependentResults object contains the solution of a PDE and its gradients in a form
convenient for plotting and postprocessing.

• A TimeDependentResults object contains the solution and its gradient calculated at the nodes
of the triangular or tetrahedral mesh, generated by generateMesh.

• Solution values at the nodes appear in the NodalSolution property.
• The solution times appear in the SolutionTimes property.
• The three components of the gradient of the solution values at the nodes appear in the

XGradients, YGradients, and ZGradients properties.
• The array dimensions of NodalSolution, XGradients, YGradients, and ZGradients enable

you to extract solution and gradient values for specified time indices, and for the equation indices
in a PDE system.

To interpolate the solution or its gradient to a custom grid (for example, specified by meshgrid), use
interpolateSolution or evaluateGradient.

Creation
There are several ways to create a TimeDependentResults object:

• Solve a time-dependent problem using the solvepde function. This function returns a PDE
solution as a TimeDependentResults object. This is the recommended approach.

• Solve a time-dependent problem using the parabolic or hyperbolic function. Then use the
createPDEResults function to obtain a TimeDependentResults object from a PDE solution
returned by parabolic or hyperbolic. Note that parabolic and hyperbolic are legacy
functions. They are not recommended for solving PDE problems.

Properties
Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as a FEMesh object.

NodalSolution — Solution values at the nodes
vector | array

Solution values at the nodes, returned as a vector or array. For details about the dimensions of
NodalSolution, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double
Complex Number Support: Yes

 TimeDependentResults

5-1257

SolutionTimes — Solution times
real vector

Solution times, returned as a real vector. SolutionTimes is the same as the tlist input to
solvepde, or the tlist input to the legacy parabolic or hyperbolic solvers.
Data Types: double

XGradients — x-component of gradient at the nodes
vector | array

x-component of the gradient at the nodes, returned as a vector or array. For details about the
dimensions of XGradients, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double
Complex Number Support: Yes

YGradients — y-component of gradient at the nodes
vector | array

y-component of the gradient at the nodes, returned as a vector or array. For details about the
dimensions of YGradients, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double
Complex Number Support: Yes

ZGradients — z-component of gradient at the nodes
vector | array

z-component of the gradient at the nodes, returned as a vector or array. For details about the
dimensions of ZGradients, see “Dimensions of Solutions, Gradients, and Fluxes” on page 3-329.
Data Types: double

Object Functions
evaluateCGradient Evaluate flux of PDE solution
evaluateGradient Evaluate gradients of PDE solutions at arbitrary points
interpolateSolution Interpolate PDE solution to arbitrary points

Examples

Solution of a Parabolic Problem

Solve a parabolic problem with 2-D geometry.

Create and view the geometry: a square with a circular subdomain.

% Square centered at (1,1)
rect1 = [3;4;0;2;2;0;0;0;2;2];
% Circle centered at (1.5,0.5)
circ1 = [1;1.5;.75;0.25];
% Append extra zeros to the circle
circ1 = [circ1;zeros(length(rect1)-length(circ1),1)];
gd = [rect1,circ1];
ns = char('rect1','circ1');

5 Functions

5-1258

ns = ns';
sf = 'rect1+circ1';
[dl,bt] = decsg(gd,sf,ns);
pdegplot(dl,'EdgeLabels','on','FaceLabels','on')
axis equal
ylim([-0.1,2.1])

Include the geometry in a PDE model.

model = createpde();
geometryFromEdges(model,dl);

Set boundary conditions that the upper and left edges are at temperature 10.

applyBoundaryCondition(model,'dirichlet','Edge',[2,3],'u',10);

Set initial conditions that the square region is at temperature 0, and the circle is at temperature 100.

setInitialConditions(model,0);
setInitialConditions(model,100,'Face',2);

Define the model coefficients.

specifyCoefficients(model,'m',0,'d',1,'c',1,'a',0,'f',0);

Solve the problem for times 0 through 1/2 in steps of 0.01.

 TimeDependentResults

5-1259

generateMesh(model,'Hmax',0.05);
tlist = 0:0.01:0.5;
results = solvepde(model,tlist);

Plot the solution for times 0.02, 0.04, 0.1, and 0.5.

sol = results.NodalSolution;
subplot(2,2,1)
pdeplot(model,'XYData',sol(:,3))
title('Time 0.02')
subplot(2,2,2)
pdeplot(model,'XYData',sol(:,5))
title('Time 0.04')
subplot(2,2,3)
pdeplot(model,'XYData',sol(:,11))
title('Time 0.1')
subplot(2,2,4)
pdeplot(model,'XYData',sol(:,51))
title('Time 0.5')

See Also
interpolateSolution | evaluateGradient | evaluateCGradient | EigenResults |
StationaryResults

Topics
“Heat Transfer in Block with Cavity” on page 3-231

5 Functions

5-1260

“Wave Equation on Square Domain” on page 3-271
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

 TimeDependentResults

5-1261

TransientThermalResults
Transient thermal solution and derived quantities

Description
A TransientThermalResults object contains the temperature and gradient values in a form
convenient for plotting and postprocessing.

The temperature and its gradient are calculated at the nodes of the triangular or tetrahedral mesh
generated by generateMesh. Temperature values at the nodes appear in the Temperature property.
The solution times appear in the SolutionTimes property. The three components of the temperature
gradient at the nodes appear in the XGradients, YGradients, and ZGradients properties. You can
extract solution and gradient values for specified time indices from Temperature, XGradients,
YGradients, and ZGradients.

To interpolate the temperature or its gradient to a custom grid (for example, specified by meshgrid),
use interpolateTemperature or evaluateTemperatureGradient.

To evaluate heat flux of a thermal solution at nodal or arbitrary spatial locations, use
evaluateHeatFlux. To evaluate integrated heat flow rate normal to a specified boundary, use
evaluateHeatRate.

Creation
Solve a transient thermal problem using the solve function. This function returns a transient
thermal solution as a TransientThermalResults object.

Properties
All Transient Thermal Models

Mesh — Finite element mesh
FEMesh object

Finite element mesh, returned as an FEMesh object.

Temperature — Temperature values at nodes
vector | matrix

Temperature values at nodes, returned as a vector or matrix.
Data Types: double

SolutionTimes — Solution times
real vector

Solution times, returned as a real vector. SolutionTimes is the same as the tlist input to solve.
Data Types: double

5 Functions

5-1262

Non-Axisymmetric Models

XGradients — x-component of temperature gradient at nodes
vector | matrix

x-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

YGradients — y-component of temperature gradient at nodes
vector | matrix

y-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

ZGradients — z-component of temperature gradient at nodes
vector | matrix

z-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

Axisymmetric Models

RGradients — r-component of temperature gradient at nodes
vector | matrix

r-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

ZGradients — z-component of temperature gradient at nodes for axisymmetric model
vector | matrix

z-component of the temperature gradient at nodes, returned as a vector or matrix.
Data Types: double

Object Functions
evaluateHeatFlux Evaluate heat flux of a thermal solution at nodal or arbitrary spatial

locations
evaluateHeatRate Evaluate integrated heat flow rate normal to specified boundary
evaluateTemperatureGradient Evaluate temperature gradient of a thermal solution at arbitrary

spatial locations
interpolateTemperature Interpolate temperature in a thermal result at arbitrary spatial

locations

Examples

Solution to Transient Thermal Model

Solve a 2-D transient thermal problem.

