Partial Differential Equation Toolbox™
User's Guide

MATLAB

R2021b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Partial Differential Equation Toolbox™ User's Guide
© COPYRIGHT 1995-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

August 1995
February 1996
July 2002
September 2002
June 2004
October 2004
March 2005
August 2005
September 2005
March 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021

First printing
Second printing
Online only
Third printing
Online only
Online only
Online only
Fourth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0

Revised for Version 1.0.1

Revised for Version 1.0.4 (Release 13)
Minor Revision for Version 1.0.4

Revised for Version 1.0.5 (Release 14)
Revised for Version 1.0.6 (Release 14SP1)
Revised for Version 1.0.6 (Release 14SP2)
Minor Revision for Version 1.0.6

Revised for Version 1.0.7 (Release 14SP3)
Revised for Version 1.0.8 (Release 2006a)
Revised for Version 1.0.10 (Release 2007a)
Revised for Version 1.0.11 (Release 2007Db)
Revised for Version 1.0.12 (Release 2008a)
Revised for Version 1.0.13 (Release 2008b)
Revised for Version 1.0.14 (Release 2009a)
Revised for Version 1.0.15 (Release 2009Db)
Revised for Version 1.0.16 (Release 2010a)
Revised for Version 1.0.17 (Release 2010Db)
Revised for Version 1.0.18 (Release 2011a)
Revised for Version 1.0.19 (Release 2011b)
Revised for Version 1.0.20 (Release 2012a)
Revised for Version 1.1 (Release 2012b)
Revised for Version 1.2 (Release 2013a)
Revised for Version 1.3 (Release 2013b)
Revised for Version 1.4 (Release 2014a)
Revised for Version 1.5 (Release 2014b)
Revised for Version 2.0 (Release 2015a)
Revised for Version 2.1 (Release 2015b)
Revised for Version 2.2 (Release 2016a)
Revised for Version 2.3 (Release 2016b)
Revised for Version 2.4 (Release 2017a)
Revised for Version 2.5 (Release 2017b)
Revised for Version 3.0 (Release 2018a)
Revised for Version 3.1 (Release 2018b)
Revised for Version 3.2 (Release 2019a)
Revised for Version 3.3 (Release 2019b)
Revised for Version 3.4 (Release 2020a)
Revised for Version 3.5 (Release 2020b)
Revised for Version 3.6 (Release 2021a)
Revised for Version 3.7 (Release 2021b)

Contents

Getting Started

1]

2|

Partial Differential Equation Toolbox Product Description 1-2
Key Features i i e e 1-2
Equations You Can Solve Using PDEToolbox 1-3
Solve 2-D PDEs Using the PDE Modeler App 1-5
TaPS o e 1-5
Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App 1-7
Finite Flement Method Basics 1-11
Deflection Analysisof Bracket 1-14
Heat Transfer in Blockwith Cavity 1-21
Setting Up Your PDE

Solve Problems Using PDEModel Objects 2-2

2-D Geometry Creation at Command Line 2-4
Three Elements of Geometry 2-4
Basic Shapes 2-4
Rectangle with Circular End Cap and Another Circular Excision 2-5
Decomposed Geometry Data Structure 2-8

Parametrized Function for 2-D Geometry Creation 2-10
Required Syntax 2-10
Relation Between Parametrization and Region Labels 2-10
Geometry FunctionforaCircle 2-11
Arc Length Calculations for a Geometry Function 2-12
Geometry Function Example with Subdomains anda Hole 2-21
Nested Function for Geometry with Additional Parameters 2-23

Geometry from polyshape 2-27

STLFileImport 2-31

vi

Contents

Geometry from Triangulated Mesh 2-47

3-D Geometry from a Finite ElementMesh 2-47
2-D Multidomain Geometry i 2-48
Geometry from alphaShape 2-50
Cuboids, Cylinders, and Spheres 2-52
Spherein Cube 2-39
3-D Multidomain Geometry from 2-D Geometry 2-63
Multidomain Geometry Reconstructed from Mesh 2-67
Put Equations in Divergence Form 2-71
Coefficient Matching for Divergence Form 2-71
Boundary Conditions Can Affect the ¢ Coefficient 2-72
Coefficient Conversion with Symbolic Math Toolbox 2-72
Some Equations Cannot Be Converted 2-73
f Coefficient for specifyCoefficients 2-74
c Coefficient for specifyCoefficients 2-76
Overview of the c Coefficient 2-76
Definition of the c Tensor Elements 2-76
Some c VectorsCanBe Short, 2-78
Functional Form 2-88
m, d, or a Coefficient for specifyCoefficients 2-91
Coefficientsm, d, 0rat 2-91
Shortm, d,oravectorsot 2-91
Nonconstantm, d, 0ra ...t 2-92
View, Edit, and Delete PDE Coefficients 2-95
View Coefficients i 2-95
Delete Existing Coefficients 2-96
Change a Coefficient Assignment 2-97
Set Initial Conditions 2-98
What Are Initial Conditions? 2-98
Constant Initial Conditions 2-98
Nonconstant Initial Conditions 2-98
Nodal Initial Conditions 2-99
Nonlinear System with Cross-Coupling Between Components 2-101

Set Initial Condition for Model with Fine Mesh Using Solution Obtained

with Coarser Mesh 2-105
View, Edit, and Delete Initial Conditions 2-107
View Initial Conditions 2-107
Delete Existing Initial Conditions 2-108
Change an Initial Conditions Assignment 2-108

No Boundary Conditions Between Subdomains 2-110

Identify Boundary Labels 2-112

Specify Boundary Conditions 2-113
Dirichlet Boundary Conditions 2-113
Neumann Boundary Conditions 2-114
Mixed Boundary Conditions, 2-116
Nonconstant Boundary Conditions 2-116

Solve PDEs with Constant Boundary Conditions 2-119

Solve PDEs with Nonconstant Boundary Conditions 2-123

View, Edit, and Delete Boundary Conditions 2-128
View Boundary Conditions 2-128
Delete Existing Boundary Conditions 2-129
Change a Boundary Conditions Assignment 2-130

Generate Mesh 2-132

Find Mesh Elements and Nodes by Location 2-140

Assess Quality of Mesh Elements 2-146

Mesh Dataas [p,e,t] Triples 2-150

MeshData e i 2-153

Solving PDEs

3|

von Mises Effective Stress and Displacements: PDE Modeler App 3-3
Clamped Square Isotropic Plate with Uniform Pressure Load 3-7
Deflection of Piezoelectric Actuator 3-11
Dynamics of Damped Cantilever Beam 3-21
Dynamic Analysis of Clamped Beam 3-28
Reduced-Order Modeling Technique for Beam with Point Load 3-33
Modal and Frequency Response Analysis for Single Part of Kinova® Gen3
Robotic Arm 3-40
Thermal Stress Analysis of Jet Engine Turbine Blade 3-50
Finite Element Analysis of Electrostatically Actuated MEMS Device ... 3-58
Deflection Analysis of Bracket 3-71

viii

Contents

Vibration of Square Plate 3-78

Structural Dynamics of Tuning Fork 3-82
Modal Superposition Method for Structural Dynamics Problem 3-91
Stress Concentration in Plate with Circular Hole 3-95
Thermal Deflection of BimetallicBeam 3-103
Axisymmetric Thermal and Structural Analysis of Disc Brake 3-110
Electrostatic Potential in Air-Filled Frame 3-121
Electrostatic Potential in Air-Filled Frame: PDE Modeler App 3-123
Electrostatic Analysis of Transformer Bushing Insulator 3-125
Magnetic Flux Density in H-Shaped Magnet 3-131
Magnetic Flux Density in Electromagnet 3-136
Linear Elasticity Equations 3-146

Summary of the Equations of Linear Elasticity 3-146

3D Linear Elasticity Problem 3-147

Plane Stress 3-149

Plane Strain 3-150
Magnetic Field in Two-Pole Electric Motor 3-151
Magnetic Field in Two-Pole Electric Motor: PDE Modeler App 3-156
Scattering Problem 3-160
Electrostatics and Magnetostatics 3-165

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

.. 3-166
Current Density Between Two Metallic Conductors: PDE Modeler App
.. 3-174
Heat Transfer Between Two Squares Made of Different Materials: PDE
Modeler App e 3-177
Temperature Distribution in Heat Sink 3-181
Create 2-D Geometry in the PDE ModelerApp 3-181
Extrude 2-D Geometry into 3-D Geometry of Heat Sink 3-182
Perform Thermal Analysis 3-185
Nonlinear Heat Transfer in ThinPlate 3-190
Poisson's Equation on Unit Disk: PDE Modeler App 3-198

Poisson's Equationon Unit Disk 3-204

Scattering Problem: PDE Modeler App 3-212
Minimal Surface Problem 3-216
Minimal Surface Problem: PDE Modeler App 3-220

Poisson's Equation with Point Source and Adaptive Mesh Refinement 3-222

Heat Transfer in Block with Cavity: PDE Modeler App 3-227
Heat Transfer in Blockwith Cavity 3-231
Heat Transfer Problem with Temperature-Dependent Properties 3-235

Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

.. 3-243
Inhomogeneous Heat Equation on Square Domain 3-250
Heat Distribution in Circular Cylindrical Rod 3-254
Thermal Analysis of DiscBrake 3-260
Heat Distribution in Circular Cylindrical Rod: PDE Modeler App 3-268
Wave Equation on Square Domain 3-271
Wave Equation on Square Domain: PDE Modeler App 3-275
Eigenvalues and Eigenmodes of L-Shaped Membrane 3-278
Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App

.. 3-284
L-Shaped Membrane with Rounded Corner: PDE Modeler App 3-287
Eigenvalues and Eigenmodes of Square 3-290
Eigenvalues and Eigenmodes of Square: PDE Modeler App 3-295
Vibration of Circular Membrane 3-298
Solution and Gradient Plots with pdeplot and pdeplot3D 3-302
2-D Solution and Gradient Plots with MATLAB® Functions 3-311
3-D Solution and Gradient Plots with MATLAB® Functions 3-317

Types of 3-D Solution Plots Available in MATLAB 3-317
2-D Slices Through 3-D Geometryccvviio... 3-317
Contour Slices Through 3-D Solution 3-320
Plots of Gradients and Streamlines 3-324

ix

X

Contents

Dimensions of Solutions, Gradients, and Fluxes

PDE Modeler App

4

Open the PDE Modeler App i, 4-2
2-D Geometry Creation in PDE Modeler App 4-3
Create Basic Shapes i e e 4-3
Select Several Shapes e 4-4
Rotate Shapes 4-4
Create Complex Geometries 4-4
Adjust Axes Limitsand Grid i 4-5
Create Geometry with Rounded Corners 4-8
Specify Boundary Conditions in the PDE Modeler App 4-12
Specify Coefficients in PDE Modeler App 4-14
Coefficients for Scalar PDEs 4-14
Coefficients for Systems of PDEs, 4-16
Coefficients That Depend on Time and Space 4-18
Specify Mesh Parameters in the PDE Modeler App 4-24
Adjust Solve Parameters in the PDE Modeler App 4-26
Elliptic Equations i 4-26
Parabolic Equationsttt 4-28
Hyperbolic Equations 4-29
Eigenvalue Equationst 4-29
Nonlinear Equationsttt 4-30

Plot the Solution in the PDE Modeler App 4-31
Additional Plot Control Options, 4-33
Tooltip Displays for Meshand Plots 4-35
Functions

S|

Getting Started

» “Partial Differential Equation Toolbox Product Description” on page 1-2

* “Equations You Can Solve Using PDE Toolbox” on page 1-3

* “Solve 2-D PDEs Using the PDE Modeler App” on page 1-5

* “Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App” on page 1-7
» “Finite Element Method Basics” on page 1-11

* “Deflection Analysis of Bracket” on page 1-14

» “Heat Transfer in Block with Cavity” on page 1-21

1 Getting Started

Partial Differential Equation Toolbox Product Description

1-2

Solve partial differential equations using finite element analysis

Partial Differential Equation Toolbox provides functions for solving structural mechanics, heat
transfer, and general partial differential equations (PDEs) using finite element analysis.

You can perform linear static analysis to compute deformation, stress, and strain. For modeling
structural dynamics and vibration, the toolbox provides a direct time integration solver. You can
analyze a component’s structural characteristics by performing modal analysis to find natural
frequencies and mode shapes. You can model conduction-dominant heat transfer problems to
calculate temperature distributions, heat fluxes, and heat flow rates through surfaces. You can also
solve standard problems such as diffusion, electrostatics, and magnetostatics, as well as custom
PDEs.

Partial Differential Equation Toolbox lets you import 2D and 3D geometries from STL or mesh data.
You can automatically generate meshes with triangular and tetrahedral elements. You can solve PDEs
by using the finite element method, and postprocess results to explore and analyze them.

Key Features

* Structural analysis, including linear static, dynamic, and modal analysis

* Heat transfer analysis for conduction-dominant problems

* General linear and nonlinear PDEs for stationary, time-dependent, and eigenvalue problems
* 2D and 3D geometry import from STL files and mesh data

* Automatic meshing using triangular and tetrahedral elements with linear or quadratic basis
functions

» User-defined functions for specifying PDE coefficients, boundary conditions, and initial conditions
* Plotting and animating results, as well as derived and interpolated values

Equations You Can Solve Using PDE Toolbox

Equations You Can Solve Using PDE Toolbox

Partial Differential Equation Toolbox solves scalar equations of the form

azu

md Y+ g% g (cVu)+au=f
at?

at
and eigenvalue equations of the form

-V -(cVu) +au = Adu

or

-V-(cVu)+au= A%mu
For scalar PDEs, there are two choices of boundary conditions for each edge or face:
» Dirichlet — On the edge or face, the solution u satisfies the equation

hu=r,

where h and r can be functions of space (x, y, and, in 3-D case, z), the solution u, and time. Often,
you take h = 1, and set r to the appropriate value.

* Generalized Neumann boundary conditions — On the edge or face the solution u satisfies the
equation

ﬁ~(cVu)+qu=g

7 is the outward unit normal. q and g are functions defined on 9Q, and can be functions of x, y,
and, in 3-D case, 2z, the solution u, and, for time-dependent equations, time.

The toolbox also solves systems of equations of the form

62u

I a2 7. (coVu)+au=f
ot

ot
and eigenvalue systems of the form

-V (c® Vu) +au = Adu
or

—V-(c®Vu)+au=A2mu

A system of PDEs with N components is N coupled PDEs with coupled boundary conditions. Scalar
PDEs are those with N = 1, meaning just one PDE. Systems of PDEs generally means N > 1. The
documentation sometimes refers to systems as multidimensional PDEs or as PDEs with a vector
solution u. In all cases, PDE systems have a single geometry and mesh. It is only N, the number of
equations, that can vary.

The coefficients m, d, ¢, a, and f can be functions of location (x, y, and, in 3-D, z), and, except for
eigenvalue problems, they also can be functions of the solution u or its gradient. For eigenvalue
problems, the coefficients cannot depend on the solution u or its gradient.

For scalar equations, all the coefficients except ¢ are scalar. The coefficient ¢ represents a 2-by-2
matrix in 2-D geometry, or a 3-by-3 matrix in 3-D geometry. For systems of N equations, the

1-3

1 Getting Started

coefficients m, d, and a are N-by-N matrices, f is an N-by-1 vector, and c is a 2N-by-2N tensor (2-D
geometry) or a 3N-by-3N tensor (3-D geometry). For the meaning of ¢ ® u, see “c Coefficient for
specifyCoefficients” on page 2-76.

When both m and d are 0, the PDE is stationary. When either m or d are nonzero, the problem is time-
dependent. When any coefficient depends on the solution u or its gradient, the problem is called
nonlinear.

For systems of PDEs, there are generalized versions of the Dirichlet and Neumann boundary
conditions:

hu = r represents a matrix h multiplying the solution vector u, and equaling the vector r.

n - (c ® Vu) + qu = g. For 2-D systems, the notation n - (c ® Vu) means the N-by-1 matrix with
(i,1)-component

N
d d . d . 9
j;l (cos(a)c,-, 13y + cos(a)c;, j, L23y + sin(a)c;, j, 2,15y + sin(a)c;, j, 2,2@) uj
where the outward normal vector of the boundary n = (cos(a), sin(a)).
For 3-D systems, the notation n - (c ® Vu) means the N-by-1 vector with (i,1)-component
N 9 9 9
;2 1(sm(<p)cos(9)c, Jllgx + sin(¢)cos(0)c;, j’l’zﬁ + 51n((p)cos(9)ci,j,1,35)uj
N 9 9 9
+ Z (sm sin(0)c;, j, 2,155 + sin(g)sin(9)c;, j, 2,2@ + sin(g)sin(6)c;, ;, 2,35)%
N 9 9 9
Z (cos)Ci, 3,15y +€08(0)ci, 3,25 7y + cos(6)ci, j,3,35 |u

where the outward normal vector of the boundary n = (sin(¢g)cos(6), sin(@)sin(6), cos(g)).

For each edge or face segment, there are a total of N boundary conditions.

See Also

Related Examples

1-4

“Put Equations in Divergence Form” on page 2-71

“Solve Problems Using PDEModel Objects” on page 2-2

“f Coefficient for specifyCoefficients” on page 2-74

“c Coefficient for specifyCoefficients” on page 2-76

“m, d, or a Coefficient for specifyCoefficients” on page 2-91

Solve 2-D PDEs Using the PDE Modeler App

Solve 2-D PDEs Using the PDE Modeler App

To solve 2-D PDE problems using the PDE Modeler app follow these steps:

1

Start the PDE Modeler app by using the Apps tab or typing pdeModeler in the MATLAB®
Command Window. For details, see “Open the PDE Modeler App” on page 4-2.

Choose the application mode by selecting Application from the Options menu.

Create a 2-D geometry by drawing, rotating, and combining the basic shapes: circles, ellipses,
rectangles, and polygons. To draw and rotate shapes, use the Draw menu or the corresponding
toolbar buttons. To combine shapes, use the Set formula field. See “2-D Geometry Creation in
PDE Modeler App” on page 4-3.

Specify boundary conditions for each boundary segment. To do this, first switch to the Boundary
Mode by using the Boundary menu. Click the boundary to select it, then specify the boundary
condition for that boundary. You can have different types of boundary conditions on different
boundary segments. The default boundary condition is the Dirichlet condition hu = rwith h = 1
and r = 0. You can remove unnecessary subdomain borders by selecting Remove Subdomain
Border or Remove All Subdomain Borders from the Boundary menu. For details, see
“Specify Boundary Conditions in the PDE Modeler App” on page 4-12.

Specify PDE coefficients by selecting PDE Mode from the PDE menu. Then select a region or
multiple regions for which you are specifying the coefficients. Select PDE Specification from
the PDE menu or click the PDE button on the toolbar. Type the coefficients in the resulting
dialog box. For details, see “Coefficients for Scalar PDEs” on page 4-14 and “Coefficients for
Systems of PDEs” on page 4-16.

You can specify the coefficients at any time before solving the PDE because the coefficients are
independent of the geometry and the boundaries. If the PDE coefficients are material-dependent,
specify them by double-clicking each particular region.

Generate a triangular mesh by selecting Initialize Mesh from the Mesh menu. Using the same
menu, you can also refine mesh, display node and triangle labels, and control mesh parameters,
letting you generate a mesh that is fine enough to adequately resolve the important features in
the geometry, but is coarse enough to run in a reasonable amount of time and memory. See
“Specify Mesh Parameters in the PDE Modeler App” on page 4-24.

Solve the PDE by clicking the = button or by selecting Solve PDE from the Solve menu. To use a
solver with non-default parameters, select Parameters from the Solve menu to. The resulting
dialog box lets you:

* Invoke and control the nonlinear and adaptive solvers for elliptic problems.

* Specify the initial values, and the times for which to generate the output for parabolic and
hyperbolic problems.

* Specify the interval in which to search for eigenvalues for eigenvalue problems.

See “Adjust Solve Parameters in the PDE Modeler App” on page 4-26.

When you solve the PDE, the app automatically plots the solution using the default settings. To
customize the plot or plot other physical properties calculated using the solution, select
Parameters from the Plot menu. See “Plot the Solution in the PDE Modeler App” on page 4-31.

Tips

After solving the problem, you can:

1-5

1 Getting Started

Export the solution or the mesh or both to the MATLAB workspace for further analysis.
Visualize other properties of the solution.
Change the PDE and recompute the solution.

Change the mesh and recompute the solution. If you select Initialize Mesh, the mesh is
initialized; if you select Refine Mesh, the current mesh is refined. From the Mesh menu, you can
also jiggle the mesh and undo previous mesh changes. You also can use the adaptive mesh refiner
and solver, adaptmesh. This option tries to find a mesh that fits the solution.

Change the boundary conditions. To return to the mode where you can select boundaries, use the
dQ button or the Boundary Mode option from the Boundary menu.

Change the geometry. You can switch to the draw mode again by selecting Draw Mode from the
Draw menu or by clicking one of the Draw Mode icons to add another shape.

The following are the shortcuts that you can use to skip one or more steps. In general, the PDE
Modeler app adds the necessary steps automatically.

If you do not create a geometry, the PDE Modeler app uses an L-shaped geometry with the default
boundary conditions.

If you initialize the mesh while in the draw mode, the PDE Modeler app first decomposes the
geometry using the current set formula and assigns the default boundary condition to the outer
boundaries. After that, it generate the mesh.

If you refine the mesh before initializing it, the PDE Modeler app first initializes the mesh.

If you solve the PDE without generating a mesh, the PDE Modeler app initializes a mesh before
solving the PDE.

If you select a plot type and choose to plot the solution, the PDE Modeler app checks if the
solution to the current PDE is available. If not, the PDE Modeler app first solves the current PDE.
The app displays the solution using the selected plot options.

If do not specify the coefficients and use the default Generic Scalar application mode, the PDE
Modeler app solves the default PDE, which is Poisson's equation:

-Au = 10.

This corresponds to the generic elliptic PDE with ¢ = 1, a = 0, and f = 10. The default PDE
settings depend on the application mode.

See Also

Related Examples

1-6

“Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App” on page 1-7
“Poisson's Equation on Unit Disk” on page 3-204

“Current Density Between Two Metallic Conductors: PDE Modeler App” on page 3-174
“Minimal Surface Problem” on page 3-216

Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App

Poisson’s Equation with Complex 2-D Geometry: PDE Modeler

App

This example shows how to solve the Poisson's equation, -Au = f on a 2-D geometry created as a
combination of two rectangles and two circles.

To solve this problem in the PDE Modeler app, follow these steps:

10
11

12

Open the PDE Modeler app by using the pdeModeler command.

Display grid lines. To do this, select Options > Grid Spacing and clear the Auto checkbox for
the x-axis linear spacing. Enter X-axis linear spacing as -1.5:0.25:1.5. Then select Options
> Grid.

Align new shapes to the grid lines by selecting Options > Snap.
Draw two circles: one with the radius 0.4 and the center at (-0.5,0) and another with the radius

0.2 and the center at (0.5,0.2). To draw a circle, first click the @ button. Then right-click the
origin and drag to draw a circle. Right-clicking constrains the shape you draw so that it is a circle
rather than an ellipse.

Draw two rectangles: one with corners (-1,0.2), (1,0.2), (1,-0.2), and (-1,-0.2) and another with

corners (0.5,1), (1,1), (1,-0.6), and (0.5,-0.6). To draw a rectangle, first click the |:| button.
Then click any corner and drag to draw the rectangle.

Model the geometry by entering (R1+C1+R2) -C2 in the Set formula field.
Save the model to a file by selecting FileSave As.

Remove the subdomain borders. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Then select Boundary > Remove All Subdomain Borders.

Specify the boundary conditions for all circle arcs. Using Shift+click, select these borders. Then
select Boundary > Specify Boundary Conditions and specify the Neumann boundary
condition with g = -5 and q = 0. This boundary condition means that the solution has a slope of -
5 in the normal direction for these boundary segments.

For all other boundaries, keep the default Dirichlet boundary condition: h = 1, r = 0.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specifyc = 1,a = 0,and f = 10.

Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >
Refine Mesh.

1-7

1 Getting Started

0.8

04

0.2

- | | | | | | | | | | |

-1.5 -1.25 -1 0.75 0.5 -0.25 0 0.25 0.5 0.75 1 1.25

13 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The
toolbox assembles the PDE problem, solves it, and plots the solution.

1-8

1.5

Poisson’s Equation with Complex 2-D Geometry: PDE Modeler App

0.2

0.6

0.4

021

-1

0.6

0.8 .

-1.5 -1.25 -1 -0.75 -0.5 -0.25 o 0.25 0.5 0.75 1 1.25 1.5

14 Plot the solution as a 3-D plot:

a Select Plot > Parameters.
b In the resulting dialog box, select Height (3-D plot).
¢ Click Plot.

1-9

-0.2

-0.4

-0.6

-0.8

1 Getting Started

1-10

Color: u Height: u

0.2

-0.2

-0.4

-0.8

-0.8

Finite Element Method Basics

Finite Element Method Basics

The core Partial Differential Equation Toolbox algorithm uses the Finite Element Method (FEM) for
problems defined on bounded domains in 2-D or 3-D space. In most cases, elementary functions
cannot express the solutions of even simple PDEs on complicated geometries. The finite element
method describes a complicated geometry as a collection of subdomains by generating a mesh on the
geometry. For example, you can approximate the computational domain Q with a union of triangles
(2-D geometry) or tetrahedra (3-D geometry). The subdomains form a mesh, and each vertex is called
a node. The next step is to approximate the original PDE problem on each subdomain by using
simpler equations.

For example, consider the basic elliptic equation.
—V - (cVu) + au = f on domain Q

Suppose that this equation is a subject to the Dirichlet boundary condition u = r on 9Qp and
Neumann boundary conditions on 0Qy. Here, dQ = 0Qp U 0Qy; is the boundary of Q.

The first step in FEM is to convert the original differential (strong) form of the PDE into an integral
(weak) form by multiplying with test function v and integrating over the domain Q.

f(—V-(cVu)+au—f)de= 0 Vv
Q

The test functions are chosen from a collection of functions (functional space) that vanish on the
Dirichlet portion of the boundary, v = 0 on dQp. Above equation can be thought of as weighted

averaging of the residue using all possible weighting functions v. The collection of functions that are
admissible solutions, u, of the weak form of PDE are chosen so that they satisfy the Dirichlet BC,
u =ronoQp.

Integrating by parts (Green’s formula) the second-order term results in:

J(CVU YV + auv)dQ — fﬁ - (cVu)vdaQy + fﬁ’ : (cVu)vdaQD=éffde Vv
QN 0Qp

Use the Neumann boundary condition to substitute for second term on the left side of the equation.
Also, note that v = 0 on 9Qp nullifies the third term. The resulting equation is:

f(cVu Vv + auv)dQ + f quvdoQy = f gvdaoQy + ffde Vv
Q QN QN Q

Note that all manipulations up to this stage are performed on continuum Q, the global domain of the
problem. Therefore, the collection of admissible functions and trial functions span infinite-
dimensional functional spaces. Next step is to discretize the weak form by subdividing Q into smaller

subdomains or elements Q°, where Q = U Q°. This step is equivalent to projection of the weak form
of PDEs onto a finite-dimensional subspace. Using the notations uy and vy to represent the finite-

dimensional equivalent of admissible and trial functions defined on Q°, you can write the discretized
weak form of the PDE as:

f(CVuh Vvp + aupvy) doe + f qupv hd&.Q]eV = f gv hdﬂ.Q]eV + ffvhd()e Yvp
o° 208 0% o

1-11

1 Getting Started

1-12

Next, let ¢;, with i =1, 2, ..., N;,, be the piecewise polynomial basis functions for the subspace
containing the collections up and v, then any particular uy can be expressed as a linear combination
of basis functions:

Np
Up = ZUid’i

Here U, are yet undetermined scalar coefficients. Substituting uy into to the discretized weak form of
PDE and using each v, = ¢; as test functions and performing integration over element yields a system
of N,, equations in terms of N, unknowns U;.

Note that finite element method approximates a solution by minimizing the associated error function.
The minimizing process automatically finds the linear combination of basis functions which is closest
to the solution u.

FEM yields a system KU = F where the matrix K and the right side F contain integrals in terms of the
test functions ¢;, ¢;, and the coefficients ¢, a, f, q, and g defining the problem. The solution vector U
contains the expansion coefficients of u;, which are also the values of u; at each node x; (k = 1,2 for a
2-D problem or k = 1,2,3 for a 3-D problem) since uy(x;) = U..

FEM techniques are also used to solve more general problems, such as:
* Time-dependent problems. The solution u(x,t) of the equation

au

dﬁ—v-(cVu)+au=f

can be approximated by
N
up(x,t) = > Uit)pi(x)
i=1
The result is a system of ordinary differential equations (ODEs)

dU _
M +KU =F

Two time derivatives result in a second-order ODE

2
MIY ku=F
dt

* Eigenvalue problems. Solve
-V (cVu) + au = Adu

for the unknowns u and A, where A is a complex number. Using the FEM discretization, you solve
the algebraic eigenvalue problem KU = AMU to find u, as an approximation to u. To solve
eigenvalue problems, use solvepdeeig.

* Nonlinear problems. If the coefficients c, q, f, g, or g are functions of u or Vu, the PDE is called
nonlinear and FEM yields a nonlinear system K(U)U = F(U).

To summarize, the FEM approach:

Finite Element Method Basics

Represents the original domain of the problem as a collection of elements.

For each element, substitutes the original PDE problem by a set of simple equations that locally
approximate the original equations. Applies boundary conditions for boundaries of each element.
For stationary linear problems where the coefficients do not depend on the solution or its
gradient, the result is a linear system of equations. For stationary problems where the
coefficients depend on the solution or its gradient, the result is a system of nonlinear equations.
For time-dependent problems, the result is a set of ODEs.

3 Assembles the resulting equations and boundary conditions into a global system of equations that
models the entire problem.

4 Solves the resulting system of algebraic equations or ODEs using linear solvers or numerical
integration, respectively. The toolbox internally calls appropriate MATLAB solvers for this task.

References

[1] Cook, Robert D., David S. Malkus, and Michael E. Plesha. Concepts and Applications of Finite
Element Analysis. 3rd edition. New York, NY: John Wiley & Sons, 1989.

[2] Gilbert Strang and George Fix. An Analysis of the Finite Element Method. 2nd edition. Wellesley,
MA: Wellesley-Cambridge Press, 2008.

See Also
assembleFEMatrices | solvepde | solvepdeeig

1-13

1 Getting Started

Deflection Analysis of Bracket

1-14

This example shows how to analyze a 3-D mechanical part under an applied load using finite element
analysis (FEA) and determine the maximal deflection.

Create Structural Analysis Model

The first step in solving a linear elasticity problem is to create a structural analysis model. This is a
container that holds the geometry, structural material properties, damping parameters, body loads,
boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and
mesh.

model = createpde('structural','static-solid');
Import Geometry

Import an STL file of a simple bracket model using the importGeometry function. This function
reconstructs the faces, edges and vertices of the model. It can merge some faces and edges, so the
numbers can differ from those of the parent CAD model.

importGeometry(model, 'BracketWithHole.stl');
Plot the geometry, displaying face labels.

figure

pdegplot(model, 'FacelLabels', 'on')
view(30,30);

title('Bracket with Face Labels')

Bracket with Face Labels

Deflection Analysis of Bracket

figure

pdegplot(model, 'FaceLabels', 'on")
view(-134,-32)

title('Bracket with Face Labels, Rear View')

Bracket with Face Labels, Rear View

0.15 4 F F4

0.1 A

0.05

P

-0.05 4

0.2

Specify Structural Properties of Material

Specify Young's modulus and Poisson's ratio of the material.

structuralProperties(model, 'YoungsModulus',b200e9,
'PoissonsRatio',0.3);

Apply Boundary Conditions and Loads

The problem has two boundary conditions: the back face (face 4) is fixed, and the front face has an
applied load. All other boundary conditions, by default, are free boundaries.

structuralBC(model, 'Face',4, 'Constraint', 'fixed');

Apply a distributed load in the negative z-direction to the front face (face 8).
structuralBoundarylLoad (model, 'Face',8, 'SurfaceTraction',[0;0;-1e4]);
Generate Mesh

Generate and plot a mesh.

generateMesh(model);
figure

1-15

1 Getting Started

pdeplot3D(model)
title('Mesh with Quadratic Tetrahedral Elements');

Mesh with Quadratic Tetrahedral Elements

kWl o W Wy
WWATANA TR

i,

o

T

Ll =~
b TR A
=

LDl

Calculate Solution

Use the solve function to calculate the solution.
result = solve(model)

result =
StaticStructuralResults with properties:

Displacement: [1x1 FEStruct]
Strain: [1x1 FEStruct]
Stress: [1x1 FEStruct]
[
[

VonMisesStress: [5993x1 double]
Mesh: [1x1 FEMesh]

Examine Solution

Find the maximal deflection of the bracket in the z-direction.

minUz = min(result.Displacement.uz);
fprintf('Maximal deflection in the z-direction is %g meters.', minUz)

Maximal deflection in the z-direction is -4.43075e-05 meters.

1-16

Deflection Analysis of Bracket

Plot Displacement Components

Plot the components of the solution vector. The maximal deflections are in the z-direction. Because
the part and the loading are symmetric, the x-displacement and z-displacement are symmetric, and
the y-displacement is antisymmetric with respect to the center line.

Here, the plotting routine uses the 'jet' colormap, which has blue as the color representing the
lowest value and red representing the highest value. The bracket loading causes face 8 to dip down,
so the maximum z-displacement appears blue.

figure

pdeplot3D(model, 'ColorMapData', result.Displacement.ux)
title('x-displacement')

colormap('jet")

x-displacement

(]

!

T

figure

pdeplot3D(model, 'ColorMapData', result.Displacement.uy)
title('y-displacement')

colormap('jet")

1-17

1 Getting Started

1-18

y-displacement

™~

i

—X

figure

pdeplot3D(model, 'ColorMapData', result.Displacement.uz)
title('z-displacement')

colormap('jet")

w107

0.5

-0.5

Deflection Analysis of Bracket

z-displacement

™~
e

!

—X

<107

Plot von Mises Stress

Plot values of the von Mises stress at nodal locations. Use the same jet colormap.
figure

pdeplot3D(model, 'ColorMapData’', result.VonMisesStress)

title('von Mises stress')
colormap('jet")

1-19

1 Getting Started

von Mises stress <108

™~

1-20

Heat Transfer in Block with Cavity

Heat Transfer in Block with Cavity

This example shows how to solve for the heat distribution in a block with cavity.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100
degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at

a constant rate, for example —10W/m?2. All the other boundaries are insulated. The temperature in
the block at the starting time ty = 0 is 0 degrees. The goal is to model the heat distribution during the

first five seconds.
Create Thermal Analysis Model

The first step in solving a heat transfer problem is to create a thermal analysis model. This is a
container that holds the geometry, thermal material properties, internal heat sources, temperature on
the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

thermalmodel = createpde('thermal', 'transient');

Import Geometry

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges (thermalmodel,@crackg);
Plot the geometry, displaying edge labels.
pdegplot(thermalmodel, 'EdgelLabels', 'on")

ylim([-1,1])
axis equal

1-21

1 Getting Started

1-22

1 :
0.8 ET
06]
047 ES]
0.2r 1

(EB EB E3 B1
027]
04 Ed 1
06} 1
-0.8 EZ

-1 :

-0.5 0 0.5

Specify Thermal Properties of Material

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel, 'ThermalConductivity',1,...
'MassDensity',1, ...
'SpecificHeat',1);

Apply Boundary Conditions

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. The toolbox uses the default insulating boundary condition for all other
boundaries.

thermalBC(thermalmodel, 'Edge',6, 'Temperature',100);
thermalBC(thermalmodel, 'Edge',1, 'HeatFlux',-10);

Set Initial Conditions

Set an initial value of 0 for the temperature.
thermalIC(thermalmodel,0);

Generate Mesh

Create and plot a mesh.

generateMesh(thermalmodel);
figure

Heat Transfer in Block with Cavity

pdemesh(thermalmodel)
title('Mesh with Quadratic Triangular Elements')

Mesh with Quadratic Triangular Elements

0.8 T

0.6

Specify Solution Times

Set solution times to be 0 to 5 seconds in steps of 1/2.
tlist = 0:0.5:5;

Calculate Solution

Use the solve function to calculate the solution.
thermalresults = solve(thermalmodel,tlist)

thermalresults =
TransientThermalResults with properties:

Temperature: [1320x11 double]

SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5]

XGradients: [1320x11 double]
YGradients: [1320x11 double]
ZGradients: []

Mesh: [1x1 FEMesh]

Evaluate Heat Flux

Compute the heat flux density.