Create a transient thermal model for this problem.

 TransientThermalResults

5-1263

thermalmodel = createpde('thermal','transient');

Create the geometry and include it in the model.

SQ1 = [3; 4; 0; 3; 3; 0; 0; 0; 3; 3];
D1 = [2; 4; 0.5; 1.5; 2.5; 1.5; 1.5; 0.5; 1.5; 2.5];
gd = [SQ1 D1];
sf = 'SQ1+D1';
ns = char('SQ1','D1');
ns = ns';
dl = decsg(gd,sf,ns);
geometryFromEdges(thermalmodel,dl);
pdegplot(thermalmodel,'EdgeLabels','on','FaceLabels','on')
xlim([-1.5 4.5])
ylim([-0.5 3.5])
axis equal

For the square region, assign these thermal properties:

• Thermal conductivity is 10 W/ m ⋅∘ C
• Mass density is 2 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅ ∘C

thermalProperties(thermalmodel,'ThermalConductivity',10, ...
 'MassDensity',2, ...
 'SpecificHeat',0.1, ...
 'Face',1);

5 Functions

5-1264

For the diamond region, assign these thermal properties:

• Thermal conductivity is 2 W/ m ⋅∘ C
• Mass density is 1 kg/m3

• Specific heat is 0 . 1 J/ kg ⋅ ∘C

thermalProperties(thermalmodel,'ThermalConductivity',2, ...
 'MassDensity',1, ...
 'SpecificHeat',0.1, ...
 'Face',2);

Assume that the diamond-shaped region is a heat source with a density of 4 W/m2.

internalHeatSource(thermalmodel,4,'Face',2);

Apply a constant temperature of 0 ∘C to the sides of the square plate.

thermalBC(thermalmodel,'Temperature',0,'Edge',[1 2 7 8]);

Set the initial temperature to 0 °C.

thermalIC(thermalmodel,0);

Generate the mesh.

generateMesh(thermalmodel);

The dynamics for this problem are very fast. The temperature reaches a steady state in about 0.1
seconds. To capture the interesting part of the dynamics, set the solution time to
logspace(-2,-1,10). This command returns 10 logarithmically spaced solution times between
0.01 and 0.1.

tlist = logspace(-2,-1,10);

Solve the equation.

thermalresults = solve(thermalmodel,tlist);

Plot the solution with isothermal lines by using a contour plot.

T = thermalresults.Temperature;
pdeplot(thermalmodel,'XYData',T(:,10),'Contour','on','ColorMap','hot')

 TransientThermalResults

5-1265

Solution to Transient Axisymmetric Model

Analyze heat transfer in a rod with a circular cross-section and internal heat generation by
simplifying a 3-D axisymmetric model to a 2-D model.

Create a transient thermal model for solving an axisymmetric problem.

thermalmodel = createpde('thermal','transient-axisymmetric');

The 2-D model is a rectangular strip whose x-dimension extends from the axis of symmetry to the
outer surface and whose y-dimension extends over the actual length of the rod (from -1.5 m to 1.5
m). Create the geometry by specifying the coordinates of its four corners. For axisymmetric models,
the toolbox assumes that the axis of rotation is the vertical axis passing through r = 0.

g = decsg([3 4 0 0 .2 .2 -1.5 1.5 1.5 -1.5]');

Include the geometry in the model.

geometryFromEdges(thermalmodel,g);

Plot the geometry with the edge labels.

figure
pdegplot(thermalmodel,'EdgeLabels','on')
axis equal

5 Functions

5-1266

The rod is composed of a material with these thermal properties.

k = 40; % thermal conductivity, W/(m*C)
rho = 7800; % density, kg/m^3
cp = 500; % specific heat, W*s/(kg*C)
q = 20000; % heat source, W/m^3

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel,'ThermalConductivity',k,...
 'MassDensity',rho,...
 'SpecificHeat',cp);

Specify internal heat source and boundary conditions.

internalHeatSource(thermalmodel,q);

Define the boundary conditions. There is no heat transferred in the direction normal to the axis of
symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is
kept at a constant temperature T = 100 °C.

thermalBC(thermalmodel,'Edge',2,'Temperature',100);

Specify the convection boundary condition on the outer boundary (edge 3). The surrounding
temperature at the outer boundary is 100 °C, and the heat transfer coefficient is 50 W/ m ⋅∘ C .

 TransientThermalResults

5-1267

thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',50,...
 'AmbientTemperature',100);

The heat flux at the bottom of the rod (edge 4) is 5000 W/m2.

thermalBC(thermalmodel,'Edge',4,'HeatFlux',5000);

Specify that the Initial temperature in the rod is zero.

thermalIC(thermalmodel,0);

Generate the mesh.

generateMesh(thermalmodel);

Compute the transient solution for solution times from t = 0 to t = 50000 seconds.

tfinal = 50000;
tlist = 0:100:tfinal;
result = solve(thermalmodel,tlist);

Plot the temperature distribution at t = 50000 seconds.

T = result.Temperature;

figure
pdeplot(thermalmodel,'XYData',T(:,end), ...
 'Contour','on')
axis equal
title(sprintf(['Transient Temperature ' ...
 'at Final Time (%g seconds)'],tfinal))

5 Functions

5-1268

See Also
evaluateHeatFlux | evaluateHeatRate | evaluateTemperatureGradient |
interpolateTemperature | SteadyStateThermalResults

Introduced in R2017a

 TransientThermalResults

5-1269

thermalBC
Package: pde

Specify boundary conditions for a thermal model

Syntax
thermalBC(thermalmodel,RegionType,RegionID,'Temperature',Tval)
thermalBC(thermalmodel,RegionType,RegionID,'HeatFlux',HFval)
thermalBC(thermalmodel,RegionType,RegionID,'ConvectionCoefficient',
CCval,'AmbientTemperature',ATval)
thermalBC(thermalmodel,RegionType,RegionID,'Emissivity',
REval,'AmbientTemperature',ATval)
thermalBC(___ ,'Label',labeltext)
thermalBC = thermalBC(___)

Description
thermalBC(thermalmodel,RegionType,RegionID,'Temperature',Tval) adds a temperature
boundary condition to thermalmodel. The boundary condition applies to regions of type
RegionType with ID numbers in RegionID.

thermalBC(thermalmodel,RegionType,RegionID,'HeatFlux',HFval) adds a heat flux
boundary condition to thermalmodel. The boundary condition applies to regions of type
RegionType with ID numbers in RegionID.

Note Use thermalBC with the HeatFlux parameter to specify a heat flux to or from an external
source. To specify internal heat generation, that is, heat sources that belong to the geometry of the
model, use internalHeatSource.

thermalBC(thermalmodel,RegionType,RegionID,'ConvectionCoefficient',
CCval,'AmbientTemperature',ATval) adds a convection boundary condition to thermalmodel.
The boundary condition applies to regions of type RegionType with ID numbers in RegionID.

thermalBC(thermalmodel,RegionType,RegionID,'Emissivity',
REval,'AmbientTemperature',ATval) adds a radiation boundary condition to thermalmodel.
The boundary condition applies to regions of type RegionType with ID numbers in RegionID.

thermalBC(___ ,'Label',labeltext) adds a label for the thermal boundary condition to be
used by the linearizeInput function. This function lets you pass thermal boundary conditions to
the linearize function that extracts sparse linear models for use with Control System Toolbox.

thermalBC = thermalBC(___) returns the thermal boundary condition object.