0.4

0.6

0.8

1-23

1 Getting Started

[gx,qy] = evaluateHeatFlux(thermalresults);
Plot Temperature Distribution and Heat Flux

Plot the solution at the final time step, t = 5.0 seconds, with isothermal lines using a contour plot, and
plot the heat flux vector field using arrows.

pdeplot(thermalmodel, 'XYData',thermalresults.Temperature(:,end),
'"Contour','on', ...
"FlowData', [gx(:,end),qy(:,end)],
'ColorMap', 'hot"')

0.8r — 100

0.2r

a0

85

1-24

Setting Up Your PDE

* “Solve Problems Using PDEModel Objects” on page 2-2

* “2-D Geometry Creation at Command Line” on page 2-4

» “Parametrized Function for 2-D Geometry Creation” on page 2-10
* “Geometry from polyshape” on page 2-27

* “STL File Import” on page 2-31

* “Geometry from Triangulated Mesh” on page 2-47

* “Geometry from alphaShape” on page 2-50

* “Cuboids, Cylinders, and Spheres” on page 2-52

* “Sphere in Cube” on page 2-59

* “3-D Multidomain Geometry from 2-D Geometry” on page 2-63

* “Multidomain Geometry Reconstructed from Mesh” on page 2-67
* “Put Equations in Divergence Form” on page 2-71

+ “f Coefficient for specifyCoefficients” on page 2-74

» “c Coefficient for specifyCoefficients” on page 2-76

* “m, d, or a Coefficient for specifyCoefficients” on page 2-91

* “View, Edit, and Delete PDE Coefficients” on page 2-95

* “Set Initial Conditions” on page 2-98

* “Nonlinear System with Cross-Coupling Between Components” on page 2-101

» “Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh”
on page 2-105

* “View, Edit, and Delete Initial Conditions” on page 2-107

* “No Boundary Conditions Between Subdomains” on page 2-110
* “Identify Boundary Labels” on page 2-112

* “Specify Boundary Conditions” on page 2-113

* “Solve PDEs with Constant Boundary Conditions” on page 2-119
* “Solve PDEs with Nonconstant Boundary Conditions” on page 2-123
* “View, Edit, and Delete Boundary Conditions” on page 2-128

* “Generate Mesh” on page 2-132

* “Find Mesh Elements and Nodes by Location” on page 2-140

» “Assess Quality of Mesh Elements” on page 2-146

* “Mesh Data as [p,e,t] Triples” on page 2-150

* “Mesh Data” on page 2-153

2 Setting Up Your PDE

Solve Problems Using PDEModel Objects

1 Put your problem in the correct form for Partial Differential Equation Toolbox solvers. For details,
see “Equations You Can Solve Using PDE Toolbox” on page 1-3. If you need to convert your
problem to divergence form, see “Put Equations in Divergence Form” on page 2-71.

2 Create a PDEModel model container. For scalar PDEs, use createpde with no arguments.

model = createpde();

If N is the number of equations in your system, use createpde with input argument N.

model = createpde(N);

3 Import or create the geometry. For details, see “Geometry and Mesh”.
importGeometry(model, 'geometry.stl'); % importGeometry for 3-D
geometryFromEdges(model,g); % geometryFromEdges for 2-D

4 View the geometry so that you know the labels of the boundaries.

'FacelLabels' for 3-D
'EdgelLabels' for 2-D

pdegplot(model, 'FacelLabels', "'
pdegplot(model, 'EdgelLabels’, '

n
n

on') %
on') %
To see labels of a 3-D model, you might need to rotate the model, or make it transparent, or zoom
in on it. See “STL File Import” on page 2-31.

5 Create the boundary conditions. For details, see “Specify Boundary Conditions” on page 2-113.
% 'face' for 3-D
applyBoundaryCondition(model, 'dirichlet"', 'face',[2,3,5],'u',[0,0]);

% 'edge' for 2-D
applyBoundaryCondition(model, 'neumann', 'edge',[1,4],'9"',1,'q',eye(2));

6 Create the PDE coefficients.

f=11;2];

a=0;

c = [1;3;5];

specifyCoefficients(model, 'm',0,'d',0,'c',c,'a',a,"'f',f);

* You can specify coefficients as numeric or as functions.

* Each coefficient m, d, ¢, a, and f, has a specific format. See “f Coefficient for
specifyCoefficients” on page 2-74, “c Coefficient for specifyCoefficients” on page 2-76, and
“m, d, or a Coefficient for specifyCoefficients” on page 2-91.

7 For time-dependent equations, or optionally for nonlinear stationary equations, create an initial
condition. See “Set Initial Conditions” on page 2-98.

8 Create the mesh.

generateMesh(model) ;

9 Call the appropriate solver. For all problems except for eigenvalue problems, call solvepde.

result
result

solvepde(model); % for stationary problems
solvepde(model, tlist); % for time-dependent problems

For eigenvalue problems, use solvepdeeig:

result = solvepdeeig(model);

2-2

Solve Problems Using PDEModel Objects

10 Examine the solution. See “Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-
302, “2-D Solution and Gradient Plots with MATLAB® Functions” on page 3-311, and “3-D
Solution and Gradient Plots with MATLAB® Functions” on page 3-317.

See Also
createpde | importGeometry | geometryFromEdges | pdegplot | applyBoundaryCondition |
generateMesh | pdeplot3D | pdeplot

2-3

2 Setting Up Your PDE

2-D Geometry Creation at Command Line

2-4

Three Elements of Geometry

To describe your geometry through Constructive Solid Geometry (CSG) modeling, use three data
structures.

1 A matrix whose columns describe the basic shapes. When you export geometry from the PDE
Modeler app, this matrix has the default name gd (geometry description).

2 A matrix whose columns contain names for the basic shapes. Pad the columns with zeros or 32
(blanks) so that every column has the same length.

3 A set of characters describing the unions, intersections, and set differences of the basic shapes
that make the geometry.

Basic Shapes

To create basic shapes at the command line, create a matrix whose columns each describe a basic
shape. If necessary, add extra zeros to some columns so that all columns have the same length. Write
each column using the following encoding.

Circle

Row Value

1 1 (indicates a circle)

2 x-coordinate of circle center

3 y-coordinate of circle center

4 Radius (strictly positive)

Polygon

Row Value

1 2 (indicates a polygon)

2 Number of line segments n

3 through 3+n-1 x-coordinate of edge starting points
3+n through 2*n+2 y-coordinate of edge starting points

Note Your polygon must not contain any self-intersections.

Rectangle

Row Value

1 3 (indicates a rectangle)

2 4 (number of line segments)

3 through 6 x-coordinate of edge starting points
7 through 10 y-coordinate of edge starting points

2-D Geometry Creation at Command Line

The encoding of a rectangle is the same as that of a polygon, except that the first row is 3 instead of
2.

Ellipse

Row Value

4 (indicates an ellipse)

x-coordinate of ellipse center

y-coordinate of ellipse center

First semiaxis length (strictly positive)

Second semiaxis length (strictly positive)

OB~ WINIF

Angle in radians from x axis to first semiaxis

Rectangle with Circular End Cap and Another Circular Excision

Specify a matrix that has a rectangle with a circular end cap and another circular excision.

Create Basic Shapes

First, create a rectangle and two adjoining circles.

rectl = [3
4
1

XN =
=

0.5
0.5

.51;
[1

Cl =
1
-0.25
0.251;

2 =11
-1
-0.25
0.251;

Append extra zeros to the circles so they have the same number of rows as the rectangle.

C1
C2

[C1l;zeros(length(rectl) - length(Cl),1)];
[C2;zeros(length(rectl) - length(C2),1)];

Combine the shapes into one matrix.
gd = [rectl,(Cl,C2];
Create Names for the Basic Shapes

In order to create a formula describing the unions and intersections of basic shapes, you need a name
for each basic shape. Give the names as a matrix whose columns contain the names of the

2-5

2 Setting Up Your PDE

2-6

corresponding columns in the basic shape matrix. Pad the columns with 0 or 32 if necessary so that
each has the same length.

One easy way to create the names is by specifying a character array whose rows contain the names,
and then taking the transpose. Use the char function to create the array. This function pads the rows
as needed so all have the same length. Continuing the example, give names for the three shapes.

ns
ns

char('rectl','C1l','C2');
ns';

Set Formula

Obtain the final geometry by writing a set of characters that describes the unions and intersections of
basic shapes. Use + for union, * for intersection, - for set difference, and parentheses for grouping. +
and * have the same grouping precedence. - has higher grouping precedence.

Continuing the example, specify the union of the rectangle and C1, and subtract C2.
sf = '"(rectl+Cl)-C2"';
Create Geometry and Remove Face Boundaries

After you have created the basic shapes, given them names, and specified a set formula, create the
geometry using decsg. Often, you also remove some or all of the resulting face boundaries.
Completing the example, combine the basic shapes using the set formula.

[dl,bt] = decsg(gd,sf,ns);
View the geometry with and without boundary removal.
pdegplot(dl, 'EdgeLabels', 'on', 'FaceLabels', 'on")

xlim([-1.5,1.5])
axis equal

2-D Geometry Creation at Command Line

D T H T '_‘| T F{ =
0.2r | F1 | F2 o FE;\ .
0.4 _,E{ Eﬁh .Eg i
i i E'E i =
-1.5 -1 -0.5 0 0.5 1 1.5

Remove the face boundaries.

[d12,bt2] = csgdel(dl,bt);

figure

pdegplot(dl2, 'EdgeLabels', 'on', 'FaceLabels', 'on")
xlim([-1.5,1.5])

axis equal

2-7

2 Setting Up Your PDE

2-8

| F1

n
-

-1 -0.5

Decomposed Geometry Data Structure

A decomposed geometry matrix has the following encoding. Each column of the matrix corresponds
to one boundary segment. Any 0 entry means no encoding is necessary for this row. So, for example,
if only line segments appear in the matrix, then the matrix has 7 rows. But if there is also a circular
segment, then the matrix has 10 rows. The extra three rows of the line columns are filled with 0.

segment, with direction
induced by start and end
points (O is exterior label)

segment, with direction
induced by start and end
points (O is exterior label)

Row Circle Line Ellipse

1 1 2 4

2 Starting x coordinate Starting x coordinate Starting x coordinate

3 Ending x coordinate Ending x coordinate Ending x coordinate

4 Starting y coordinate Starting y coordinate Starting y coordinate

5 Ending y coordinate Ending y coordinate Ending y coordinate

6 Region label to left of Region label to left of Region label to left of
segment, with direction segment, with direction segment, with direction
induced by start and end |induced by start and end |induced by start and end
points (0 is exterior label) |points (0 is exterior label) |points (0 is exterior label)

7 Region label to right of Region label to right of Region label to right of

segment, with direction
induced by start and end
points (0 is exterior label)

2-D Geometry Creation at Command Line

Row Circle Line Ellipse

8 x coordinate of circle 0 x coordinate of ellipse
center center

9 y coordinate of circle 0 y coordinate of ellipse
center center

10 Radius 0 Length of first semiaxis

11 0 0 Length of second semiaxis

12 0 0 Angle in radians between x

axis and first semiaxis

2-9

2 Setting Up Your PDE

Parametrized Function for 2-D Geometry Creation

2-10

Required Syntax

A geometry function describes the curves that bound the geometry regions. A curve is a parametrized
function (x(t),y(t)). The variable t ranges over a fixed interval. For best results, t must be proportional
to the arc length plus a constant.

You must specify at least two curves for each geometric region. For example, the 'circleg’
geometry function, which is available in Partial Differential Equation Toolbox, uses four curves to
describe a circle. Curves can intersect only at the beginning or end of parameter intervals.

Toolbox functions query your geometry function by passing in 0, 1, or 2 arguments. Conditionalize
your geometry function based on the number of input arguments to return the data described in this
table.

Number of Input Arguments Returned Data
0 (ne = pdegeom) ne is the number of edges in the geometry.
1(d = pdegeom(bs)) bs is a vector of edge segments. Your function returns d as a

matrix with one column for each edge segment specified in
bs. The rows of d are:

Start parameter value

End parameter value

Left region label, where “left” is with respect to the
direction from the start to the end parameter value

4 Right region label

A region label is the same as a subdomain number. The region
label of the exterior of the geometry is 0.

2([x,y] = pdegeom(bs,s)) s is an array of arc lengths, and bs is a scalar or an array of
the same size as s that gives the edge numbers. If bs is a
scalar, then it applies to every element in s. Your function
returns x and y, which are the x and y coordinates of the
edge segments specified in bs at the parameter value s. The
x and y arrays have the same size as s.

Relation Between Parametrization and Region Labels

The following figure shows how the direction of parameter increase relates to label numbering. The
arrows in the figure show the directions of increasing parameter values. The black dots indicate
curve beginning and end points. The red numbers indicate region labels. The red 0 in the center of
the figure indicates that the center square is a hole.

* The arrows by curves 1 and 2 show region 1 to the left and region 0 to the right.

* The arrows by curves 3 and 4 show region 0 to the left and region 1 to the right.

* The arrows by curves 5 and 6 show region 0 to the left and region 1 to the right.

» The arrows by curves 7 and 8 show region 1 to the left and region 0 to the right.

Parametrized Function for 2-D Geometry Creation

1 I 3 j |
1

0.8r1]
IL T)‘I

0.6 T

o 4 i 0 1] ¢ 0

0.4 r T
= = &

0.2r T

1
0f 1 > -
0.2 0 0.2 0.4 0.6 0.8 1 1.2

Geometry Function for a Circle

This example shows how to write a geometry function for creating a circular region. Parametrize a
circle with radius 1 centered at the origin (0,0), as follows:

x = cos(t),
y = sin(t),
0=<t=2m.

A geometry function must have at least two segments. To satisfy this requirement, break up the circle
into four segments.

s O0=st=un/2

e m/2<t<nm

e m=st=3m/2

e 3n/2=<t=<2n

Now that you have a parametrization, write the geometry function. Save this function file as
circlefunction.mon your MATLAB® path. This geometry is simple to create because the
parametrization does not change depending on the segment number.

function [x,y] = circlefunction(bs,s)
% Create a unit circle centered at (0,0) using four segments.
switch nargin

case 0

2-11

2 Setting Up Your PDE

x = 4; % four edge segments
return
case 1

A = [0,pi/2,pi,3*pi/2; % start parameter values
pi/2,pi,3*pi/2,2*pi; % end parameter values
1,1,1,1; % region label to left
0,0,0,0]; % region label to right

x = A(:,bs); % return requested columns

return
case 2

X = cos(s);

y = sin(s);

end

Plot the geometry displaying the edge numbers and the face label.

pdegplot(@circlefunction, 'EdgelLabels', 'on', 'FacelLabels', 'on")
axis equal

0.8t d ™

06F 1
047/ YT

0.2 f

\ F1

Arc Length Calculations for a Geometry Function

This example shows how to create a cardioid geometry using four distinct techniques. The techniques
are ways to parametrize your geometry using arc length calculations. The cardioid satisfies the
equation r = 2(1 + cos(®)).

ezpolar('2*(1l+cos(Phi))")

2-12

Parametrized Function for 2-D Geometry Creation

4
120 a0
3
150 y p -, 30
) N
[\,
|I I".I
|
180 \; 0
."r II
| /
\ ; J_.-"
\ /
N
210 7330
240 300
270

r=2({1+cos(d))

The following are the four ways to parametrize the cardioid as a function of the arc length:

» Use the pdearcl function with a polygonal approximation to the geometry. This approach is
general, accurate enough, and computationally fast.

* Use the integral and fzero functions to compute the arc length. This approach is more
computationally costly, but can be accurate without requiring you to choose an arbitrary polygon.

* Use an analytic calculation of the arc length. This approach is the best when it applies, but there
are many cases where it does not apply.

* Use a parametrization that is not proportional to the arc length plus a constant. This approach is
the simplest, but can yield a distorted mesh that does not give the most accurate solution to your
PDE problem.

Polygonal Approximation

The finite element method uses a triangular mesh to approximate the solution to a PDE numerically.
You can avoid loss in accuracy by taking a sufficiently fine polygonal approximation to the geometry.
The pdearcl function maps between parametrization and arc length in a form well suited to a
geometry function. Write the following geometry function for the cardioid.

function [x,y] = cardioidl(bs,s)
% CARDIOID1 Geometry file defining the geometry of a cardioid.

if nargin ==
X = 4; % four segments in boundary
return

end

2-13

2 Setting Up Your PDE

if nargin ==1
dl = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*%pi
1 1 1 1
0 0 0 01;
x = dl(:,bs);
return
end
X = zeros(size(s));
y = zeros(size(s));
if numel(bs) == % bs might need scalar expansion
bs = bs*ones(size(s)); % expand bs
end

nth = 400; % fine polygon, 100 segments per quadrant

th = linspace(0,2*pi,nth); % parametrization

r =2*%(1 + cos(th));

xt r.*cos(th); % Points for interpolation of arc lengths

yt r.*sin(th);

% Compute parameters corresponding to the arc length values in s

th = pdearcl(th, [xt;yt],s,0,2*pi); % th contains the parameters
Now compute x and y for the parameters th

= 2*¥(1 + cos(th));

r.*cos(th);

r.*sin(th);

r
x(:)
y(:)
end

Plot the geometry function.

pdegplot('cardioidl"', 'EdgeLabels', 'on')
axis equal

2-14

Parametrized Function for 2-D Geometry Creation

s \B\
1.5-j?2

0.5 b

With 400 line segments, the geometry looks smooth.

The built-in cardg function gives a slightly different version of this technique.

Integral for Arc Length

You can write an integral for the arc length of a curve. If the parametrization is in terms of x(u) and
y(u), then the arc length s(t) is

st = [t,/(%)z ; (%)Zdu.

For a given value s0, you can find t as the root of the equation s(t) = s0. The fzero function solves
this type of nonlinear equation.

Write the following geometry function for the cardioid example.

function [x,y] = cardioid2(bs,s)
% CARDIOID2 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary
return

end

if nargin ==1
dl = [0 pi/2 pi 3*pi/2

2-15

2 Setting Up Your PDE

pi/2 pi 3*pi/2 2*%pi
1 1 1 1
0 0 0 01;
x = dl(:,bs);
return
end
X = zeros(size(s));
y = zeros(size(s));
if numel(bs) == % bs might need scalar expansion
bs = bs*ones(size(s)); % expand bs
end
cbs = find(bs < 3); % upper half of cardioid
fun = @(ss)integral(@(t)sqrt(4*(1 + cos(t)).”2 + 4*sin(t).”2),0,ss);

sscale = fun(pi);
for ii = cbs(:)' % ensure a row vector

myfun = @(rr)fun(rr)-s(ii)*sscale/pi;
theta = fzero(myfun,[0,pi]);

r = 2*(1 + cos(theta));

x(1ii) = r*cos(theta);

y(ii) = r*sin(theta);

end

cbs = find(bs >= 3); % lower half of cardioid
s(cbs) = 2*pi - s(cbs)

for ii = cbs(:)'

’

theta = fzero(@(rr)fun(rr)-s(ii)*sscale/pi,[0,pi]);
r = 2*¥(1 + cos(theta));
x(ii) = r*cos(theta);
y(ii) = -r*sin(theta);
end
end

Plot the geometry function displaying the edge labels.

pdegplot('cardioid2', 'EdgeLabels', 'on')
axis equal

2-16

Parametrized Function for 2-D Geometry Creation

s \B\
15 /Ez

0.5 b

The geometry looks identical to the polygonal approximation. This integral version takes much longer
to calculate than the polygonal version.

Analytic Arc Length

You also can find an analytic expression for the arc length as a function of the parametrization. Then
you can give the parametrization in terms of arc length. For example, find an analytic expression for
the arc length by using Symbolic Math Toolbox™.

syms t real

r = 2*(1+cos(t));
X = r*¥cos(t);
y = r¥sin(t);

arcl = simplify(sqrt(diff(x)~2+diff(y)~2));
s = int(arcl,t,0,t, 'IgnoreAnalyticConstraints',true)

S =
8 sin(%)

In terms of the arc length s, the parameter tist = 2*asin(s/8), where s ranges from 0 to 8§,
corresponding to t ranging from O to r. For s between 8 and 16, by symmetry of the cardioid, t =
pi + 2*asin((16-s)/8). Furthermore, you can express x and y in terms of s by these analytic
calculations.

syms s real
th = 2*asin(s/8);

2-17

2 Setting Up Your PDE

2*%(1 + cos(th));

r expand(r)
r =
2
S
‘- T6
X = r*cos(th);
x = simplify(expand(x))
x:
S 3 2
517 16 T4
y = r*sin(th);
y = simplify(expand(y))
y: "
5(64—52)3/2
512

Now that you have analytic expressions for x and y in terms of the arc length s, write the geometry
function.

function [x,y] = cardioid3(bs,s)
% CARDIOID3 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary
return

end

if nargin ==
di=[06 4 8 12
4 8 12 16

1 1 1 1
0 0 0 01;
x = dl(:,bs);
return
end
X zeros(size

(s));

y = zeros(size(s));
if numel(bs) == 1 %
bs = bs*ones(size(

end

bs might need scalar expansion
s)); % expand bs

cbs = find(bs < 3); % upper half of cardioid
x(cbs) = s(cbs).”4/512 - 3*s(chs).”2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).”2).7(3/2)/512;
cbs = find(bs >= 3); % lower half

s(cbs) = 16 - s(cbs); % take the reflection

x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;

y(cbs) = -s(cbs).*(64 - s(cbs).”2).7(3/2)/512; % negate y
end

Plot the geometry function displaying the edge labels.

2-18

Parametrized Function for 2-D Geometry Creation

pdegplot('cardioid3"', 'EdgeLabels', 'on')
axis equal

0.5 b !

This analytic geometry looks slightly smoother than the previous versions. However, the difference is
inconsequential in terms of calculations.

Geometry Not Proportional to Arc Length

You also can write a geometry function where the parameter is not proportional to the arc length.
This approach can yield a distorted mesh.

function [x,y] = cardioid4(bs,s)
% CARDIOID4 Geometry file defining the geometry of a cardioid.

if nargin ==
x = 4; % four segments in boundary
return
end
if nargin ==1
dl = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*pi
1 1 1 1
0 0 0 0];
x = dl(:,bs);
return
end

2-19

2 Setting Up Your PDE

2*¥(1 + cos(s)); % s is not proportional to arc length
r.*cos(s);
r.*sin(s);

D< X 5
o}
[T | I (||

Plot the geometry function displaying the edge labels.

pdegplot('cardioid4', 'EdgelLabels', 'on')
axis equal

15t/ L

0.5

The labels are not evenly spaced on the edges because the parameter is not proportional to the arc
length.

Examine the default mesh for each of the four methods of creating a geometry.

subplot(2,2,1)

model = createpde;

geometryFromEdges (model,@cardioidl);
generateMesh(model);

pdeplot(model)

title('Polygons')

axis equal

subplot(2,2,2)

model = createpde;

geometryFromEdges (model,@cardioid2);
generateMesh(model);

pdeplot(model)

2-20

Parametrized Function for 2-D Geometry Creation

title('Integral')
axis equal

subplot(2,2,3)

model = createpde;

geometryFromEdges (model,@cardioid3);
generateMesh(model);

pdeplot(model)

title('Analytic')

axis equal

subplot(2,2,4)

model = createpde;

geometryFromEdges (model,@cardioid4);
generateMesh(model);

pdeplot(model)

title('Distorted')

axis equal

Polygons Integ ral
AR Al
2 kT TR at
O e A]
-u'.li. ‘?i"iﬂ T '&_1.-' AT) | -‘i g
1 T AT Ry AN 1 i
e e AT iy 0 T
W T ATAT L ATAT A A o ol
A T N b ey 2T I
LAt LA Tk Tt A TS A e
0 B 2 0 ot SRR
A i Ay U e e e ot
S g g e Y I T A e A
A S B A R Ty e e
5 ¥ R Ay ahf‘i'gq'
} ' AP CRAEERORRIOCNE
PATATE ¥y 0 A
AT o I.-!.'il 1‘1% #;:;,ﬂ
-2 =) P A
] E :
0 2 4 0 2 4
2
1
0
o
-2

The distorted mesh looks a bit less regular than the other meshes. It has some very narrow triangles
near the cusp of the cardioid. Nevertheless, all of the meshes appear to be usable.

Geometry Function Example with Subdomains and a Hole

This example shows how to create a geometry file for a region with subdomains and a hole. It uses
the "Analytic Arc Length" section of the "Arc Length Calculations for a Geometry Function" example

2-21

2 Setting Up Your PDE

and a variant of the circle function from "Geometry Function for a Circle". The geometry consists of
an outer cardioid that is divided into an upper half called subdomain 1 and a lower half called
subdomain 2. Also, the lower half has a circular hole centered at (1,-1) and of radius 1/2. The
following is the code of the geometry function.

function [x,y] = cardg3(bs,s)

% CARDG3 Geometry File defining

the geometry of a cardioid with two
subregions and a hole.

[)
“©
[)

“©

if nargin == 0
X =9; % 9 segments
return

end

if nargin ==1

% Outer cardioid
di=[0 4 8 12
8 12 16
Region 1 to the left in
the upper half, 2 in the lower
1 1 2 2
0 0 0 0],
% Dividing line between top and bottom
dl2 = [0
4
1 % Region 1 to the left
2]; % Region 2 to the right
% Inner circular hole

N

[)
“©
[)

“©

di3 = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*pi
0 0 0 0 % Empty to the left
2 2 2 2]; % Region 2 to the right

% Combine the three edge matrices
dl = [dl,dl2,d13];

x = dl(:,bs);
return

end

X zeros(size

(s));
y zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
bs = bs*ones(size(s)); % Expand bs
end
cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).”4/512 - 3*s(chs).”2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).”2).7(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid

s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).”2).7(3/2)/512;

cbs = find(bs == 5); % Index of straight line

x(cbs) = s(cbs);

y(cbs) = zeros(size(cbs));

cbs = find(bs > 5); % Inner circle radius 0.25 center (1,-1)

x(cbs) =1 + 0.25*cos(s(cbs));
y(cbs) = -1 + 0.25*sin(s(cbs));
end

Plot the geometry, including edge labels and subdomain labels.

2-22

Parametrized Function for 2-D Geometry Creation

pdegplot(@cardg3, 'EdgelLabels', 'on"',
'FacelLabels', 'on')
axis equal

2t)
/ez F1
15,

0.5 b

m
n

BB F2 /]

Nested Function for Geometry with Additional Parameters
This example shows how to include additional parameters into a function for creating a 2-D geometry.

When a 2-D geometry function requires additional parameters, you cannot use a standard anonymous
function approach because geometry functions return a varying number of arguments. Instead, you
can use global variables or nested functions. In most cases, the recommended approach is to use
nested functions.

The example solves a Poisson's equation with zero Dirichlet boundary conditions on all boundaries.
The geometry is a cardioid with an elliptic hole that has a center at (1,-1) and variable semiaxes. To
set up and solve the PDE model with this geometry, use a nested function. Here, the parent function
accepts the lengths of the semiaxes, rr and ss, as input parameters. The reason to nest
cardioidWithEllipseGeom within cardioidWithEllipseModel is that nested functions share
the workspace of their parent functions. Therefore, the cardioidWithEllipseGeom function can
access the values of rr and ss that you pass to cardioidWithEllipseModel.

function cardioidWithEllipseModel(rr,ss)

if (rr > 0) & (ss > 0)
model = createpde();

2-23

2 Setting Up Your PDE

2-24

geometryFromEdges (model,@cardioidwWithEllipseGeom) ;
pdegplot(model, 'EdgeLabels', 'on', 'FaceLabels', 'on')
axis equal

applyBoundaryCondition(model, 'dirichlet"', 'Edge',1:8,'u',0);
specifyCoefficients(model, 'm',0,'d',0,'c',1,'a"',0,'f",1);

generateMesh(model);
u = solvepde(model);
figure
pdeplot(model, 'XYData',u.NodalSolution)
axis equal
else

display('Semiaxes values must be positive numbers.')
end

function [x,y] = cardioidWithEllipseGeom(bs,s)

if nargin ==
x = 8; % eight segments in boundary
return
end
if nargin ==1
% Cardioid
dic=[06 4 8 12
4 8 12 16
1 1 1 1
6 0 0 0];
% Ellipse
dle = [0 pi/2 pi 3*pi/2
pi/2 pi 3*pi/2 2*pi
0 0 0 0
1 1 1 1];

% Combine the edge matrices
dl = [dlc,dle];

x = dl(:,bs);
return
end
X = zeros(size(s));
y = zeros(size(s));
if numel(bs) == 1 % Does bs need scalar expansion?
(e

bs = bs*ones(size(s)); % Expand bs
end

cbs = find(bs < 3); % Upper half of cardioid
x(cbs) = s(cbs).”4/512 - 3*s(cbhs).”2/16 + 4;
y(cbs) = s(cbs).*(64 - s(cbs).”2).7(3/2)/512;
cbs = find(bs >= 3 & bs <= 4); % Lower half of cardioid

s(cbs) = 16 - s(cbs);
x(cbs) = s(cbs).”4/512 - 3*s(cbs).”2/16 + 4;
y(cbs) = -s(cbs).*(64 - s(cbs).”2).7(3/2)/512;

cbs = find(bs > 4); % Inner ellipse center (1,-1) axes rr and ss

x(cbs) =1 + rr*cos(s(cbs));
y(cbs) = -1 + ss*sin(s(cbs));
end

Parametrized Function for 2-D Geometry Creation

end

When calling cardioidWithEllipseModel, ensure that the semiaxes values are small enough, so
that the elliptic hole appears entirely within the outer cardioid. Otherwise, the geometry becomes
invalid.

For example, call the function for the ellipse with the major semiaxis rr = 0.5 and the minor
semiaxis ss = 0.25. This function call returns the following geometry and the solution.

cardioidWithEllipseModel(0.5,0.25)

2r 7 1
Ll LN

0.5 f F1

2-25

2 Setting Up Your PDE

2571

0.5

2t

-1

2-26

Geometry from polyshape

Geometry from polyshape

This example shows how to create a polygonal geometry using the MATLAB polyshape function.
Then use the triangulated representation of the geometry as an input mesh for the
geometryFromMesh function.

Create and plot a polyshape object of a square with a hole.

t = pi/12:pi/12:2*pi;
pgon = polyshape({[-0.5 -0.5 0.5 0.5], 0.25*cos(t)},
{[0.5 -0.5 -0.5 0.5], 0.25*sin(t)})

pgon =
polyshape with properties:

Vertices: [29x2 double]
NumRegions: 1
NumHoles: 1

plot(pgon)
axis equal

0.4

0.2

0.6 0.4 0.2 0 0.2 0.4 0.6

Create a triangulation representation of this object.
tr = triangulation(pgon);

Create a PDE model.

2-27

2 Setting Up Your PDE

model = createpde;

With the triangulation data as a mesh, use the geometryFromMesh function to create a geometry.
Plot the geometry.

tnodes = tr.Points';
telements = tr.ConnectivitylList';

geometryFromMesh(model, tnodes, telements);
pdegplot(model)

ol / \
N \ ,/

Plot the mesh.

figure
pdemesh (model)

2-28

Geometry from polyshape

0.5

Because the triangulation data resulted in a low-quality mesh, generate a new finer mesh for further
analysis.

generateMesh(model)

ans =
FEMesh with properties:

Nodes: [2x1259 double]
Elements: [6x579 double]
MaxElementSize: 0.0566
MinElementSize: 0.0283
MeshGradation: 1.5000
GeometricOrder: 'quadratic'

Plot the mesh.

figure
pdemesh (model)

2-29

2 Setting Up Your PDE

2-30

0.5

0.4

0.3

0.2

0.1

0.4

0.2

0.4

0.6

STL File Import

STL File Import

This example shows how to import a geometry from an STL file, and then plot the geometry.
Generally, you create the STL file by exporting from a CAD system, such as SolidWorks®. For best
results, export a fine (not coarse) STL file in binary (not ASCII) format. After importing, view the
geometry using the pdegplot function. To see the face IDs, set the FacelLabels name-value pair to

‘on'.

View the geometry examples included with Partial Differential Equation Toolbox™.

figure
gm = importGeometry('Torus.stl');
pdegplot(gm)
80
60 -
40
ED -
0 -E
=20 ~ //fy
20 . A
0 > 20
20 hra /
40 60 . e 0
sp 20
figure

gm = importGeometry('Block.stl');
pdegplot(gm, 'FacelLabels', 'on')

2-31

2 Setting Up Your PDE

40 -

20~

100

figure
gm = importGeometry('PlatelOx10x1l.stl');
pdegplot(gm, 'FacelLabels', 'on')

2-32

STL File Import

figure
gm = importGeometry('Tetrahedron.stl');
pdegplot(gm, 'FacelLabels', 'on')

2-33

2 Setting Up Your PDE

2-34

80

60 ~

40

20

™

20
40
G0

figure

F1

gm = importGeometry('BracketWithHole.stl');

pdegplot(gm, 'FacelLabels', 'on')

80

100

STL File Import

figure
gm = importGeometry('DampingMounts.stl');
pdegplot(gm, 'CellLabels"', 'on")

2-35

2 Setting Up Your PDE

0
200 1500
-400
1500
figure
gm = importGeometry('MotherboardFragmentl.stl"');
pdegplot(gm)

2-36

STL File Import

0.02

0.04

figure
gm = importGeometry('PlateHoleSolid.stl');
pdegplot(gm, 'FacelLabels', 'on')

2-37

2 Setting Up Your PDE

20 - {:::::E%:::::;

15 ~

figure
gm = importGeometry('PlateSquareHoleSolid.stl");
pdegplot(gm)

2-38

STL File Import

200

40 -

100

figure
gm = importGeometry('SquareBeam.stl');
pdegplot(gm, 'FacelLabels', 'on')

2-39

2 Setting Up Your PDE

100 -~

50 —

™

0 -
-50 -

100 - A

100

500

figure
gm = importGeometry('BracketTwoHoles.stl');
pdegplot(gm, 'FacelLabels', 'on')

2-40

STL File Import

200

To see hidden portions of the geometry, rotate the figure using Rotate 3D button @] or the view
function. You can rotate the angle bracket to obtain the following view.

figure

pdegplot(gm, 'FaceLabels', 'on')
view([-24 -19])

2-41

2 Setting Up Your PDE

2-42

f——
100
z
F1
50
D
x
- ¥
0 il
=50 4
-50
o 150
20 100 200

figure
gm = importGeometry('ForearmLink.stl');
pdegplot(gm, 'FacelLabels', 'on');

100

STL File Import

60 -

40

20 -

=20 y

40 -

50 0

100 20

figure
pdegplot(gm, 'FacelLabels', 'on', 'FaceAlpha',0.5)

2-43

2 Setting Up Your PDE

60

40 -

20 -

=20 y

40 -

50 0

100 20

When you import a planar STL geometry, the toolbox converts it to a 2-D geometry by mapping it to
the XY plane.

figure

gm = importGeometry('PlateHolePlanar.stl');
pdegplot(gm, 'EdgeLabels', 'on")

2-44

STL File Import

207 E3
18 1
16 [
14T
12
= (& e
_J
E -
E -
4
2 -
0 EZ
0 5 10

figure
gm = importGeometry('PlateSquareHolePlanar.stl');
pdegplot(gm);

2-45

2 Setting Up Your PDE

2-46

200

180

160

140

120

100

100

Geometry from Triangulated Mesh

Geometry from Triangulated Mesh

3-D Geometry from a Finite Element Mesh

This example shows how to import a 3-D mesh into a PDE model. Importing a mesh creates the
corresponding geometry in the model.

The tetmesh file that ships with your software contains a 3-D mesh. Load the data into your
Workspace.

load tetmesh

Examine the node and element sizes.

size(tet)
ans = 1Ix2
4969 4
size(X)
ans = 1Ix2
1456 3

The data is transposed from the required form as described in geometryFromMesh.

Create data matrices of the appropriate sizes.

nodes = X';
elements = tet';

Create a PDE model and import the mesh.

model = createpde();
geometryFromMesh(model, nodes,elements);

The model contains the imported mesh.
model.Mesh

ans =
FEMesh with properties:

Nodes: [3x1456 double]
Elements: [4x4969 double]
MaxElementSize: 8.2971
MinElementSize: 1.9044
MeshGradation: []
GeometricOrder: 'linear'

View the geometry and face numbers.

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

2-47

2 Setting Up Your PDE

2-D Multidomain Geometry
Create a 2-D multidomain geometry from a mesh.

Load information about nodes, elements, and element-to-domain correspondence into your
workspace. The file MultidomainMesh2D ships with your software.

load MultidomainMesh2D

Create a PDE model.

model = createpde;

Import the mesh into the model.
geometryFromMesh(model,nodes,elements,ElementIdToRegionId);
View the geometry and face numbers.

pdegplot(model, 'FacelLabels', 'on')

2-48

Geometry from Triangulated Mesh

08 06 04 02 0 02 04 06 08

2-49

2 Setting Up Your PDE

Geometry from alphaShape

Create a 3-D geometry using the MATLAB alphaShape function. First, create an alphaShape object
of a block with a cylindrical hole. Then import the geometry into a PDE model from the alphaShape
boundary.

Create a 2-D mesh grid.
[xg,yg]l = meshgrid(-3:0.25:3);

Xg = xg(:);

yg = yg(:);

Create a unit disk. Remove all the mesh grid points that fall inside the unit disk, and include the unit
disk points.

t = (pi/24:pi/24:2*pi)";

X = cos(t);

y = sin(t);

circShp = alphaShape(x,y,2);

in = inShape(circShp,xg,yq);
Xg = [xg(~in); cos(t)];
yg = [yg(~in); sin(t)];

Create 3-D copies of the remaining mesh grid points, with the z-coordinates ranging from 0 through
1. Combine the points into an alphaShape object.

zg = ones(numel(xg),1);
xg = repmat(xg,5,1);
yg = repmat(yg,5,1);
zg = zg*(0:.25:1);

zg = zg(:);

shp = alphaShape(xg,yg,zg);
Obtain a surface mesh of the alphaShape object.
[elements,nodes] = boundaryFacets(shp);

Put the data in the correct shape for geometryFromMesh.

nodes = nodes';
elements = elements';

Create a PDE model and import the surface mesh.

model = createpde();
geometryFromMesh(model,nodes,elements);

View the geometry and face numbers.