Examples

5 Functions

5-1270

Specify Temperature on the Boundary

Apply temperature boundary condition on two edges of a square.

thermalmodel = createpde('thermal');
geometryFromEdges(thermalmodel,@squareg);
thermalBC(thermalmodel,'Edge',[1,3],'Temperature',100)

ans =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: [1 3]
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

Specify Heat Coming Through the Boundary

Apply heat flux boundary condition on two faces of a block.

thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'Block.stl');
thermalBC(thermalmodel,'Face',[1,3],'HeatFlux',20)

ans =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: [1 3]
 Temperature: []
 HeatFlux: 20
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

Specify Convection on the Boundary

Apply convection boundary condition on four faces of a block.

thermalModel = createpde('thermal','transient');
gm = importGeometry(thermalModel,'Block.stl');
thermalBC(thermalModel,'Face',[2 4 5 6], ...
 'ConvectionCoefficient',5, ...
 'AmbientTemperature',27)

 thermalBC

5-1271

ans =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: [2 4 5 6]
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: 5
 Emissivity: []
 AmbientTemperature: 27
 Vectorized: 'off'
 Label: []

Specify Radiation Through the Boundary

Apply radiation boundary condition on four faces of a block.

thermalmodel = createpde('thermal','transient');
gm = importGeometry(thermalmodel,'Block.stl');
thermalmodel.StefanBoltzmannConstant = 5.670373E-8;
thermalBC(thermalmodel,'Face',[2,4,5,6],...
 'Emissivity',0.1,...
 'AmbientTemperature',300)

ans =
 ThermalBC with properties:

 RegionType: 'Face'
 RegionID: [2 4 5 6]
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: 0.1000
 AmbientTemperature: 300
 Vectorized: 'off'
 Label: []

Specify Nonconstant Thermal Boundary Conditions

Use function handles to specify thermal boundary conditions that depend on coordinates.

Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a
circular cross section. The 2-D model is a rectangular strip whose y-dimension extends from the axis
of symmetry to the outer surface, and whose x-dimension extends over the actual length of the rod.

thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);

Plot the geometry.

5 Functions

5-1272

figure
pdegplot(thermalmodel,'EdgeLabels','on');
xlim([-2 2]);
ylim([-2 2]);
title 'Rod Section Geometry with Edge Labels';

Assume that there is a heat source at the left end of the rod and a fixed temperature at the right end.
The outer surface of the rod exchanges heat with the environment due to convection.

Define the boundary conditions for the model. The edge at y = 0 (edge 1) is along the axis of
symmetry. No heat is transferred in the direction normal to this edge. This boundary is modeled as an
insulated boundary, by default.

The temperature at the right end of the rod (edge 2) is a fixed temperature, T = 100 C. Specify the
boundary condition for edge 2 as follows.

thermalBC(thermalmodel,'Edge',2,'Temperature',100)

ans =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: 2
 Temperature: 100
 HeatFlux: []
 ConvectionCoefficient: []
 Emissivity: []

 thermalBC

5-1273

 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

The convection coefficient for the outer surface of the rod (edge 3) depends on the y-coordinate, 50y.
Specify the boundary condition for this edge as follows.

outerCC = @(location,~) 50*location.y;
thermalBC(thermalmodel,'Edge',3,...
 'ConvectionCoefficient',outerCC,...
 'AmbientTemperature',100)

ans =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: 3
 Temperature: []
 HeatFlux: []
 ConvectionCoefficient: @(location,~)50*location.y
 Emissivity: []
 AmbientTemperature: 100
 Vectorized: 'off'
 Label: []

The heat flux at the left end of the rod (edge 4) is also a function of the y-coordinate, 5000y. Specify
the boundary condition for this edge as follows.

leftHF = @(location,~) 5000*location.y;
thermalBC(thermalmodel,'Edge',4,'HeatFlux',leftHF)

ans =
 ThermalBC with properties:

 RegionType: 'Edge'
 RegionID: 4
 Temperature: []
 HeatFlux: @(location,~)5000*location.y
 ConvectionCoefficient: []
 Emissivity: []
 AmbientTemperature: []
 Vectorized: 'off'
 Label: []

Input Arguments
thermalmodel — Thermal model
ThermalModel object

Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh,
thermal properties of the material, internal heat source, boundary conditions, and initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

5 Functions

5-1274

RegionType — Geometric region type
'Edge' for a 2-D model | 'Face' for a 3-D model

Geometric region type, specified as 'Edge' or 'Face'.
Example: thermalBC(thermalmodel,'Face',1,'Temperature',72)
Data Types: char

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot with the 'FaceLabels' (3-D) or 'EdgeLabels' (2-D) value set to 'on'.
Example: thermalBC(thermalmodel,'Edge',2:5,'Temperature',72)
Data Types: double

Tval — Temperature boundary condition
number | function handle

Temperature boundary condition, specified as a number or a function handle. Use a function handle
to specify the temperature that depends on space and time. For details, see “More About” on page 5-
1276.
Example: thermalBC(thermalmodel,'Face',1,'Temperature',72)
Data Types: double | function_handle

HFval — Heat flux boundary condition
number | function handle

Heat flux boundary condition, specified as a number or a function handle. Use a function handle to
specify the heat flux that depends on space and time. For details, see “More About” on page 5-1276.
Example: thermalBC(thermalmodel,'Face',[1,3],'HeatFlux',20)
Data Types: double | function_handle

CCval — Coefficient for convection to ambient heat transfer condition
number | function handle

Convection to ambient boundary condition, specified as a number or a function handle. Use a function
handle to specify the convection coefficient that depends on space and time. For details, see “More
About” on page 5-1276.

Specify ambient temperature using the AmbientTemperature argument. The value of
ConvectionCoefficient is positive for heat convection into the ambient environment.
Example: thermalBC(thermalmodel,'Edge',
[2,4],'ConvectionCoefficient',5,'AmbientTemperature',60)

Data Types: double | function_handle

REval — Radiation emissivity coefficient
number in the range (0,1)

 thermalBC

5-1275

Radiation emissivity coefficient, specified as a number in the range (0,1). Use a function handle to
specify the radiation emissivity that depends on space and time. For details, see “More About” on
page 5-1276.