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

2-50

Geometry from alphaShape

To use the geometry in an analysis, create a volume mesh.

generateMesh(model);

2-51

2 Setting Up Your PDE

Cuboids, Cylinders, and Spheres

This example shows how to create 3-D geometries formed by one or more cubic, cylindrical, and
spherical cells by using the multicuboid, multicylinder, and multisphere functions,
respectively. With these functions, you can create stacked or nested geometries. You also can create
geometries where some cells are empty; for example, hollow cylinders, cubes, or spheres.

All cells in a geometry must be of the same type: either cuboids, or cylinders, or spheres. These
functions do not combine cells of different types in one geometry.

Single Sphere
Create a geometry that consists of a single sphere and include this geometry in a PDE model.

Use the multisphere function to create a single sphere. The resulting geometry consists of one cell.
gm = multisphere(5)

gm =
DiscreteGeometry with properties:

NumCells:
NumFaces:
NumEdges:
NumVertices:
Vertices:

— OO

Create a PDE model.
model = createpde

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: []
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []

SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.
model.Geometry = gm

model =
PDEModel with properties:

PDESystemSize:
IsTimeDependent:
Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:

—_———— O

1x1 DiscreteGeometry]
]
]
]

2-52

Cuboids, Cylinders, and Spheres

Mesh: [1]
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model, 'CellLabels', 'on")

Cc1

-2

Nested Cuboids of Same Height

Create a geometry that consists of three nested cuboids of the same height and include this geometry
in a PDE model.

Create the geometry by using the multicuboid function. The resulting geometry consists of three
cells.

gm = multicuboid([2 3 5],[4 6 10],3)

gm =
DiscreteGeometry with properties:

NumCells: 3

NumFaces: 18

NumEdges: 36
NumVertices: 24

Vertices: [24x3 double]

2-53

2 Setting Up Your PDE

Create a PDE model.

model

createpde

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: []
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: T[]

SolverOptions: [1x1 pde.PDESolverOptions]

Include the geometry in the model.
model.Geometry = gm

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-54

Cuboids, Cylinders, and Spheres

Stacked Cylinders
Create a geometry that consists of three stacked cylinders and include this geometry in a PDE model.

Create the geometry by using the multicylinder function with the ZOffset argument. The
resulting geometry consists of four cells stacked on top of each other.

gm = multicylinder(10,[1 2 3 4], 'Z0ffset',[0 1 3 6])

gm =
DiscreteGeometry with properties:

NumCells: 4
NumFaces: 9
NumEdges: 5
NumVertices: 5
[

Vertices: [5x3 double]

Create a PDE model.
model = createpde

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0

2-55

2 Setting Up Your PDE

Geometry:
EquationCoefficients:
BoundaryConditions:
InitialConditions:
Mesh:

SolverOptions:

——————
= e e

x1 pde.PDESolverOptions]

Include the geometry in the model.
model.Geometry = gm

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

10 -

2-56

Cuboids, Cylinders, and Spheres

Hollow Cylinder
Create a hollow cylinder and include it as a geometry in a PDE model.

Create a hollow cylinder by using the multicylinder function with the Void argument. The
resulting geometry consists of one cell.

gm = multicylinder([9 10],10, 'Void', [true, false])

gm =
DiscreteGeometry with properties:

NumCells: 1
NumFaces: 4
NumEdges: 4
NumVertices: 4
[

Vertices: [4x3 double]

Create a PDE model.
model = createpde

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: []
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []

SolverOptions: [1

x1 pde.PDESolverOptions]

Include the geometry in the model.
model.Geometry = gm

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: [1x1 DiscreteGeometry]
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
SolverOptions: [1x1 pde.PDESolverOptions]

Plot the geometry.

pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-57

2 Setting Up Your PDE

10 -

2-58

Sphere in Cube

Sphere in Cube

This example shows how to create a nested multidomain geometry consisting of a unit sphere and a
cube. The first part of the example creates a cube with a spherical cavity by using alphaShape. The
second part creates a solid sphere using tetrahedral elements, and then combines all tetrahedral
elements to obtain a solid sphere embedded in a cube.

Cube with Spherical Cavity
First, create a geometry consisting of a cube with a spherical cavity. This geometry has one cell.

Create a 3-D rectangular mesh grid.

[xg, yg, zg] = meshgrid(-2:0.25:2);
Pcube = [xg(:) yg(:), zg(:)I];

Extract the grid points located outside of the unit spherical region.
Pcavitycube = Pcube(vecnorm(Pcube') > 1,:);

Create points on the unit sphere.

[x1,yl,z1] = sphere(24);

Psphere = [x1(:) y1(:) z1(:)];

Psphere = unique(Psphere, 'rows');

Combine the coordinates of the rectangular grid (without the points inside the sphere) and the
surface coordinates of the unit sphere.

Pcombined = [Pcavitycube;Pspherel;

Create an alphaShape object representing the cube with the spherical cavity.

shpCubeWithSphericalCavity = alphaShape(Pcombined(:,1)
Pcombined(:,2), ...
Pcombined(:,3));

figure

plot(shpCubeWithSphericalCavity, 'FaceAlpha',0.4)
title('alphaShape: Cube with Spherical Cavity')

2-59

2 Setting Up Your PDE

alphaShape: Cube with Spherical Cavity

AT TN AT

R PR A]
P P N T T, AT T]

T A T T T

Recover the triangulation that defines the domain of the alphaShape object.

[tri,loc] = alphaTriangulation(shpCubeWithSphericalCavity);

Create a PDE model.

modelCube = createpde;

Create a geometry from the mesh and import the geometry and the mesh into the model.
[gCube,mshCube] = geometryFromMesh(modelCube,loc',tri');

Plot the resulting geometry.

figure

pdegplot(modelCube, 'FaceAlpha',0.5, 'CellLabels', 'on")
title('PDEModel: Cube with Spherical Cavity')

2-60

Sphere in Cube

PDEModel: Cube with Spherical Cavity

Solid Sphere Nested in Cube

Create tetrahedral elements to form a solid sphere by using the spherical shell and adding a new
node at the center. First, obtain the spherical shell by extracting facets of the spherical boundary.

sphereFacets = boundaryFacets(mshCube, 'Face',3);
sphereNodes = findNodes(mshCube, 'region', 'Face',3);

Add a new node at the center.
newNodeID = size(mshCube.Nodes,2) + 1;

Construct the tetrahedral elements by using each of the three nodes on the spherical boundary facets
and the new node at the origin.

sphereTets = [sphereFacets; newNodeID*ones(1l,size(sphereFacets,2))];

Create a model that combines the cube with the spherical cavity and a sphere.

model = createpde;

Create a vector that maps all mshCube elements to cell 1, and all elements of the solid sphere to cell
2.

e2c = [ones(1l,size(mshCube.Elements,2)), 2*ones(1l,size(sphereTets,2))];

Add a new node at the center [0;0;0] to the nodes of the cube with the cavity.

2-61

2 Setting Up Your PDE

combinedNodes = [mshCube.Nodes,[0;0;0]];

Combine the element connectivity matrices.

combinedElements = [mshCube.Elements, sphereTets];

Create a two-cell geometry from the mesh.

[g,msh] = geometryFromMesh(model, combinedNodes, combinedElements,e2c);
figure

pdegplot(model, 'FaceAlpha',0.5, 'CellLabels','on")
title('Solid Sphere in Cube')

Solid Sphere in Cube

2-62

3-D Multidomain Geometry from 2-D Geometry

3-D Multidomain Geometry from 2-D Geometry

This example shows how to create a 3-D multidomain geometry by extruding a 2-D geometry
imported from STL data. The original 2-D geometry represents a cooled turbine blade section defined
by a 2-D profile.

Before extruding the geometry, this example modifies the original 2-D profile as follows:

* Translates the geometry to move the tip to the origin
» Aligns the chord with the x-axis
* Changes the dimensions from inches to millimeters

First, create a PDE model.

model = createpde;

Import the geometry into the model.

g = importGeometry(model, 'CooledBlade2D.STL");
Plot the geometry with the face labels.

figure
pdegplot(model, 'FaceLabels', 'on')

220 /|
A
.-"; .-'IIII
s i
200 | YA
/ /
/ /
/l’ T
A
180 | /’ /
0N/
YAy
160 SN/
I | o
1 /
SN/
_ 7 N\
1o — I |/
{ ,-F/ N H‘-. \\ ,_/fl //
. | Y /
/o |
120 | \H__ /N / P
S~
0 20 40 60 80 100 120

Translate the geometry to align the tip of the blade with the origin.

2-63

2 Setting Up Your PDE

tip = [1.802091,-127.98192215];
translate(g, tip);

Rotate the geometry to align the chord with the x-axis.

angle = -36.26005;
rotate(g,angle);

Scale the geometry to convert from inches to millimeters.
scale(g,[25.4 -25.41);
Plot the resulting geometry with the face labels.

figure
pdegplot(model, 'FacelLabels', 'on')

1000 [f"#.::f’”d_ﬂ"\S 4 ’P-\ ﬁh
)\ O o)
00 s ﬁ_%\\l — B
-
N
0 500 1000 1500 2000 2500

Fill the void regions with faces and plot the resulting geometry.

g = addFace(g,{3, 4, 5, 6, 7});

figure
pdegplot(model, 'FacelLabels', 'on')

2-64

3-D Multidomain Geometry from 2-D Geometry

- — :_—__-_- T
1000 [v \\ /6 \
[F3) LR) e
) S (F—.q:-, ~
—ee. - .
500 1 ~ — ~.
| [F2 \I _ — b
" =
K- _ﬂ'/l -"// --\---\--\-""-\-\.
D _I B -fll/ i i i i i i i -
0 500 1000 1500 2000 2500 3000 3500 4000

Extrude the geometry to create a stacked multilayer 3-D model of the blade. The thickness of each
layer is 200 mm.

g = extrude(g,[200 200 200]);
Plot the geometry with the cell labels.

figure
pdegplot(model, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-65

2 Setting Up Your PDE

500

-500

-1000

-1000
1000

500

4000

2-66

Multidomain Geometry Reconstructed from Mesh

Multidomain Geometry Reconstructed from Mesh

This example shows how to split a single-domain block geometry into two domains. The first part of
the example generates a mesh and divides the mesh elements into two groups. The second part of the
example creates a two-domain geometry based on this division.

Generate Mesh and Split Its Elements into Two Groups
Create a PDE model.

modelSingleDomain = createpde;

Import the geometry.

importGeometry(modelSingleDomain, 'Block.stl');
Generate and plot a mesh.

msh = generateMesh(modelSingleDomain);

figure
pdemesh(modelSingleDomain)

0
!
W

4

“d
%
]
i
AT

|-

*'I'
Wi
ey
I\
'\

K]

)

f.#_ﬁ.
HAAKAAA

o

N

L
\7

I
7
A

g
11
Ty

]
|
-
'
=
’5 ‘1’1
=
o
-
Y
I
Ty
N
]

v
N
]
]

=
<)
f

SIS
= o
[k
K
[
o
A
I
o b
L
I
)
o

hl#
¢

3

s

T
ot
-‘;

=

VAVAVAYAVaY
e

AVAAVAVA VAT

¥
PAVAVAVAVAVAVAYA 5,10
AT g A N

AV VaVaVaVavavava'y

i
[
I
5
s
<
S
-
~
5
<
~
=
Vat

A

5
L~

]
>

T
=
]
5
<
T ST
PKISKS
s
o
<
TS
<
.
[=
-,

K
|7
WAV
L T T i W

VA VAU VAVAVAVAVAraY
i S e e

) ¥,
AY, "'_“.‘*:#:## ¥,

Obtain the nodes and elements of the mesh.

nodes = msh.Nodes;
elements = msh.Elements;

2-67

2 Setting Up Your PDE

Find the x-coordinates of the geometric centers of all elements of the mesh. First, create an array of
the same size as elements that contains the x-coordinates of the nodes forming the mesh elements.
Each column of this vector contains the x-coordinates of 10 nodes that form an element.

elemXCoords = reshape(nodes(1l,elements),10,[]);

Compute the mean of each column of this array to get a vector of the x-coordinates of the element
geometric centers.

elemXCoordsGeometricCenter = mean(elemXCoords);

Assume that all elements have the same region ID and create a matrix ElementIdToRegionId.
ElementIdToRegionId = ones(1l,size(elements,2));

Find IDs of all elements for which the x-coordinate of the geometric center exceeds 30.

idx = mean(elemXCoords) > 30;

For the elements with centers located beyond x = 30, change the region IDs to 2.
ElementIdToRegionId(idx) = 2;

Create Geometry with Two Cells

Create a new PDE model.

modelTwoDomain = createpde;

Using geometryFromMesh, import the mesh. Assign the elements to two cells based on their IDs.
geometryFromMesh (modelTwoDomain, nodes,elements,ElementIdToRegionId)

ans =
DiscreteGeometry with properties:

NumCells: 2

NumFaces: 108

NumEdges: 205
NumVertices: 100

Vertices: [100x3 double]

Plot the geometry, displaying the cell labels.

pdegplot(modelTwoDomain, 'CellLabels', 'on', 'FaceAlpha',0.5)

2-68

Multidomain Geometry Reconstructed from Mesh

100

Highlight the elements from cell 1 in red and the elements from cell 2 in green.

elementIDsCelll = findElements(modelTwoDomain.Mesh, 'region', 'Cell’',1);
elementIDsCell2 = findElements(modelTwoDomain.Mesh, 'region', 'Cell',2);
figure

pdemesh (modelTwoDomain.Mesh.Nodes,
modelTwoDomain.Mesh.Elements(:,elementIDsCelll),
'FaceColor', 'red")

hold on

pdemesh (modelTwoDomain.Mesh.Nodes,
modelTwoDomain.Mesh.Elements(:,elementIDsCell2),
'FaceColor', 'green')

2-69

2 Setting Up Your PDE

2-70

Put Equations in Divergence Form

Put Equations in Divergence Form

In this section...

“Coefficient Matching for Divergence Form” on page 2-71
“Boundary Conditions Can Affect the ¢ Coefficient” on page 2-72
“Coefficient Conversion with Symbolic Math Toolbox” on page 2-72

“Some Equations Cannot Be Converted” on page 2-73

Coefficient Matching for Divergence Form

As explained in “Equations You Can Solve Using PDE Toolbox” on page 1-3, Partial Differential
Equation Toolbox solvers address equations of the form

-V (cVu)+au=f

or variants that have derivatives with respect to time, or that have eigenvalues, or are systems of
equations. These equations are in divergence form, where the differential operator begins V -. The
coefficients a, ¢, and f are functions of position (x, y, z) and possibly of the solution u.

However, you can have equations in a form with all the derivatives explicitly expanded, such as

9’u (1 +y2)62u

i R ol

62
(1 + XZ)GTLZI - 3xyaxay

In order to transform this expanded equation into the required form, you can try to match the
coefficients of the equation in divergence form to the expanded form. In divergence form, if

C1C3
C2 Cy

then

V- (cVu) = cruyy + (€2 + €3)uxy + Cauyy

acy 9Cy
X

ac ac
9, 94, 3 4
X ay

ax W)“y

Matching coefficients in the u,, and uy, terms in —V - (¢Vu) to the equation, you get
¢ = - (1+4%)
ca= —(1+y%)2

Then looking at the coefficients of u, and uy, which should be zero, you get

2-71

2 Setting Up Your PDE

acy ac ac
SO
Cy = 2xy.

aC3 664) _ac3 a

X ay X
SO
C3 =Xy

This completes the conversion of the equation to the divergence form

-V-(cVu)=0

Boundary Conditions Can Affect the c Coefficient
The c coefficient appears in the generalized Neumann condition
n- (cVu)+qu=g

So when you derive a divergence form of the c coefficient, keep in mind that this coefficient appears
elsewhere.

For example, consider the 2-D Poisson equation -u,, - u,, = f. Obviously, you can take ¢ = 1. But there
are other ¢ matrices that lead to the same equation: any that have ¢(2) + ¢(3) = 0.

C1 C3|[Uux

V- (cVu)=V-

Cy Cqf\Uy
=i(cu +cu)+i(cu + cauy)
E}% 1Ux 3ly ay 2Ux 4ty
= CrUxx T Callyy + (o + 03)uxy
So there is freedom in choosing a ¢ matrix. If you have a Neumann boundary condition such as

n - (cVu) =2

the boundary condition depends on which version of ¢ you use. In this case, make sure that you take a
version of ¢ that is compatible with both the equation and the boundary condition.

Coefficient Conversion with Symbolic Math Toolbox

You can transform a partial differential equation into the required form by using Symbolic Math
Toolbox™. The toolbox offers these two functions to help with the conversion:

* pdeCoefficients converts a PDE into the required form and extracts the coefficients into a
structure of double-precision numbers and function handles, which can be used by
specifyCoefficients. The pdeCoefficients function also can return a structure of symbolic
expressions, in which case you need to convert these expressions to double format before passing
them to specifyCoefficients.

* pdeCoefficientsToDouble converts symbolic PDE coefficients to double format.

2-72

Put Equations in Divergence Form

“Solve Partial Differential Equation of Nonlinear Heat Transfer” (Symbolic Math Toolbox) shows how
the Symbolic Math Toolbox functions can help you convert a PDE to the required form. “Nonlinear
Heat Transfer in Thin Plate” on page 3-190 shows the same example without the use of Symbolic
Math Toolbox.

Some Equations Cannot Be Converted

Sometimes it is not possible to find a conversion to a divergence form such as
-V (cVu)+au=f

For example, consider the equation

62_u + cos(x +y) Pu | 14°u _

By simple coefficient matching, you see that the coefficients c¢; and ¢, are -1 and -1/2 respectively.
However, there are no ¢, and c; that satisfy the remaining equations,

oy + 03 = —cosElx +y)

dCcy 9Cy _9Cy _

ax ay ay

ac3 | dcg dc3 0

ax T ay ax
See Also

Related Examples

. “Equations You Can Solve Using PDE Toolbox” on page 1-3

. “Solve Problems Using PDEModel Objects” on page 2-2

. “Solve Partial Differential Equation of Nonlinear Heat Transfer” (Symbolic Math Toolbox)

2-73

2 Setting Up Your PDE

f Coefficient for specifyCoefficients

2-74

This section describes how to write the coefficient f in the equation

au . ou

m?+dﬁ—v-(cVu)+au=f

or in similar equations. The question is how to write the coefficient f for inclusion in the PDE model
via specifyCoefficients.