Specify ambient temperature using the AmbientTemperature argument and the Stefan-Boltzmann
constant using the thermal model properties. The value of Emissivity is positive for heat radiation
into the ambient environment.
Example: thermalmodel.StefanBoltzmannConstant = 5.670373E-8;
thermalBC(thermalmodel,'Edge',
[2,4,5,6],'Emissivity',0.1,'AmbientTemperature',300)

Data Types: double | function_handle

ATval — Ambient temperature
number

Ambient temperature, specified as a number. The ambient temperature value is required for
specifying convection and radiation boundary conditions.
Example: thermalBC(thermalmodel,'Edge',
[2,4],'ConvectionCoefficient',5,'AmbientTemperature',60)

Data Types: double

labeltext — Label for thermal boundary condition
character vector | string

Label for the thermal boundary condition, specified as a character vector or a string.
Data Types: char | string

Output Arguments
thermalBC — Handle to thermal boundary condition
ThermalBC object

Handle to thermal boundary condition, returned as a ThermalBC object. See ThermalBC Properties.

thermalBC associates the thermal boundary condition with the geometric region.

More About
Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature,
and time:

• Thermal conductivity of the material
• Mass density of the material
• Specific heat of the material
• Internal heat source
• Temperature on the boundary

5 Functions

5-1276

• Heat flux through the boundary
• Convection coefficient on the boundary
• Radiation emissivity coefficient on the boundary
• Initial temperature (can depend on space only)

For example, use function handles to specify the thermal conductivity, internal heat source,
convection coefficient, and initial temperature for this model.

thermalProperties(model,'ThermalConductivity', ...
 @myfunConductivity)
internalHeatSource(model,'Face',2,@myfunHeatSource)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfunBC, ...
 'AmbientTemperature',27)
thermalIC(model,@myfunIC)

For all parameters, except the initial temperature, the function must be of the form:

function thermalVal = myfun(location,state)

For the initial temperature the function must be of the form:

function thermalVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial temperature). To use additional
arguments in your function, wrap your function (that takes additional arguments) with an anonymous
function that takes only the location and state arguments. For example:

thermalVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
thermalBC(model,'Edge',3,'Temperature',thermalVal)

thermalVal = @(location) myfunWithAdditionalArgs(location,arg1,arg2...)
thermalIC(model,thermalVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points

 thermalBC

5-1277

• state — A structure containing these fields for transient or nonlinear problems:

• state.u — Temperatures at the corresponding points of the location structure
• state.ux — Estimates of the x-component of temperature gradients at the corresponding

points of the location structure
• state.uy — Estimates of the y-component of temperature gradients at the corresponding

points of the location structure
• state.uz — For a 3-D or an axisymmetric geometry, estimates of the z-component of

temperature gradients at the corresponding points of the location structure
• state.ur — For an axisymmetric geometry, estimates of the r-component of temperature

gradients at the corresponding points of the location structure
• state.time — Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat
source get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID
• state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation
emissivity coefficient) get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.u, state.time

Initial temperature gets the following data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector
thermalVal with the number of columns equal to the number of evaluation points, for example, M =
length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal
to 1, Ndim, Ndim*(Ndim+1)/2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D
problems. The number of columns must equal the number of evaluation points, for example, M =
length(location.y). For details about dimensions of the matrix, see “c Coefficient for
specifyCoefficients” on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of
the correct size when state.u or state.time are NaN. Solvers check whether a problem is time
dependent by passing NaN state values and looking for returned NaN values.

See Also
thermalProperties | internalHeatSource | thermalIC | applyBoundaryCondition |
ThermalBC Properties

5 Functions

5-1278

Topics
“Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux” on page 3-243

Introduced in R2017a

 thermalBC

5-1279

thermalIC
Package: pde

Set initial conditions or initial guess for a thermal model

Syntax
thermalIC(thermalmodel,T0)
thermalIC(thermalmodel,T0,RegionType,RegionID)
thermalIC(thermalmodel,Tresults)
thermalIC(thermalmodel,Tresults,iT)
thermalIC = thermalIC(___)

Description
thermalIC(thermalmodel,T0) sets initial temperature or initial guess for temperature to the
entire geometry.

thermalIC(thermalmodel,T0,RegionType,RegionID) sets initial temperature or initial guess
for temperature to a particular geometry region.

thermalIC(thermalmodel,Tresults) sets initial temperature or initial guess for temperature
using the solution Tresults from a previous thermal analysis on the same geometry and mesh. If
Tresults is obtained by solving a transient thermal problem, thermalIC uses the solution
Tresults for the last time-step.

thermalIC(thermalmodel,Tresults,iT) sets initial temperature or initial guess for temperature
using the solution Tresults for the time-step iT from a previous thermal analysis on the same
geometry and mesh.

thermalIC = thermalIC(___), for any previous syntax, returns a handle to the thermal initial
conditions object.

Examples

Constant Initial Temperature

Create a thermal model, import geometry, and set the initial temperature to 0 on the entire geometry.

thermalModel = createpde('thermal','transient');
geometryFromEdges(thermalModel,@lshapeg);
thermalIC(thermalModel,0)

ans =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: [1 2 3]
 InitialTemperature: 0

5 Functions

5-1280

Different Initial Temperatures on Subdomains

Set different initial conditions on each portion of the L-shaped membrane geometry.

Create a model and include a 2-D geometry.

thermalModel = createpde('thermal','transient');
geometryFromEdges(thermalModel,@lshapeg);
pdegplot(thermalModel,'FaceLabels','on')
axis equal
ylim([-1.1 1.1])

Set initial conditions.

thermalIC(thermalModel,0,'Face',1)

ans =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 1
 InitialTemperature: 0

thermalIC(thermalModel,10,'Face',2)

 thermalIC

5-1281

ans =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 2
 InitialTemperature: 10

thermalIC(thermalModel,75,'Face',3)

ans =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 3
 InitialTemperature: 75

Nonconstant Initial Temperature

Use a function handle to specify an initial temperature that depends on coordinates.

Create a thermal model for transient analysis and include the geometry. The geometry is a rod with a
circular cross section. The 2-D model is a rectangular strip whose y-dimension extends from the axis
of symmetry to the outer surface, and whose x-dimension extends over the actual length of the rod.

thermalmodel = createpde('thermal','transient');
g = decsg([3 4 -1.5 1.5 1.5 -1.5 0 0 .2 .2]');
geometryFromEdges(thermalmodel,g);

Set the initial temperature in the rod to be dependent on the y-coordinate, for example,
103 0 . 2 − y2 .

T0 = @(location)10^3*(0.2 - location.y.^2);
thermalIC(thermalmodel,T0)

ans =
 GeometricThermalICs with properties:

 RegionType: 'face'
 RegionID: 1
 InitialTemperature: @(location)10^3*(0.2-location.y.^2)

Initial Condition as Previously Obtained Solution

Create a thermal model and include a square geometry.

thermalmodel = createpde('thermal','transient');
geometryFromEdges(thermalmodel,@squareg);
pdegplot(thermalmodel,'FaceLabels','on')
ylim([-1.1,1.1])
axis equal

5 Functions

5-1282

Specify material properties and internal heat source, and set boundary conditions and initial
conditions.

thermalProperties(thermalmodel, ...
 'ThermalConductivity',40,...
 'MassDensity',7800,...
 'SpecificHeat',500);

internalHeatSource(thermalmodel,2);
thermalBC(thermalmodel,'Edge',[1,3], ...
 'Temperature',100);
thermalIC(thermalmodel,0);

Generate mesh, solve the problem, and plot the solution.

generateMesh(thermalmodel);
tlist = 0:10:100;
result1 = solve(thermalmodel,tlist);
pdeplot(thermalmodel,'XYData',result1.Temperature(:,end))

 thermalIC

5-1283

Now, resume the analysis and solve the problem for times from 100 to 1000 seconds. Use the
previously obtained solution for 100 seconds as an initial condition. Since 10 seconds is the last
element in tlist, you do not need to specify the solution time index. By default, thermalIC uses the
last solution index.

thermalIC(thermalmodel,result1);

Solve the problem and plot the solution.

result2 = solve(thermalmodel,100:100:1000);
pdeplot(thermalmodel,'XYData',result2.Temperature(:,end))

5 Functions

5-1284

To use the previously obtained solution for a particular solution time instead of the last one, specify
the solution time index as a third parameter of thermalIC. For example, use the solution at time 50
seconds, which is the 6th element in tlist.

tlist(6)

ans = 50

thermalIC(thermalmodel,result1,6);

result2 = solve(thermalmodel,50:100:1000);
pdeplot(thermalmodel,'XYData',result2.Temperature(:,end))

 thermalIC

5-1285

Input Arguments
thermalmodel — Thermal model
ThermalModel object

Thermal model, specified as a ThermalModel object. The model contains the geometry, mesh,
thermal properties of the material, internal heat source, boundary conditions, and initial conditions.
Example: thermalmodel = createpde('thermal','steadystate')

T0 — Initial temperature or initial guess for temperature
number | function handle

Initial temperature or initial guess for temperature, specified as a number or a function handle. Use a
function handle to specify spatially varying initial temperature. For details, see “More About” on page
5-1287.
Data Types: double | function_handle

RegionType — Geometric region type
'Vertex' | 'Edge' | 'Face' | 'Cell' for a 3-D model only

Geometric region type, specified as 'Vertex', 'Edge', 'Face', or 'Cell' for a 3-D model. For a 2-
D model, use 'Vertex', 'Edge', or 'Face'.
Example: thermalIC(thermalmodel,10,'Face',1)

5 Functions

5-1286

Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs by using
pdegplot.
Example: thermalIC(thermalmodel,10,'Edge',2:5)
Data Types: double

Tresults — Thermal model solution
ThermalResults object

Thermal model solution, specified as a ThermalResults object. Create Tresults by using solve.

iT — Time index
positive integer

Time index, specified as a positive integer.
Example: thermalIC(thermalmodel,Tresults,21)
Data Types: double

Output Arguments
thermalIC — Handle to initial condition
GeometricThermalICs object | NodalThermalICs object

Handle to initial condition, returned as a GeometricThermalICs or NodalThermalICs object. See
GeometricThermalICs Properties and NodalThermalICs Properties.

thermalIC associates the thermal initial condition with the geometric region in the case of a
geometric assignment, or the nodes in the case of a results-based assignment.

More About
Specifying Nonconstant Parameters of a Thermal Model

Use a function handle to specify these thermal parameters when they depend on space, temperature,
and time:

• Thermal conductivity of the material
• Mass density of the material
• Specific heat of the material
• Internal heat source
• Temperature on the boundary
• Heat flux through the boundary
• Convection coefficient on the boundary
• Radiation emissivity coefficient on the boundary

 thermalIC

5-1287

• Initial temperature (can depend on space only)

For example, use function handles to specify the thermal conductivity, internal heat source,
convection coefficient, and initial temperature for this model.

thermalProperties(model,'ThermalConductivity', ...
 @myfunConductivity)
internalHeatSource(model,'Face',2,@myfunHeatSource)
thermalBC(model,'Edge',[3,4], ...
 'ConvectionCoefficient',@myfunBC, ...
 'AmbientTemperature',27)
thermalIC(model,@myfunIC)

For all parameters, except the initial temperature, the function must be of the form:

function thermalVal = myfun(location,state)

For the initial temperature the function must be of the form:

function thermalVal = myfun(location)

The solver computes and populates the data in the location and state structure arrays and passes
this data to your function. You can define your function so that its output depends on this data. You
can use any names instead of location and state, but the function must have exactly two
arguments (or one argument if the function specifies the initial temperature). To use additional
arguments in your function, wrap your function (that takes additional arguments) with an anonymous
function that takes only the location and state arguments. For example:

thermalVal = ...
@(location,state) myfunWithAdditionalArgs(location,state,arg1,arg2...)
thermalBC(model,'Edge',3,'Temperature',thermalVal)

thermalVal = @(location) myfunWithAdditionalArgs(location,arg1,arg2...)
thermalIC(model,thermalVal)

• location — A structure containing these fields:

• location.x — The x-coordinate of the point or points
• location.y — The y-coordinate of the point or points
• location.z — For a 3-D or an axisymmetric geometry, the z-coordinate of the point or points
• location.r — For an axisymmetric geometry, the r-coordinate of the point or points

Furthermore, for boundary conditions, the solver passes these data in the location structure:

• location.nx — x-component of the normal vector at the evaluation point or points
• location.ny — y-component of the normal vector at the evaluation point or points
• location.nz — For a 3-D or an axisymmetric geometry, z-component of the normal vector at

the evaluation point or points
• location.nz — For an axisymmetric geometry, z-component of the normal vector at the

evaluation point or points
• state — A structure containing these fields for transient or nonlinear problems:

• state.u — Temperatures at the corresponding points of the location structure

5 Functions

5-1288

• state.ux — Estimates of the x-component of temperature gradients at the corresponding
points of the location structure

• state.uy — Estimates of the y-component of temperature gradients at the corresponding
points of the location structure

• state.uz — For a 3-D or an axisymmetric geometry, estimates of the z-component of
temperature gradients at the corresponding points of the location structure

• state.ur — For an axisymmetric geometry, estimates of the r-component of temperature
gradients at the corresponding points of the location structure

• state.time — Time at evaluation points

Thermal material properties (thermal conductivity, mass density, and specific heat) and internal heat
source get these data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID
• state.u, state.ux, state.uy, state.uz, state.r, state.time

Boundary conditions (temperature on the boundary, heat flux, convection coefficient, and radiation
emissivity coefficient) get these data from the solver:

• location.x, location.y, location.z, location.r
• location.nx, location.ny, location.nz, location.nr
• state.u, state.time

Initial temperature gets the following data from the solver:

• location.x, location.y, location.z, location.r
• Subdomain ID

For all thermal parameters, except for thermal conductivity, your function must return a row vector
thermalVal with the number of columns equal to the number of evaluation points, for example, M =
length(location.y).

For thermal conductivity, your function must return a matrix thermalVal with number of rows equal
to 1, Ndim, Ndim*(Ndim+1)/2, or Ndim*Ndim, where Ndim is 2 for 2-D problems and 3 for 3-D
problems. The number of columns must equal the number of evaluation points, for example, M =
length(location.y). For details about dimensions of the matrix, see “c Coefficient for
specifyCoefficients” on page 2-76.

If properties depend on the time or temperature, ensure that your function returns a matrix of NaN of
the correct size when state.u or state.time are NaN. Solvers check whether a problem is time
dependent by passing NaN state values and looking for returned NaN values.