N is the number of equations, see “Equations You Can Solve Using PDE Toolbox” on page 1-3. Give f
as either of the following:

+ If f is constant, give a column vector with N components. For example, if N = 3, f could be:

f =1[3;4;10];
+ If f is not constant, give a function handle. The function must be of the form

fcoeff = fcoeffunction(location,state)

Pass the coefficient to specifyCoefficients as a function handle, such as

specifyCoefficients(model, 'f',@fcoeffunction,...)

solvepde or solvepdeeig compute and populate the data in the location and state
structure arrays and pass this data to your function. You can define your function so that its output
depends on this data. You can use any names instead of Llocation and state, but the function
must have exactly two arguments. To use additional arguments in your function, wrap your
function (that takes additional arguments) with an anonymous function that takes only the
location and state arguments. For example:

fcoeff = ...
@(location,state) myfunWithAdditionalArgs(location,state,argl,arg2...)
specifyCoefficients(model, 'f', fcoeff, ...

* Tlocation is a structure with these fields:

* location.x
* location.y
* location.z
* Tlocation.subdomain

The fields x, y, and z represent the x-, y-, and 2- coordinates of points for which your function
calculates coefficient values. The subdomain field represents the subdomain numbers, which
currently apply only to 2-D models. The location fields are row vectors.

* state is a structure with these fields:

* state.u

*+ state.ux
* state.uy
* state.uz

f Coefficient for specifyCoefficients

+ state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy,
and state.uz fields are estimates of the solution’s partial derivatives (ou/dx, du/dy, and du/oz)
at the corresponding points of the location structure. The solution and gradient estimates are
N-by-Nr matrices. The state.time field is a scalar representing time for time-dependent
models.

Your function must return a matrix of size N-by-Nr, where Nr is the number of points in the location
that solvepde passes. Nris equal to the length of the Location.x or any other location field.
The function should evaluate f at these points.

For example, if N = 3, f could be:

function f = fcoeffunction(location,state)

N = 3; % Number of equations

nr = length(location.x); % Number of columns
f =

zeros(N,nr); % Allocate f

% Now the particular functional form of f

f(l,:) = location.x - location.y + state.u(l,:);
f(2,:) = 1 + tanh(state.ux(1,:)) + tanh(state.uy(3,:));
f(3,:) = (5 + state.u(3,:)).*sgrt(location.x.”2 + location.y.”2);

This represents the coefficient function

x—=y+u(l)
= |1 + tanh(ou(1)/ox) + tanh(ou(3)/ay)

(5 + u))x% + y2

See Also

Related Examples

. “Put Equations in Divergence Form” on page 2-71

. “Solve Problems Using PDEModel Objects” on page 2-2

. “m, d, or a Coefficient for specifyCoefficients” on page 2-91
. “c Coefficient for specifyCoefficients” on page 2-76

2-75

2 Setting Up Your PDE

¢ Coefficient for specifyCoefficients

In this section...

“Overview of the ¢ Coefficient” on page 2-76
“Definition of the ¢ Tensor Elements” on page 2-76
“Some c Vectors Can Be Short” on page 2-78
“Functional Form” on page 2-88

Overview of the ¢ Coefficient

This topic describes how to write the coefficient ¢ in equations such as

au L ou

mW+dW—V-(CVu)+au=f

The topic applies to the recommended workflow for including coefficients in your model using
specifyCoefficients.

For 2-D systems, c is a tensor with 4N? elements. For 3-D systems, c is a tensor with 9N? elements.
For a definition of the tensor elements, see “Definition of the ¢ Tensor Elements” on page 2-76. N is
the number of equations, see “Equations You Can Solve Using PDE Toolbox” on page 1-3.

To write the coefficient ¢ for inclusion in the PDE model via specifyCoefficients, give c as either
of the following:

+ If cis constant, give a column vector representing the elements in the tensor.
» If c is not constant, give a function handle. The function must be of the form

ccoeffunction(location, state)

solvepde or solvepdeeig pass the location and state structures to ccoeffunction. The
function must return a matrix of size N1-by-Nr, where:

* N1 is the length of the vector representing the c coefficient. There are several possible values

of N1, detailed in “Some ¢ Vectors Can Be Short” on page 2-78. For 2-D geometry,
1 = N1 < 4N?, and for 3-D geometry, 1 < N1 < 9N?2.

* Nris the number of points in the location that the solver passes. Nr is equal to the length of
the Llocation.x or any other Location field. The function should evaluate c at these points.

Definition of the c Tensor Elements
For 2-D systems, the notation V - (c ® Vu) represents an N-by-1 matrix with an (i,1)-component

Naxbi b lg ™ gx M a L2y T gy tha 2.5 T gy tia 225y |5

For 3-D systems, the notation V - (c ® Vu) represents an N-by-1 matrix with an (i,1)-component

2-76

¢ Coefficient for specifyCoefficients

IpN\A=Z
Qa|®

0 0, 0 L0 0.
xCi L1y T X G2y T 5x %1357 |4

.

+

IJ'2'16X ay l,J,Z,Zay ay 1,],2,382 j

+

||Mz TMZ

,_\,_\
[=3)
‘<|°"

Q!lq)

260315 T 5260325y T 5260335 4

.

All representations of the c coefficient begin with a “flattening” of the tensor to a matrix. For 2-D
systems, the N-by-N-by-2-by-2 tensor flattens to a 2N-by-2N matrix, where the matrix is logically an
N-by-N matrix of 2-by-2 blocks.

c(1,1,1,1) ¢1,1,1,2) ¢(1,2,1,1) ¢(1,2,1,2) ¢(1,N,1,1) ¢(1,N,1,2)
c(1,1,2,1) ¢(1,1,2,2) ¢(1,2,2,1) c(1,2,2,2) ¢(1,N,2,1) ¢(1,N,2,2)
c(2,1,1,1) ¢2,1,1,2) ¢(2,2,1,1) ¢(2,2,1,2) ¢(2,N,1,1) ¢(2,N,1,2)
c(2,1,2,1) ¢(2,1,2,2) ¢(2,2,2,1) ¢(2,2,2,2) ¢(2,N,2,1) ¢(2,N,2,2)

¢(N,N,1,1) ¢(N,N, 1,2)
¢(N,N,2,1) ¢(N,N, 2,2)

¢(N,1,1,1) ¢(N,1,1,2) ¢(N,2,1,1) ¢(N,2,1,2)
¢(N,1,2,1) ¢(N,1,2,2) ¢(N,2,2,1) ¢(N,2,2,2)

For 3-D systems, the N-by-N-by-3-by-3 tensor flattens to a 3N-by-3N matrix, where the matrix is
logically an N-by-N matrix of 3-by-3 blocks.

c(1,1,1,1) ¢(1,1,1,2) ¢(1,1,1,3) ¢(1,2,1,1) ¢(1,2,1,2) ¢(1,2,1,3) - ¢(1,N,1,1) ¢(1,N,1,2) c(1,N,1,3)
c(1,1,2,1) ¢(1,1,2,2) ¢(1,1,2,3) ¢(1,2,2,1) ¢(1,2,2,2) c¢(1,2,2,3) - ¢(1,N,2,1) c(1,N,2,2) c(1,N,2,3)
c(1,1,3,1) ¢(1,1,3,2) ¢(1,1,3,3) ¢(1,2,3,1) ¢(1,2,3,2) ¢(1,2,3,3) - ¢(1,N,3,1) c¢(1,N,3,2) c(1,N,3,3)
c(2,1,1,1) ¢(2,1,1,2) ¢(2,1,1,3) ¢(2,2,1,1) ¢(2,2,1,2) ¢(2,2,1,3) - ¢(2,N,1,1) c¢(2,N,1,2) ¢(2,N,1,3)
c(2,1,2,1) ¢(2,1,2,2) ¢(2,1,2,3) ¢(2,2,2,1) ¢(2,2,2,2) ¢(2,2,2,3) - ¢(2,N,2,1) ¢(2,N,2,2) c¢(2,N,2,3)

)) ol ,1) ¢(2,2,3,2) o) () ol ,3)

c(2,1,3,1) ¢(2,1,3,2) ¢(2,1,3,3 c(2,2,3,3) - ¢(2,N,3,1) ¢(2,N,3,2
¢(N,N,1,1) ¢(N,N,1,2) c(N,N, 1,3)
¢(N,N,2,1) ¢(N,N,2,2) c(N,N,2,3)

¢(N,N,3,1) ¢(N,N,3,2) c(N,N,3,3)

¢(N,1,1,1) ¢(N,1,1,2) ¢(N,1,1,3) ¢(N,2,1,1) ¢(N,2,1,2) ¢(N,2,1,3) -
¢(N,1,2,1) ¢(N,1,2,2) ¢(N, 1,2,3) ¢(N,2,2,1) ¢(N,2,2,2) ¢(N,2,2,3) -
¢(N,1,3,1) ¢(N,1,3,2) ¢(N, 1,3,3) ¢(N,2,3,1) ¢(N,2,3,2) ¢c(N,2,3,3) -

These matrices further get flattened into a column vector. First the N-by-N matrices of 2-by-2
and 3-by-3 blocks are transformed into "vectors" of 2-by-2 and 3-by-3 blocks. Then the blocks are
turned into vectors in the usual column-wise way.

The coefficient vector c¢ relates to the tensor c as follows. For 2-D systems,

2-77

2 Setting Up Your PDE

For 3-D systems,

c(1)
c(2)

c(4N - 2)

c(4)
c(5)

c(4N -3) c(4N - 1)
c(4N)

c(7)
c(8)

C(4N + 1) c(4N +3) - c(4N(N —=1)+ 1) c(AN(N - 1) + 3)
C(4N +2) c(4N +4) - c(4N(N — 1) +2) c(AN(N - 1) + 4)
C(4N +5) c(4N +7) - c(4N(N —1) +5) c(AN(N - 1) + 7)
C(4N + 6) c(4N +8) - c(4N(N — 1) + 6) c(4N(N - 1) + 8)
c(8N = 3) c(8N — 1) c(4N? - 3) c(4N? - 1)
c(8N -2) c(8N) c(4N? - 2) c(4N?)
Coefficient c(i,j,k,1) is in row (4N(j-1) + 4i + 2] + k - 6) of the vector c.

cON+1) cON+4) cON+7) - cON(N-1)+1) cON(N-1)+4) cONN-1)+7)

cON+2) c(ON+5) c(ON+8) - cON(N-1)+2) c(ON(N-1)+5) c(ON(N-1)+38)

cON+3) c(ON+6) cON+9) - cON(N-1)+3) c(ON(N-1)+6) c(ON(N-1)+9)

c(3)
c(10)
c(11)
c(12)

c(6)
c(13)
c(14)
c(15)

c(9)
c(16)
c(17)
c(18)

¢(9N - 8) c(9N - 5) c(9N - 2)
¢(ON —7) ¢(O9N —4) c(ON - 1)
¢(ON - 6) c(O9N - 3) c(9N)

c(9N +10) c(ON + 13) c(ON +16) -
Cc(ON +11) ¢(ON +14) cON +17) -
¢(9N +12) ¢(9N + 15) c(ON +18) -

c(ON% - 8)

c(18N - 8) c(18N = 5) c(18N -2) -
c(18N —7) c(18N - 4) c(18N-1) - c(ON? - 7)
c(18N - 6) c(18N -3) c(18N) c(ON? - 6)

Cc(ON(N = 1) +10) ¢c(ON(N — 1) + 13) ¢(IN(N - 1) + 16)
C(ON(N = 1) +11) ¢c(ON(N — 1) + 14) c(ON(N - 1) + 17)
Cc(ON(N — 1) +12) ¢c(ON(N — 1) + 15) ¢(ON(N — 1) + 18)

c(ON? - 2)

c(9N? - 5)
c(ON? - 4) ¢(ON? - 1)
C(ON? - 3) c(ON?)

Coefficient c(i,j,k,I) is in row (9N(j-1) + 9i + 31 + k - 12) of the vector c.

Some ¢ Vectors Can Be Short

Often, your tensor c¢ has structure, such as symmetric or block diagonal. In many cases, you can
represent ¢ using a smaller vector than one with 4N? components for 2-D or 9N? components for 3-D.
The following sections give the possibilities.

e “2-D Systems” on page 2-78

* “3-D Systems” on page 2-82

2-D Systems

* “Scalar c, 2-D Systems” on page 2-79
* “Two-Element Column Vector c, 2-D Systems” on page 2-79

* “Three-Element Column Vector c, 2-D Systems” on page 2-79
* “Four-Element Column Vector ¢, 2-D Systems” on page 2-79
* “N-Element Column Vector c, 2-D Systems” on page 2-80

* “2N-Element Column Vector c, 2-D Systems” on page 2-80

* “3N-Element Column Vector ¢, 2-D Systems” on page 2-81

2-78

¢ Coefficient for specifyCoefficients

* “4N-Element Column Vector ¢, 2-D Systems” on page 2-81
* “2N(2N+1)/2-Element Column Vector c, 2-D Systems” on page 2-82
* “4N2-Element Column Vector c, 2-D Systems” on page 2-82

Scalar ¢, 2-D Systems

The software interprets a scalar c as a diagonal matrix, with c(i,i,1,1) and c(i,i,2,2) equal to the scalar,
and all other entries 0.

c0 00 00
0c 00O 00
00 c0 00
00 O0c 00
00 00 ~cO
00 00 ~-0c

Two-Element Column Vector c, 2-D Systems

The software interprets a two-element column vector ¢ as a diagonal matrix, with c(i,i,1,1) and
c(i,i,2,2) as the two entries, and all other entries 0.

c(l) 0 o 0 - 0 O
0 c¢2) 0 O 0 0
0 0 c¢(1) O - 0 O
0 O 0 c(2) 0 0

0 0 0 0 -—c(1) O
0 0 0 0 - 0 c?2)

Three-Element Column Vector c, 2-D Systems

The software interprets a three-element column vector ¢ as a symmetric block diagonal matrix, with
c(i,i,1,1) = c(1), ¢(i,i,2,2) = ¢(3), and ¢(i,i,1,2) = ¢(i,i,2,1) = c(2).

c()c2) 0 O -0 0
c2)c3 0 0 -0 0
0 0 c)e - 0 0
0 0 c2)c(3 - 0 0

0 0 0 0 - c1)c(2)
0 0 0 0 - c(2)c)

Four-Element Column Vector ¢, 2-D Systems

The software interprets a four-element column vector c as a block diagonal matrix.

2-79

2 Setting Up Your PDE

2-80

0 0
0 0
0 0
0 0

0 0 0 0 - c(1)c@)
0 0 0 0 - c(2)c4d)

N-Element Column Vector c, 2-D Systems

The software interprets an N-element column vector ¢ as a diagonal matrix.

c(l) 0 0o 0 - 0 0
0 c¢1) 0 O 0 O
0 0 ¢2 0 - 0 O
0 0 0 c(2) 0 O

0 O 0 0 - 0 c(N)

Caution If N = 2, 3, or 4, the 2-, 3-, or 4-element column vector form takes precedence over the N-
element form. For example, if N = 3, and you have a ¢ matrix of the form

cl1 00000
cl1 0 00
0c200
0 0c20
0 0 0c3
0 00 O0c3

0
0
0
0

SO O O O O

you cannot use the N-element form of c. Instead, you must use the 2N-element form. If you give c as
the vector [c1;c2;c3], the software interprets c as a 3-element form:

clc20 0 0 0
c2¢c3 0 0 0 O
0 0clc20 0
0 0c2c30 0
0 00 0clc2
0 0 0 0c2c3

Instead, use the 2N-element form [c1l;cl;c2;c2;c3;c3].

2N-Element Column Vector ¢, 2-D Systems

The software interprets a 2N-element column vector ¢ as a diagonal matrix.

¢ Coefficient for specifyCoefficients

c(l) 0 0 O 0 0
0 c2) 0 O 0 0
0 0 ¢@3) O 0 0

0 0

0 0 0 0 —~c@2N-1) O
0 0 o 0 - 0 c(2N)

Caution If N = 2, the 4-element form takes precedence over the 2N-element form. For example, if
your ¢ matrix is

cl1 0 00
0c200
0 0c30
0 0 0c4

you cannot give c as [c1;c2;c3; c4], because the software interprets this vector as the 4-element
form

clc3 0 0
c2cd 0 0
0 0 clc3
0 0 c2ch

Instead, use the 3N-element form [c1;0;c2;c3;0;c4] or the 4N-element form
[c1:;0;0;c2;c3;0;0;c4].

3N-Element Column Vector ¢, 2-D Systems

The software interprets a 3N-element column vector ¢ as a symmetric block diagonal matrix.

cl)ec2) 0 0 - 0 0
c2)c3) 0 0 0 0
0 0 c@)cBh) - 0 0
0 0 «c(5)c(b) 0 0

0 0 0 0 - c(BN-2)c(BN-1)
0 0 0 0 - c@BN-1) c(3N)

Coefficient c(i,j,k,I) is in row (3i + k + I - 4) of the vector c.

4N-Element Column Vector c, 2-D Systems

The software interprets a 4N-element column vector ¢ as a block diagonal matrix.

2-81

2 Setting Up Your PDE

c(l)e3 0 O

c2)c4) 0 O
0 0 «cB)c(?
0 0 «c(6)c(8)
0 0 0 0
0 0 0 O

~ C(AN = 3) c(4N - 1)
- C(4N - 2)

0 0
0 0
0 0
0 0

c(4N)

Coefficient c(i,j,k,I) is in row (4i + 2I + k - 6) of the vector c.

2N(2N+1)/2-Element Column Vector ¢, 2-D Systems

The software interprets a 2N(2N+1)/2-element column vector ¢ as a symmetric matrix. In the
following diagram, ¢ means the entry is symmetric.

c(1) c(2) c(4) c(6)

~c((N-1)C2N-1)+1) c(N-1)(2N-1)+3)
~Cc(N=-1)2N-1)+2) c(N-1)(2N-1)+4)
~C(N=-1)2N-=1)+5) c(N-1)(2N-1)+7)
~Cc(N=-1)2N-1)4+6) c(N-1)(2N-1)+8)

c(N2N +1)-2) c(N2N+1)-1)
. c(N(2N + 1))

Coefficient c(ij,k,1), fori <j, is in row (2j2 - 3j + 4i + 2I + k - 5) of the vector c. For i = j, coefficient
c(ij k1) is in row (2i®2 + i + [+ k - 4) of the vector c.

4N2-Element Column Vector c, 2-D Systems

The software interprets a 4N?-element column vector ¢ as a matrix.

c(1) c(3)
c(2) c(4)
c(d) c(7)
c(6) c(8)

c(4N -2) c(4N)

C(4N - 3) c4N—-1) c(8N-3) c(8N-1)

Coefficient c(i,j,k,1) is in row (4N(j-1) + 4i + 2] + k - 6) of the vector c.