See Also
thermalProperties | internalHeatSource | thermalBC | setInitialConditions |
GeometricThermalICs Properties | NodalThermalICs Properties

Introduced in R2017a

 thermalIC

5-1289

tri2grid
(Not recommended) Interpolate from PDE triangular mesh to rectangular grid

Note tri2grid is not recommended. Use interpolateSolution instead.

Syntax
uxy = tri2grid(p,t,u,x,y)
[uxy,tn,a2,a3] = tri2grid(p,t,u,x,y)
uxy = tri2grid(p,t,u,tn,a2,a3)

Description
uxy = tri2grid(p,t,u,x,y) computes the function values uxy over the grid defined by the
vectors x and y, from the function u with values on the triangular mesh defined by p and t. Values
are computed using linear interpolation in the triangle containing the grid point. The vectors x and y
must be increasing. u must be a vector. For systems of equations, uxy interpolates only the first
component. For solutions returned by hyperbolic or parabolic, pass u as the vector of values at
one time, u(:,k).

[uxy,tn,a2,a3] = tri2grid(p,t,u,x,y) additionally lists the index tn of the triangle
containing each grid point, and interpolation coefficients a2 and a3.

uxy = tri2grid(p,t,u,tn,a2,a3) with tn, a2, and a3 computed in an earlier call to tri2grid,
interpolates using the same grid as in the earlier call. This variant is, however, much faster if several
functions have to be interpolated using the same grid, such as interpolating hyperbolic or parabolic
solutions at multiple times.

All tri2grid output arguments are ny-by-nx matrices, where nx and ny are the lengths of the
vectors x and y respectively. At grid points outside of the triangular mesh, all tri2grid output
arguments are NaN.

See Also
solvepde | interpolateSolution

Introduced before R2006a

5 Functions

5-1290

volume
Package: pde

Volume of 3-D mesh elements

Syntax
V = volume(mesh)
[V,VE] = volume(mesh)
V = volume(mesh,elements)

Description
V = volume(mesh) returns the volume V of the entire mesh.

[V,VE] = volume(mesh) also returns a row vector VE containing volumes of each individual
element of the mesh.

V = volume(mesh,elements) returns the combined volume of the specified elements of the mesh.

Examples

Volume of 3-D Mesh

Generate a 3-D mesh and find its volume.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'BracketWithHole.stl');
pdegplot(model)

 volume

5-1291

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh(model)

5 Functions

5-1292

Compute the volume of the entire mesh.

mv = volume(mesh)

mv = 8.0295e-04

Volume of Individual Elements of 3-D Mesh

Generate a 3-D mesh and find the volume of each element.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'BracketWithHole.stl');
pdegplot(model)

 volume

5-1293

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh(model)

5 Functions

5-1294

Compute the volume of the entire mesh and the volume of each individual element of the mesh.
Display the volumes of the first 5 elements.

[va,vi] = volume(mesh);
vi(1:5)

ans = 1×5
10-6 ×

 0.5427 0.2243 0.4379 0.2740 0.4541

Total Volume of Group of Elements

Find the combined volume of a group of elements of a 3-D mesh.

Create a PDE model.

model = createpde;

Import and plot the geometry.

importGeometry(model,'BracketWithHole.stl');
pdegplot(model)

 volume

5-1295

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh(model)

5 Functions

5-1296

Evaluate the shape quality of the mesh elements and find the elements with the quality values less
than 0.5.

Q = meshQuality(mesh);
elemIDs = find(Q < 0.5);

Compute the total volume of these elements.

mv05 = volume(mesh,elemIDs)

mv05 = 4.2568e-06

Find how much of the total mesh volume belongs to these elements. Return the result as a
percentage.

mv05_percent = mv05/volume(mesh)*100

mv05_percent = 0.5301

Input Arguments
mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.

 volume

5-1297

Example: model.Mesh

elements — Element IDs
positive integer | matrix of positive integers

Element IDs, specified as a positive integer or a matrix of positive integers.
Example: [10 68 81 97 113 130 136 164]

Output Arguments
V — Volume
positive number

Volume of the entire mesh or the combined volume of the specified elements of the mesh, returned as
a positive number.

VE — Volume of individual elements
row vector of positive numbers

Volume of individual elements, returned as a row vector of positive numbers.

See Also
area | findElements | findNodes | meshQuality | FEMesh Properties

Topics
“Finite Element Method Basics” on page 1-11

Introduced in R2018a

5 Functions

5-1298

wbound
(Not recommended) Write boundary condition file

Note wbound is not recommended. Use applyBoundaryCondition instead.

Syntax
fid = wbound(b,filename)

Description
fid = wbound(b,filename) writes a boundary function, specified by the boundary condition
matrix b, to a file with the name filename.m.

Examples

Create Boundary Condition File

Create a 2-D geometry and specify boundary conditions in the PDE Modeler app, export them to the
MATLAB workspace, and then write the boundary conditions to a file.

Start the PDE Modeler app and draw a unit circle and a unit square.

pdecirc(0,0,1)
pderect([0 1 0 1])

Enter C1-SQ1 in the Set formula field.

Use the default Dirichlet boundary condition u = 0 for all boundaries. To verify the boundary
condition, switch to boundary mode by selecting Boundary > Boundary Mode. Use Edit > Select
all to select all boundaries. Select Boundary > Specify Boundary Conditions and verify that the
boundary condition is the Dirichlet condition with h = 1, r = 0.

Export the geometry and the boundary conditions to the MATLAB workspace by selecting the Export
Decomposed Geometry, Boundary Cond's option from the Boundary menu.

Decompose the exported geometry into minimal regions. The result is one minimal region with five
edge segments: three circle edge segments and two line edge segments.

Write the resulting boundary condition matrix to a file. Name the file boundary.m.

fid = wbound(b,"boundary");

Input Arguments
b — Boundary conditions
boundary matrix

 wbound

5-1299

Boundary conditions, specified as a boundary matrix. Typically, you export a boundary matrix from
the PDE Modeler app.
Data Types: double

filename — Geometry file name
string | character vector

Geometry file name, specified as a string or a character vector.
Data Types: char | string

Output Arguments
fid — File identifier
integer | -1

File identifier, returned as an integer. If wbound cannot write the file, fid is -1. For more information
about file identifiers, see fopen.

See Also
decsg | wgeom

Introduced before R2006a

5 Functions

5-1300

wgeom
Write geometry function to file

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow.

Syntax
fid = wgeom(dl,filename)

Description
fid = wgeom(dl,filename) writes a geometry function, specified by the geometry matrix dl, to a
file with the name filename.m. For information about the geometry file format, see “Parametrized
Function for 2-D Geometry Creation” on page 2-10.

Examples

Create Geometry File

Create a 2-D geometry in the PDE Modeler app, export it to the MATLAB workspace, and then write it
to a file.

Start the PDE Modeler app and draw a unit circle and a unit square.

pdecirc(0,0,1)
pderect([0 1 0 1])

Enter C1-SQ1 in the Set formula field.

Export the geometry description matrix, set formula, and name-space matrix to the MATLAB
workspace by selecting the Export Geometry Description option from the Draw menu.