3-D Systems

* “Scalar c, 3-D Systems” on page 2-83

* “Three-Element Column Vector c, 3-D Systems” on page 2-83

+ “Six-Element Column Vector c, 3-D Systems” on page 2-83

* “Nine-Element Column Vector c, 3-D Systems” on page 2-84

2-82

C(4N + 1) c(4N +3) - c(4N(N —1) + 1) c(AN(N - 1) + 3)
C(4N +2) c(4N +4) - c(AN(N —1) +2) c(AN(N — 1) + 4)
C(4N +5) c(4N +7) -~ c(AN(N —1) +5) cAN(N — 1) + 7)
C(4N + 6) c(4N +8) - c(AN(N —1) + 6) c(AN(N — 1) + 8)
c(4N? - 3) c(4N? - 1)
c(8N -2) c(8N) c(4N? - 2) c(4N?)

¢ Coefficient for specifyCoefficients

* “N-Element Column Vector c, 3-D Systems” on page 2-84

* “3N-Element Column Vector ¢, 3-D Systems” on page 2-85

* “6N-Element Column Vector c, 3-D Systems” on page 2-87

* “9N-Element Column Vector c, 3-D Systems” on page 2-87

* “3N(3N+1)/2-Element Column Vector c, 3-D Systems” on page 2-87
* “9N2-Element Column Vector ¢, 3-D Systems” on page 2-88

Scalar ¢, 3-D Systems

The software interprets a scalar ¢ as a diagonal matrix, with c(i,i,1,1), ¢(i,i,2,2), and c(i,i,3,3) equal to
the scalar, and all other entries 0.

c00 000000
0Oc0O 000000
00c 000000
000 c00-000
000 0OcO-000
000 00c~-000
000 000-cO0O0
000 000-0¢cO
000 000-00cC

Three-Element Column Vector ¢, 3-D Systems

The software interprets a three-element column vector ¢ as a diagonal matrix, with ¢(i,i,1,1), ¢(i,i,2,2),
and c(i,i,3,3) as the three entries, and all other entries 0.

¢cy o 0 0 O O - 0 0 O

0 c2) O 0 0 O 0 0 O
0 0 ¢33 0 0 O 0 0 O
0 0 0 ¢1) 0 O 0 0 O
0 0 O 0 c2) 0 0 0 O
0 0 O 0 0 O

0 0 O 0 0 0 —¢c1) 0 O
0 0 O 0 0 0 - 0 ¢c2 O
0 0 O 0 0 0 - 0 0 3

Six-Element Column Vector ¢, 3-D Systems
The software interprets a six-element column vector ¢ as a symmetric block diagonal matrix, with

c(i,i

14y

Q

bty

1
1,2,
1
1

WNDN =
== —
[| | I

i
i
i
i

cli

(i
(i,
(i
(i

bty

2-83

2 Setting Up Your PDE

c(i,i,2,3) = ¢(i,i,3,2) = ¢(5)
c(i,1,3,3) = c(6).

In the following diagram, * means the entry is symmetric.

c1)c2)c4 0 O O - 0 0 O
c c@3ecd3 0 0 O 0 0 0
e e+ ¢c6) 0 0 O 0 0 O
0 0 0 «c(1)c2)c@) 0 0 O
0 0 O e ¢3)c(d)- 0 0 O
0 0 O -0 0 0

0 0 O 0 0 0 - c(l)c(2) c4)
0 0 O 0 0 0 - « ¢3)cd)
0 0 O 0 0 0 - ¢ + ¢(6)

Nine-Element Column Vector ¢, 3-D Systems

The software interprets a nine-element column vector c as a block diagonal matrix.

c1l)c4)ec(7) 0 0 O
c2)c(3)c® 0 0 0
c@)c®)c(9 0 0 0

0

0
0

0

0
0
0 0
0 ¢(2)c(d) c(8) - 0
0 0

- O O O o O O
- O O O o O O

- O O O

0 0 O 0 0 0 - c(l)c@)c(7)
0 0 O 0 0 0 - c2)c(d) c(8)
0 0 O 0 0 0 - c(3)c(6)c3d)

N-Element Column Vector ¢, 3-D Systems

The software interprets an N-element column vector ¢ as a diagonal matrix.

c1) 0 O o 0o o0 - 0 0 O
0 c(1) O 0 0 O 0 0 O
0 0 ¢l 0 0 O 0 0 O
0 0 0 ¢2) 0 O 0 0 O
0 0 O 0 c2) 0 0 0 O
0 0 O 0 0 c(2) 0 0 O

[}
o
()
o
()
O es
Q
2
Z
o
o

2-84

¢ Coefficient for specifyCoefficients

Caution If N = 3, 6, or 9, the 3-, 6-, or 9-element column vector form takes precedence over the N-
element form. For example, if N = 3, and you have a ¢ matrix of the form

c1) 0 O 0 0 O 0 0 O
0 c1) O 0 0 O 0 0 O
0 0 ¢l 0 0 O 0 0 O
0 0 0 ¢2 0 O 0 0 O
0 0 O 0 c2) 0 0 0 O
0 0 O 0 0 c2 0 0 O
0 0 O 0 0 0 ¢33 0 O
0 0 O 0 0 O 0 ¢@3) 0
0 0 O 0 0 0 0 0 c3)

you cannot use the N-element form of c. If you give ¢ as the vector [c1;c2; c3], the software
interprets c as a 3-element form:

c1) 0 O 0 0 O 0 0 O
0 c2) O 0 0 O 0 0 O
0 0 ¢33 0 0 O 0 0 O
0 0 0 ¢l 0 O 0 0 O
0 0 O 0 c2) 0 0 0 O
0 0 O 0 0 c3 0 0 O
0 0 O 0 0 0 ¢1) 0 O
0 0 O 0 0 0 0 ¢c2) 0
0 0 O 0 0 O 0 0 c3)

Instead, use one of these forms:

e 6N-element form — [c1;0;c1;0;0;cl;c2;0;c2;0;0;c2;c3;0;c3;0;0;c3]

* 9N-element form —
[c1;0;0;0;c1;0;0;0;c1;c2;0;0;0;c2;0;0;0;c2;c3;0;0;0;c3;0;0;0;c3]

3N-Element Column Vector ¢, 3-D Systems

The software interprets a 3N-element column vector ¢ as a diagonal matrix.

2-85

2 Setting Up Your PDE

c1) 0 O 0 0 O 0 0 0
0 c2) 0 0 0 O 0 0 0
0 0 ¢33 0 0 O 0 0 0
0 0 0 c4 0 O 0 0 0
0 0 O 0 cd) 0 0 0 0
0 0 O 0 0 c(6) 0 0 0
0 0 O 0 0 0 —c(3BN-2) 0 0
0 0 O 0O 0 0 - 0 ¢cBN-1) 0
0 0 O 0 0 0 - 0 0 ¢(3N)

Caution If N = 3, the 9-element form takes precedence over the 3N-element form. For example, if
your ¢ matrix is

c(1) 0 O 0 0 O 0 0 O
0 c2) O 0 0 O 0 0 O
0 0 c¢c3 0 0 O 0 0 O
0 0 0 c4 O O 0 0 O
0 0 O 0 cd5) 0 0 0 O
0 0 O 0 0 co6) 0O 0 O
0 0 O 0 0 0 ¢7) 0 O
0 0 O 0 0 O 0 ¢c8 0
0 0 O 0 0 O 0 0 c9)

you cannot give cas [cl;c2;c3;c4;c5;c6;c7;c8;c9], because the software interprets this vector
as the 9-element form

cl)c4)cec(7)y 0 0 O 0 0 O

c2)c®)cB 0 0 O 0 0 O

c3)c®)c® 0 0 O 0 0 O
0 0 0 cl)ec®c(7) O 0 O
0 0 0 c(2)cB)c® 0 0 0
0 0 0 c¢B)ec®)c® 0 0 O
0 0 O 0 0 0 c()c@)c(?)
0 0 O 0 0 0 «¢(2)c(5)cd)
0 0 O 0 0 0 «¢(3)c)cd)

Instead, use one of these forms:

* 6N-element form — [c1;0;c2;0;0;c3;¢c4;0;c5;0;0;c6;c7;0;c8;0;0;c9]

* 9N-element form —
[c1;0;0;0;c2;0;0;0;c3;c4;0;0;0;c5;0;0;0;c6;c7;0;0;0;c8;0;0;0;c9]

2-86

¢ Coefficient for specifyCoefficients

6N-Element Column Vector ¢, 3-D Systems

The software interprets a 6N-element column vector ¢ as a symmetric block diagonal matrix. In the
following diagram, ¢ means the entry is symmetric.

c(1) c(2)
* ¢(3)
0 0
(N
0 0
0 o0
0 o0
0 o0

c(4)
c

o 0 0 - 0 0 0

0 0 0 0 0 0

0 0 O 0 0 0
¢(7) ¢(8) c(10) 0 0 0

* ¢(9) c(11) 0 0 0

o o ¢(12) 0 0 0

0 0 0 - c(6N-=05)c(6N—-4) c(6N —2)

o 0 0 - . ¢(6N — 3) ¢(6N - 1)

o 0 0 - . . c(6N)

Coefficient c(i,j,k,I) is in row (6i + k + 1/2I(I-1) - 6) of the vector c.

9N-Element Column Vector c, 3-D Systems

The software interprets a 9N-element column vector ¢ as a block diagonal matrix.

0
0
0
0
0
0

Coefficient c(i,j,k,I) is in row (9i + 31 + k - 12) of the vector c.

- O O O

0
0
0

c(1) c(4) ¢(7)
c(2) ¢(5) ¢(8)
c(3) c¢(6) c(9)

- O O O

0
0
0

0
0

0 0
0 0

0

0
0
0
0
0

- O O O O O O

0 0 - c(ON—28) c(9N -5)
0 0 - cON-T7)c(ON - 4)
0 0 - ¢c(ON —6) c(9N - 3)

3N(3N+1)/2-Element Column Vector ¢, 3-D Systems

0
0
0
0
0
0

(9N - 2)
(ON -1)
c(9N)

(o}
(o

The software interprets a 3N(3N+1)/2-element column vector ¢ as a symmetric matrix. In the
following diagram, ¢ means the entry is symmetric.

2-87

2 Setting Up Your PDE

c(1) c(2) c(4) ¢(7) c(10) c(13) -+ cBIN-1)BIN-1)+1)/2+1 cBIN-DBIN-1)+1)/2+4 cBN-1BN-1)+1)/2+7
¢ c3)c(5) c8) c(11) c(14) ~ cBIN-DEBIN-1)+1)/2+2 cBIN-1)BIN-1)+1)/2+5 cBIN-DBN-1)+1)/2+8
¢ c(6) c9) c(12) c(15) ~ cBIN-DBIN-1)+1)/2+3 cBIN-DBWN-1)+1)/2+6 cBIN-DEBN-1)+1)/2+9

* ¢(16) c(17) ¢(19) - cBIN = 1)(BIN =1) +1)/2+10 cBN = 1)BN = 1) +1)/2+ 13 cBIN - 1)3IN = 1) + 1)/2 + 16

¢(18) ¢(20) -+ cBIN=1DBIN -1 +1)/2+11 cBIN -1)BN=1)+1)/2+ 14 ¢cBN - DEWN - 1) + 1)/2 + 17

© ¢(21) - cBIN-DBWN -1)+1)/2+12 cBIN-1)BIN -1) +1)/2+ 15 cBIN - 1)BIN-1) + 1)/2 + 18

c(3N(3N +1)/2 - 5) c(BN(3N +1)/2-4) c(BN(BN +1)/2-2)
. c(3N(3N +1)/2-3) c(BNBN+1)/2-1)
. c(3N(3N +1)/2)

Coefficient c(i,j,k,1), for i <j, is in row (9(j-1)(j-2)/2 + 6(j-1) + 9i + 31 + k - 12) of the vector c. For
i =j, coefficient c(ij,k,1) is in row (9(i-1)(i-2)/2 + 15(i-1) + 1/2I(I-1) + k) of the vector c.

9N2-Element Column Vector c, 3-D Systems

The software interprets a 9N?-element column vector ¢ as a matrix.

c(1) c(4) c(7) cON+1) c(ON+4) cON+7) -~ cONWN-1)+1) c(ON(N-1)+4) c(ON(N-1)+7)
c(2) c(5) c(8) cON+2) c(ON+5) c(ON+8) - c(ON(N-1)+2) c(ON(N-1)+5) c(ON(N-1)+8)
c(3) c(6) c(9) cON+3) cON+6) cON+9) - cONWN-1)+3) c(ON(N-1)+6) c(ON(N-1)+9)

c(10) c(13) c(16) c(9N +10) c(9N + 13) c(ON + 16) - c(ON(N — 1) + 10) ¢(ON(N — 1) + 13) c(ON(N - 1) + 16)
c(11) c(14) c(17) c(ON +11) c(9N + 14) c¢(ON +17) - c(ON(N — 1) + 11) ¢(ON(N — 1) + 14) c(ON(N - 1) +17)
c(12) c(15) c(18) c(ON +12) c(9N + 15) c(ON +18) - c(ON(N — 1) + 12) c¢(ON(N — 1) + 15) c(ON(N - 1) + 18)

c(IN —8) ¢(IN = 5) ¢(9N —2) c(18N —8) c¢(18N = 5) c(18N -2) - c(ON? - 8) c(ON? - 5) ¢(ON? - 2)
¢(ON —=7) c(ON —4) c(ON - 1) c(18N —7) ¢(18N —4) ¢(18N—-1) - c(ON?-7) C(ON? - 4) ¢(ON? - 1)
c(ON -6) c(ON -3) c(ON) c(18N-6) c(18N -3) c(18N) - c(ON? - 6) c(ON? - 3) c(ON?)

Coefficient c(i,j,k,I) is in row (IN(j-1) + 9i + 31 + k - 12) of the vector c.

Functional Form

If your c coefficient is not constant, represent it as a function of the form
ccoeff = ccoeffunction(location,state)

Pass the coefficient to specifyCoefficients as a function handle, such as
specifyCoefficients(model, 'c',@ccoeffunction,...)

solvepde or solvepdeeig compute and populate the data in the Llocation and state structure
arrays and pass this data to your function. You can define your function so that its output depends on
this data. You can use any names instead of location and state, but the function must have exactly
two arguments. To use additional arguments in your function, wrap your function (that takes
additional arguments) with an anonymous function that takes only the Llocation and state

arguments. For example:

2-88

¢ Coefficient for specifyCoefficients

ccoeff = ...

@(location,state) myfunWithAdditionalArgs(location,state,argl,arg2...)
specifyCoefficients(model, 'c',ccoeff, ...

* location is a structure with these fields:

location.x

location.y

location.z

location.subdomain

The fields x, y, and z represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The subdomain field represents the subdomain numbers, which
currently apply only to 2-D models. The location fields are row vectors.

* state is a structure with these fields:

state

state.

.uy
state.

state

state.

.u

ux

uz
time

The state.u field represents the current value of the solution u. The state.ux, state.uy, and
state.uz fields are estimates of the solution’s partial derivatives (du/ox, ou/dy, and du/dz) at the
corresponding points of the location structure. The solution and gradient estimates are N-by-Nr
matrices. The state. time field is a scalar representing time for time-dependent models.

Your function must return a matrix of size N1-by-Nr, where:

* N1 is the number of coefficients you pass to the solver. There are several possible values of N1,
detailed in “Some c Vectors Can Be Short” on page 2-78. For 2-D geometry, 1 < N1 < 4N?, and for
3-D geometry, 1 < N1 < 9N2.

* Nris the number of points in the location that the solver passes. Nr is equal to the length of the
location. x or any other location field. The function should evaluate c at these points.

For example, suppose N = 3, and you have 2-D geometry. Suppose your ¢ matrix is of the form

12
28

1+x%+ y2 u(2)
1+ u(1)? + u3)?
ug) . 14 x2 42
1+ u(l)*+u3
s1x,y) -1
-1 s51(x,y)

where unlisted elements are zero. Here s;(x,y) is 5 in subdomain 1, and is 10 in subdomain 2.

2-89

2 Setting Up Your PDE

This ¢ is a symmetric, block-diagonal matrix with different coefficients in each block. So it is natural
to represent ¢ as a “3N-Element Column Vector c, 2-D Systems” on page 2-81:

c1)ec2 0 0 - 0 0
c2)c@3) 0 0 0 0
0 0 c()c() - 0 0
0 0 «c(d)c(b) 0 0

0 0 0 0 —~cBN-2)c(BN-1)
0 0 0 0 - c@BN-1) c(3N)

For that form, the following function is appropriate.
function cmatrix = ccoeffunction(location,state)

nl = 9;
nr = numel(location.x);

cmatrix(1l,:) = ones(1l,nr);

cmatrix(2,:) = 2*ones(1l,nr);

cmatrix(3,:) = 8*ones(1l,nr);

cmatrix(4,:) = l+location.x.”2 + location.y.”2;

cmatrix(5,:) = state.u(2,:)./(1 + state.u(1,:).”2 + state.u(3,:).72);
cmatrix(6,:) = cmatrix(4,:);

cmatrix(7,:) = 5*location.subdomain;

cmatrix(8,:) = -ones(1l,nr);

cmatrix(9,:) = cmatrix(7,:);

To include this function as your c¢ coefficient, pass the function handle @ccoeffunction:

specifyCoefficients(model, 'c',@ccoeffunction, ...
See Also

Related Examples

. “Put Equations in Divergence Form” on page 2-71

. “Solve Problems Using PDEModel Objects” on page 2-2

. “f Coefficient for specifyCoefficients” on page 2-74

. “m, d, or a Coefficient for specifyCoefficients” on page 2-91

2-90

m, d, or a Coefficient for specifyCoefficients

m, d, or a Coefficient for specifyCoefficients

In this section...

“Coefficients m, d, or a” on page 2-91
“Short m, d, or a vectors” on page 2-91
“Nonconstant m, d, or a” on page 2-92

Coefficients m, d, or a
This section describes how to write the m, d, or a coefficients in the system of equations

62u

I a2 _v.(coVu)+au=f
ot

at
or in the eigenvalue system

-V :(c® Vu)+au = Adu
or

—V-(c@Vu)+au=A2mu

The topic applies to the recommended workflow for including coefficients in your model using
specifyCoefficients.

If there are N equations in the system, then these coefficients represent N-by-N matrices.

For constant (numeric) coefficient matrices, represent each coefficient using a column vector with N2
components. This column vector represents, for example, m(:).

For nonconstant coefficient matrices, see “Nonconstant m, d, or a” on page 2-92.