Decompose the exported geometry into minimal regions. The result is one minimal region with five
edge segments: three circle edge segments and two line edge segments.

dl = decsg(gd,sf,ns)

dl =
 2.0000 2.0000 1.0000 1.0000 1.0000
 0 0 -1.0000 0.0000 0.0000
 1.0000 0 0.0000 1.0000 -1.0000
 0 1.0000 -0.0000 -1.0000 1.0000
 0 0 -1.0000 0 -0.0000
 0 0 1.0000 1.0000 1.0000
 1.0000 1.0000 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 1.0000 1.0000 1.0000

 wgeom

5-1301

Write the resulting geometry to a file. Name the file geometry.m.

fid = wgeom(dl,"geometry");

Input Arguments
dl — Decomposed geometry matrix
matrix of double-precision numbers

Decomposed geometry matrix, specified as a matrix of double-precision numbers. It contains a
representation of the decomposed geometry in terms of disjoint minimal regions constructed by the
decsg algorithm. Each edge segment of the minimal regions corresponds to a column in dl. Edge
segments between minimal regions are border segments. Outer boundaries are boundary segments.
In each column, the second and third rows contain the starting and ending x-coordinates. The fourth
and fifth rows contain the corresponding y-coordinates. The sixth and seventh rows contain left and
right minimal region labels with respect to the direction induced by the start and end points
(counterclockwise direction on circle and ellipse segments). There are three types of possible edge
segments in a minimal region:

• For circle edge segments, the first row is 1. The eighth and ninth rows contain the coordinates of
the center of the circle. The 10th row contains the radius.

• For line edge segments, the first row is 2.
• For ellipse edge segments, the first row is 4. The eighth and ninth rows contain the coordinates of

the center of the ellipse. The 10th and 11th rows contain the semiaxes of the ellipse. The 12th row
contains the rotational angle of the ellipse.

All shapes in a decomposed geometry matrix have the same number of rows. Rows that are not
required for a particular shape are filled with zeros.

Row number Circle edge segment Line edge segment Ellipse edge segment
1 1 2 4
2 starting x-coordinate starting x-coordinate starting x-coordinate
3 ending x-coordinate ending x-coordinate ending x-coordinate
4 starting y-coordinate starting y-coordinate starting y-coordinate
5 ending y-coordinate ending y-coordinate ending y-coordinate
6 left minimal region label left minimal region label left minimal region label
7 right minimal region

label
right minimal region
label

right minimal region
label

8 x-coordinate of the
center

 x-coordinate of the
center

9 y-coordinate of the
center

 y-coordinate of the
center

10 radius of the circle x-semiaxis before
rotation

11 y-semiaxis before
rotation

5 Functions

5-1302

Row number Circle edge segment Line edge segment Ellipse edge segment
12 Angle in radians

between x-axis and first
semiaxis

Data Types: double

filename — Geometry file name
string | character vector

Geometry file name, specified as a string or a character vector.
Data Types: char | string

Output Arguments
fid — File identifier
integer | -1

File identifier, returned as an integer. If wgeom cannot write the file, fid is -1. For more information
about file identifiers, see fopen.

See Also
decsg | wbound

Introduced before R2006a

 wgeom

5-1303

	Getting Started
	Partial Differential Equation Toolbox Product Description
	Key Features

	Equations You Can Solve Using PDE Toolbox
	Solve 2-D PDEs Using the PDE Modeler App
	Tips

	Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App
	Finite Element Method Basics
	Deflection Analysis of Bracket
	Heat Transfer in Block with Cavity

	Setting Up Your PDE
	Solve Problems Using PDEModel Objects
	2-D Geometry Creation at Command Line
	Three Elements of Geometry
	Basic Shapes
	Rectangle with Circular End Cap and Another Circular Excision
	Decomposed Geometry Data Structure

	Parametrized Function for 2-D Geometry Creation
	Required Syntax
	Relation Between Parametrization and Region Labels
	Geometry Function for a Circle
	Arc Length Calculations for a Geometry Function
	Geometry Function Example with Subdomains and a Hole
	Nested Function for Geometry with Additional Parameters

	Geometry from polyshape
	STL File Import
	Geometry from Triangulated Mesh
	3-D Geometry from a Finite Element Mesh
	2-D Multidomain Geometry

	Geometry from alphaShape
	Cuboids, Cylinders, and Spheres
	Sphere in Cube
	3-D Multidomain Geometry from 2-D Geometry
	Multidomain Geometry Reconstructed from Mesh
	Put Equations in Divergence Form
	Coefficient Matching for Divergence Form
	Boundary Conditions Can Affect the c Coefficient
	Coefficient Conversion with Symbolic Math Toolbox
	Some Equations Cannot Be Converted

	f Coefficient for specifyCoefficients
	c Coefficient for specifyCoefficients
	Overview of the c Coefficient
	Definition of the c Tensor Elements
	Some c Vectors Can Be Short
	Functional Form

	m, d, or a Coefficient for specifyCoefficients
	Coefficients m, d, or a
	Short m, d, or a vectors
	Nonconstant m, d, or a

	View, Edit, and Delete PDE Coefficients
	View Coefficients
	Delete Existing Coefficients
	Change a Coefficient Assignment

	Set Initial Conditions
	What Are Initial Conditions?
	Constant Initial Conditions
	Nonconstant Initial Conditions
	Nodal Initial Conditions

	Nonlinear System with Cross-Coupling Between Components
	Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh
	View, Edit, and Delete Initial Conditions
	View Initial Conditions
	Delete Existing Initial Conditions
	Change an Initial Conditions Assignment

	No Boundary Conditions Between Subdomains
	Identify Boundary Labels
	Specify Boundary Conditions
	Dirichlet Boundary Conditions
	Neumann Boundary Conditions
	Mixed Boundary Conditions
	Nonconstant Boundary Conditions

	Solve PDEs with Constant Boundary Conditions
	Solve PDEs with Nonconstant Boundary Conditions
	View, Edit, and Delete Boundary Conditions
	View Boundary Conditions
	Delete Existing Boundary Conditions
	Change a Boundary Conditions Assignment

	Generate Mesh
	Find Mesh Elements and Nodes by Location
	Assess Quality of Mesh Elements
	Mesh Data as [p,e,t] Triples
	Mesh Data

	Solving PDEs
	von Mises Effective Stress and Displacements: PDE Modeler App
	Clamped Square Isotropic Plate with Uniform Pressure Load
	Deflection of Piezoelectric Actuator
	Dynamics of Damped Cantilever Beam
	Dynamic Analysis of Clamped Beam
	Reduced-Order Modeling Technique for Beam with Point Load
	Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm
	Thermal Stress Analysis of Jet Engine Turbine Blade
	Finite Element Analysis of Electrostatically Actuated MEMS Device
	Deflection Analysis of Bracket
	Vibration of Square Plate
	Structural Dynamics of Tuning Fork
	Modal Superposition Method for Structural Dynamics Problem
	Stress Concentration in Plate with Circular Hole
	Thermal Deflection of Bimetallic Beam
	Axisymmetric Thermal and Structural Analysis of Disc Brake
	Electrostatic Potential in Air-Filled Frame
	Electrostatic Potential in Air-Filled Frame: PDE Modeler App
	Electrostatic Analysis of Transformer Bushing Insulator
	Magnetic Flux Density in H-Shaped Magnet
	Magnetic Flux Density in Electromagnet
	Linear Elasticity Equations
	Summary of the Equations of Linear Elasticity
	3D Linear Elasticity Problem
	Plane Stress
	Plane Strain

	Magnetic Field in Two-Pole Electric Motor
	Magnetic Field in Two-Pole Electric Motor: PDE Modeler App
	Scattering Problem
	Electrostatics and Magnetostatics
	Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App
	Current Density Between Two Metallic Conductors: PDE Modeler App
	Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App
	Temperature Distribution in Heat Sink
	Create 2-D Geometry in the PDE Modeler App
	Extrude 2-D Geometry into 3-D Geometry of Heat Sink
	Perform Thermal Analysis

	Nonlinear Heat Transfer in Thin Plate
	Poisson's Equation on Unit Disk: PDE Modeler App
	Poisson's Equation on Unit Disk
	Scattering Problem: PDE Modeler App
	Minimal Surface Problem
	Minimal Surface Problem: PDE Modeler App
	Poisson's Equation with Point Source and Adaptive Mesh Refinement
	Heat Transfer in Block with Cavity: PDE Modeler App
	Heat Transfer in Block with Cavity
	Heat Transfer Problem with Temperature-Dependent Properties
	Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux
	Inhomogeneous Heat Equation on Square Domain
	Heat Distribution in Circular Cylindrical Rod
	Thermal Analysis of Disc Brake
	Heat Distribution in Circular Cylindrical Rod: PDE Modeler App
	Wave Equation on Square Domain
	Wave Equation on Square Domain: PDE Modeler App
	Eigenvalues and Eigenmodes of L-Shaped Membrane
	Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App
	L-Shaped Membrane with Rounded Corner: PDE Modeler App
	Eigenvalues and Eigenmodes of Square
	Eigenvalues and Eigenmodes of Square: PDE Modeler App
	Vibration of Circular Membrane
	Solution and Gradient Plots with pdeplot and pdeplot3D
	2-D Solution and Gradient Plots with MATLAB® Functions
	3-D Solution and Gradient Plots with MATLAB® Functions
	Types of 3-D Solution Plots Available in MATLAB
	2-D Slices Through 3-D Geometry
	Contour Slices Through 3-D Solution
	Plots of Gradients and Streamlines

	Dimensions of Solutions, Gradients, and Fluxes

	PDE Modeler App
	Open the PDE Modeler App
	2-D Geometry Creation in PDE Modeler App
	Create Basic Shapes
	Select Several Shapes
	Rotate Shapes
	Create Complex Geometries
	Adjust Axes Limits and Grid
	Create Geometry with Rounded Corners

	Specify Boundary Conditions in the PDE Modeler App
	Specify Coefficients in PDE Modeler App
	Coefficients for Scalar PDEs
	Coefficients for Systems of PDEs
	Coefficients That Depend on Time and Space

	Specify Mesh Parameters in the PDE Modeler App
	Adjust Solve Parameters in the PDE Modeler App
	Elliptic Equations
	Parabolic Equations
	Hyperbolic Equations
	Eigenvalue Equations
	Nonlinear Equations

	Plot the Solution in the PDE Modeler App
	Additional Plot Control Options
	Tooltip Displays for Mesh and Plots

	Functions
	adaptmesh
	addCell
	addFace
	addVertex
	addVoid
	AnalyticGeometry
	applyBoundaryCondition
	area
	assema
	assemb
	assembleFEMatrices
	assempde
	cellEdges
	cellFaces
	BodyLoadAssignment
	BoundaryCondition
	CoefficientAssignment
	createpde
	createPDEResults
	csgdel
	decsg
	DiscreteGeometry
	dst
	idst
	EigenResults
	ElectromagneticModel
	electromagneticBC
	ElectromagneticBCAssignment
	electromagneticProperties
	ElectromagneticMaterialAssignment
	electromagneticSource
	ElectromagneticSourceAssignment
	ElectrostaticResults
	MagnetostaticResults
	evaluate
	evaluateCGradient
	evaluateGradient
	evaluateHeatFlux
	evaluateHeatRate
	evaluatePrincipalStrain
	evaluatePrincipalStress
	evaluateReaction
	evaluateStrain
	evaluateStress
	evaluateTemperatureGradient
	evaluateVonMisesStress
	FEMesh
	extrude
	faceEdges
	facesAttachedToEdges
	findBodyLoad
	findBoundaryConditions
	findCoefficients
	findElectromagneticBC
	findElectromagneticProperties
	findElectromagneticSource
	findElements
	findHeatSource
	findInitialConditions
	findNodes
	findStructuralBC
	findStructuralIC
	findStructuralProperties
	findThermalBC
	findThermalIC
	findThermalProperties
	generateMesh
	GeometricInitialConditions
	GeometricStructuralICs
	GeometricThermalICs
	NodalInitialConditions
	NodalStructuralICs
	NodalThermalICs
	geometryFromEdges
	geometryFromMesh
	HeatSourceAssignment
	hyperbolic
	importGeometry
	initmesh
	internalHeatSource
	interpolateAcceleration
	interpolateDisplacement
	interpolateElectricField
	interpolateElectricFlux
	interpolateElectricPotential
	interpolateMagneticField
	interpolateMagneticFlux
	interpolateMagneticPotential
	interpolateSolution
	interpolateStrain
	interpolateStress
	interpolateTemperature
	interpolateVelocity
	interpolateVonMisesStress
	jigglemesh
	linearize
	linearizeInput
	linearizeOutput
	meshQuality
	meshToPet
	multicuboid
	multicylinder
	multisphere
	nearestEdge
	nearestFace
	parabolic
	pdearcl
	pdecgrad
	pdecirc
	pdecont
	pdeeig
	pdeellip
	pdegplot
	pdegrad
	pdeInterpolant
	pdeintrp
	pdejmps
	pdemesh
	PDEModel
	pdenonlin
	pdeplot
	pdeplot3D
	pdepoly
	pdeprtni
	pderect
	pdesdp
	pdesde
	pdesdt
	pdesmech
	PDESolverOptions
	pdesurf
	PDE Modeler
	pdetrg
	pdetriq
	pdeviz
	PDEVisualization
	poimesh
	poisolv
	reconstructSolution
	reduce
	ReducedStructuralModel
	refinemesh
	rotate
	scale
	setInitialConditions
	solve
	solvepde
	solvepdeeig
	specifyCoefficients
	ModalStructuralResults
	FrequencyStructuralResults
	StaticStructuralResults
	TransientStructuralResults
	structuralBC
	StructuralBC
	structuralIC
	structuralDamping
	findStructuralDamping
	StructuralDampingAssignment
	StructuralMaterialAssignment
	structuralBodyLoad
	structuralBoundaryLoad
	StructuralModel
	structuralProperties
	structuralSEInterface
	StructuralSEIAssignment
	StationaryResults
	SteadyStateThermalResults
	ThermalBC
	ThermalMaterialAssignment
	ThermalModel
	thermalProperties
	translate
	TimeDependentResults
	TransientThermalResults
	thermalBC
	thermalIC
	tri2grid
	volume
	wbound
	wgeom