Note The d coefficient takes a special matrix form when m is nonzero. See “d Coefficient When m is
Nonzero” on page 5-1074.

Short m, d, or a vectors

Sometimes, your m, d, or a matrices are diagonal or symmetric. In these cases, you can represent m,
d, or a using a smaller vector than one with N> components. The following sections give the
possibilities.

* “Scalar m, d, or a” on page 2-91

* “N-Element Column Vector m, d, or a” on page 2-92

* “N(N+1)/2-Element Column Vector m, d, or a” on page 2-92
* “N2-Element Column Vector m, d, or a” on page 2-92

Scalarm, d, or a

The software interprets a scalar m, d, or a as a diagonal matrix.

2-91

2 Setting Up Your PDE

0a -0
00 - a

N-Element Column Vector m, d, or a

The software interprets an N-element column vector m, d, or a as a diagonal matrix.

a1y 0 - 0
0 d2)- 0
0 0 - d(N)

N(N+1)/2-Element Column Vector m, d, or a

The software interprets an N(IN+1)/2-element column vector m, d, or a as a symmetric matrix. In the
following diagram, ¢ means the entry is symmetric.

a(1) a(2) a(4) - a(N(N -1)/2)

* a(3) al®) - a(N(N-1)/2+1)
e ¢ qa(6) -~ alN(N-1)/2+2)

a
a

o o o .. a(NIN+1)/2)
Coefficient a(i,j) is in row (j(j-1)/2+i) of the vector a.
N2-Element Column Vector m, d, or a

The software interprets an N2-element column vector m, d, or a as a matrix.

d(1) dN +1) — d(N*=N +1)
d(2) d(N +2) -~ d(N* =N +2)

d(N) d@2N) - d(N?

Coefficient a(i,j) is in row (N(j-1)+1i) of the vector a.

Nonconstant m, d, or a

Note If both m and d are nonzero, then d must be a constant scalar or vector, not a function.

If any of the m, d, or a coefficients is not constant, represent it as a function of the form

dcoeff = dcoeffunction(location,state)

Pass the coefficient to specifyCoefficients as a function handle, such as

specifyCoefficients(model, 'd',@dcoeffunction,...)

2-92

m, d, or a Coefficient for specifyCoefficients

solvepde or solvepdeeig compute and populate the data in the location and state structure
arrays and pass this data to your function. You can define your function so that its output depends on
this data. You can use any names instead of location and state, but the function must have exactly
two arguments. To use additional arguments in your function, wrap your function (that takes
additional arguments) with an anonymous function that takes only the Llocation and state
arguments. For example:

dcoeff = ...
@(location,state) myfunWithAdditionalArgs(location,state,argl,arg2...)
specifyCoefficients(model, 'd',dcoeff, ...

* location is a structure with these fields:

* location.x
* location.y
* location.z
* location.subdomain

The fields x, y, and z represent the x-, y-, and z- coordinates of points for which your function
calculates coefficient values. The subdomain field represents the subdomain numbers, which
currently apply only to 2-D models. The location fields are row vectors.

* state is a structure with these fields:

* state.u

* state.ux

* state.uy

* state.uz

* state.time

The state.u field represents the current value of the solution u. The state.ux, state.uy, and
state.uz fields are estimates of the solution’s partial derivatives (du/ox, ou/dy, and du/dz) at the

corresponding points of the location structure. The solution and gradient estimates are N-by-Nr
matrices. The state. time field is a scalar representing time for time-dependent models.

Your function must return a matrix of size N1-by-Nr, where:

* N1 is the length of the vector representing the coefficient. There are several possible values of
N1, detailed in “Short m, d, or a vectors” on page 2-91. 1 = N1 < N2,

* Nris the number of points in the location that the solver passes. Nr is equal to the length of the
location.x or any other location field. The function should evaluate m, d, or a at these points.

For example, suppose N = 3, and you have 2-D geometry. Suppose your d matrix is of the form

1 s106Y) VX +)2

d=|s1(x,y) 4 -1
W +y? -1 9
where s;(x,y) is 5 in subdomain 1, and is 10 in subdomain 2.

This d is a symmetric matrix. So it is natural to represent d as a “N(N+1)/2-Element Column Vector
m, d, or a” on page 2-92:

2-93

2 Setting Up Your PDE

2-94

(4) - a(N(N-1)/2)
(5) = a(N(N-1)/2+1)
e ¢ a(®) - alN(N-1)/2+2)

. . . a(N(N+ 1)/2)
For that form, the following function is appropriate.

function dmatrix = dcoeffunction(location,state)

nl = 6;
nr = numel(location.x);

dmatrix = zeros(nl,nr);

dmatrix(1,:) = ones(1l,nr);

dmatrix(2,:) = 5*location.subdomain;

dmatrix(3,:) = 4*ones(1,nr);

dmatrix(4,:) = sqrt(location.x.”2 + location.y.”2);
dmatrix(5,:) = -ones(1l,nr);

dmatrix(6,:) = 9*ones(1,nr);

To include this function as your d coefficient, pass the function handle @dcoeffunction:

specifyCoefficients(model, 'd',@dcoeffunction,...
See Also

Related Examples

. “Put Equations in Divergence Form” on page 2-71

. “Solve Problems Using PDEModel Objects” on page 2-2
. “f Coefficient for specifyCoefficients” on page 2-74

. “c Coefficient for specifyCoefficients” on page 2-76

View, Edit, and Delete PDE Coefficients

View, Edit, and Delete PDE Coefficients

View Coefficients

A PDE model stores coefficients in its EquationCoefficients property. Suppose model is the

name of your model. Obtain the coefficients:

coeffs = model.EquationCoefficients;

To see the active coefficient assignment for a region, call the findCoefficients function. For

example, create a model and view the geometry.

model = createpde();
geometryFromEdges (model,@lshapeg) ;
pdegplot(model, 'FaceLabels', 'on")
ylim([-1.1,1.1])

axis equal

087
06T
F1
0475

027

F2 F3

Specify constant coefficients over all the regions in the model.
specifyCoefficients(model, 'm',0,'d',0,'c',1,'a"',0,'f",2);
Specity a different f coefficient on each subregion.

specifyCoefficients(model, 'm"',
specifyCoefficients(model, 'm"',

2-95

2 Setting Up Your PDE

Change the specification to have nonzero a on region 2.
specifyCoefficients(model, 'm',0,'d"',0,'c',1,'a",1,'f",3, 'Face',2);
View the coefficient assignment for region 2.

coeffs = model.EquationCoefficients;
findCoefficients(coeffs, 'Face',?2)

ans =
CoefficientAssignment with properties:

RegionType:
RegionID:

-V 0 Q3

This shows the "last assignment wins" characteristic.

View the coefficient assignment for region 1.
findCoefficients(coeffs, 'Face',1)

ans =
CoefficientAssignment with properties:

RegionType: 'face'’
RegionID: [1 2 3]

-V 0 Q3
NORR OO

The active coefficient assignment for region 1 includes all three regions, though this assignment is no
longer active for regions 2 and 3.

Delete Existing Coefficients

To delete all the coefficients in your PDE model, use delete. Suppose model is the name of your
model. Remove all coefficients from model.

delete(model.EquationCoefficients)

To delete specific coefficient assignments, delete them from the
model.EquationCoefficients.CoefficientAssignments vector.

coefv = model.EquationCoefficients.CoefficientAssignments;
delete(coefv(2))

2-96

View, Edit, and Delete PDE Coefficients

Tip You do not need to delete coefficients; you can override them by calling specifyCoefficients
again. However, deleting unused assignments can make your model smaller.

Change a Coefficient Assignment

To change a coefficient assignment, you need the coefficient handle. To get the coefficient handle:
* Retain the handle when using specifyCoefficients. For example,

coefhl = specifyCoefficients(model, 'm',m,'d"',d,"'c',c,'a',a,'f',f);
* Obtain the handle using findCoefficients. For example,

coeffs
coefhl

model.EquationCoefficients;
findCoefficients(coeffs, 'face',2);

You can change any property of the coefficient handle. For example,

coefhl.RegionID = [1,3];
coefhl.a = 2;
coefhl.c = @ccoeffun;

Note Editing an existing assignment in this way does not change its priority. For example, if the
active coefficient in region 3 was assigned after coefhl, then editing coefhl to include region 3
does not make coefhl the active coefficient in region 3.

2-97

2 Setting Up Your PDE

Set Initial Conditions

2-98

What Are Initial Conditions?

The term initial condition has two meanings:

» For time-dependent problems, the initial condition is the solution u at the initial time, and also the
initial time-derivative if the m coefficient is nonzero. Set the initial condition in the model using
setInitialConditions.

* For nonlinear stationary problems, the initial condition is a guess or approximation of the solution
u at the initial iteration of the nonlinear solver. Set the initial condition in the model using
setInitialConditions.

If you do not specify the initial condition for a stationary problem, solvepde uses the zero
function for the initial iteration.

Constant Initial Conditions

For a system of N equations, you can give constant initial conditions as either a scalar or as a vector
with N components. For example, if the initial condition is u = 15 for all components, use the
following command.

setInitialConditions (model, 15);

If N = 3, and the initial condition is 15 for the first equation, 0 for the second equation, and -3 for the
third equation, use the following commands.

ud = [15,0,-31;
setInitialConditions (model, u0);

If the m coefficient is nonzero, give an initial condition for the time derivative as well. Set this initial
derivative in the same form as the first initial condition. For example, if the initial derivative of the
solution is [4,3, 0], use the following commands.

UO = [15101-3];
uto = [4,3,0];
setInitialConditions(model,u0,ut0);

Nonconstant Initial Conditions

If your initial conditions are not constant, set them by writing a function of the form.

function u® = initfun(location)

solvepde computes and populates the data in the Location structure array and passes this data to
your function. You can define your function so that its output depends on this data. You can use any
name instead of Location. To use additional arguments in your function, wrap your function (that
takes additional arguments) with an anonymous function that takes only the location argument. For
example:

ud = @(location) initfunWithAdditionalArgs(location,argl,arg2...)
setInitialConditions(model, u0)

Set Initial Conditions

location is a structure array with fields location.x, location.y, and, for 3-D problems,
location. z. Your function must return a matrix u0 of size N-by-M, where N is the number of
equations in your PDE and M = length(location.x). The fields in location are row vectors.

For example, suppose you have a 2-D problem with N = 2 equations:

2 3+

U _g.(Vu) = X

ot 4-x-y
21,2

u(0) = 4+x°+y
0

du 0

220 =

a0 sin(xy)

) 3+ x . . o
This problemhasm=1,c=1,and f = 4-x—y| Because m is nonzero, give both an initial value of

u and an initial value of the derivative of u.

Write the following function files. Save them to a location on your MATLAB path.
function uinit = u@fun(location)

M = length(location.x);

uinit = zeros(2,M);

uinit(1l,:) = 4 + location.x.”2 + location.y.”2;
function utinit = utO@fun(location)

M = length(location.x);

utinit = zeros(2,M);

utinit(2,:) = sin(location.x.*location.y);

Pass the initial conditions to your PDE model:

ud = E@uOfun;

utd® = @utOfun;
setInitialConditions(model,u®,ut0);

Nodal Initial Conditions

You can use results of previous analysis as nodal initial conditions for your current model. The
geometry and mesh of the model you used to obtain the results and the current model must be the
same. For example, solve a time-dependent PDE problem for times from t0 to t1 with a time step
tstep.

results = solvepde(model,t0:tstep:tl);

If later you need to solve this PDE problem for times from t1 to t2, you can use results to set
initial conditions. If you do not explicitly specify the time step, setInitialConditions uses
results corresponding to the last solution time, t1.

setInitialConditions(model, results)

2-99

2 Setting Up Your PDE

2-100

To use results for a particular solution time instead of the last one, specify the solution time index
as a third parameter of setInitialConditions. For example, to use the solution at time t0 +
10*tstep, specify 11 as the third parameter.

setInitialConditions (model, results,11)

See Also

Related Examples

. “Solve Problems Using PDEModel Objects” on page 2-2

. “Wave Equation on Square Domain” on page 3-271

. “Inhomogeneous Heat Equation on Square Domain” on page 3-250

. “Heat Distribution in Circular Cylindrical Rod” on page 3-254

. “Heat Transfer Problem with Temperature-Dependent Properties” on page 3-235
. “Dynamic Analysis of Clamped Beam” on page 3-28

Nonlinear System with Cross-Coupling Between Components

Nonlinear System with Cross-Coupling Between Components

This example shows how to solve a nonlinear PDE system of two equations with cross-coupling
between the two components. The system is a Schnakenberg system

ouq

—¢ — D1dur = k(a = uy + ur’uy)
aup

W - DZAUZ = K(b - U12U2)

with the steady-state solution u;g = a + b and uyg = b__ The initial conditions are a small
(a

5
+b)
perturbation of the steady-state solution.

Solution for First Time Span

First, create a PDE model for a system of two equations.
model = createpde(2);

Create a cubic geometry and assign it to the model.

gm = multicuboid(1,1,1);
model.Geometry = gm;

Generate the mesh using the linear geometric order to save memory.

generateMesh(model, 'GeometricOrder', 'linear"');

Define the parameters of the system.

1 =0.05;
2 =1;
app 100;

oo X OO0
N Il ~

a
0.
0.

’
’

Based on these parameters, specify the PDE coefficients in the toolbox format.

d=[1;1];
c = [D1;D21];
f = @(region,state) [kappa*(a - state.u(l,:) + ...

state.u(l,:).”2.*state.u(2,:));
kappa*(b - state.u(l1,:).”2.*state.u(2,:))
1;

specifyCoefficients(model, 'm',0,'d',d,'c',c,'a",0,'f',f);

Set the initial conditions. The first component is a small perturbation of the steady-state solution
u1s = a + b. The second component is the steady-state solution uyg =

(@+b)%

icFen = @(region) [a + b + 107(-3)*exp(-100*((region.x - 1/3).72 ...
+ (region.y - 1/2).72));
(b/(a + b)~2)*ones(size(region.x))];

setInitialConditions(model,icFcn);

2-101

2 Setting Up Your PDE

Solve the system for times 0 through 2 seconds.

tlist = linspace(0,2,10);
results = solvepde(model, tlist);

Plot the first component of the solution at the last time step.

pdeplot3D(model, 'ColorMapData', results.NodalSolution(:,1,end));

Initial Condition for Second Time Span Based on Previous Solution

Now, resume the analysis and solve the problem for times from 2 to 5 seconds. Reduce the magnitude
of the previously obtained solution for time 2 seconds to 10% of the original value.

u2 = results.NodalSolution(:,:,end);
newResults = createPDEResults(model,u2(:)*0.1);

Use newResults as the initial condition for further analysis.

setInitialConditions(model, newResults);

Solve the system for times 2 through 5 seconds.

tlist = linspace(2,5,10);
results25 = solvepde(model,tlist);

Plot the first component of the solution at the last time step.

2-102

Nonlinear System with Cross-Coupling Between Components

figure
pdeplot3D(model, 'ColorMapData', results25.NodalSolution(:,1,end));

Alternatively, you can write a function that uses the results returned by the solver and computes the
initial conditions based on the results of the previous analysis.

NewIC

@(location) computeNewIC(results)

NewIC = function handle with value:
@(location)computeNewIC(results)

Remove the previous initial conditions.
delete(model.InitialConditions);

Set the initial conditions using the function NewIC.
setInitialConditions (model, NewIC)

ans =
GeometricInitialConditions with properties:

RegionType: 'cell’
RegionID: 1
InitialValue: @(location)computeNewIC(results)
InitialDerivative: []

2-103

2 Setting Up Your PDE

Solve the system for times 2 through 5 seconds.
results25f = solvepde(model, tlist);
Plot the first component of the solution at the last time step.

figure
pdeplot3D(model, 'ColorMapData', results25f.NodalSolution(:,1,end));

Function Computing Initial Conditions

function newlU® = computeNewIC(resultsObject)
newl0 = 0.1*resultsObject.NodalSolution(:,:,end).";
end

2-104

Set Initial Condition for Model with Fine Mesh Using Solution Obtained with Coarser Mesh

Set Initial Condition for Model with Fine Mesh Using Solution
Obtained with Coarser Mesh

Set initial conditions for a model with a fine mesh by using the coarse-mesh solution from a previous
analysis.

Create a PDE model and include the geometry of the built-in function squareg.

model = createpde;
geometryFromEdges (model,@squareqg) ;

Specify the coefficients, apply boundary conditions, and set initial conditions.
specifyCoefficients(model, 'm',0,'d"',1,'c',5,'a',0,'f"',0.1);
applyBoundaryCondition(model, 'dirichlet', 'Edge',1,'u',1);
setInitialConditions(model,10);

Generate a comparatively coarse mesh with the target maximum element edge length of 0.1.
generateMesh(model, 'Hmax',0.1);

Solve the model for the entire time span of 0 through 0.02 seconds.

tlist = linspace(0,2E-2,20);
Rtotal = solvepde(model, tlist);

Interpolate the solution at the origin for the entire time span.
singleSpanSol = Rtotal.interpolateSolution(0,0,1:numel(tlist));

Now solve the model for the first half of the time span. You will use this solution as an initial condition
when solving the model with a finer mesh for the second half of the time span.

tlistl = linspace(0,1E-2,10);
R1 = solvepde(model, tlistl);

Create an interpolant to interpolate the initial condition.

x = model.Mesh.Nodes(1,:)";
y = model.Mesh.Nodes(2,:)";
interpolant = scatteredInterpolant(x,y,R1l.NodalSolution(:,end));

Generate a finer mesh by setting the target maximum element edge length to 0.05.
generateMesh(model, 'Hmax',0.05);

Use the coarse mesh model results as the initial condition for the model with the finer mesh. For the
definition of the icFcn function, see Initial Conditions Function on page 2-0

setInitialConditions(model,@(region) icFcn(region,interpolant));
Solve the model for the second half of the time span.

tlist2 = linspace(lE-2,2E-2,10);
R2 = solvepde(model, tlist2);

Interpolate the solutions at the origin for the first and the second halves of the time span.

2-105

2 Setting Up Your PDE

multispanSoll
multispanSol2

Rl.interpolateSolution(
R2.interpolateSolution(

:numel(tlistl));
:numel(tlist2));

0,0,1
0,0,1
Plot all three solutions at the origin.

figure

plot(tlist,singleSpanSol)

hold on

plot(tlistl, multispanSoll, 'r*')

plot(tlist2, multispanSol2, 'ko')

legend('Overall solution', 'Coarse mesh solution', 'Fine mesh solution')

-1DD5 T T T T T T T T T

Onverall salution
Coarse mesh solution
0 Fine mesh solution J

9.95

99r

9.85T

981

QTS 1 1 1 1 1 1 1 1 1
0 0002 0004 0006 0008 001 0012 0,014 0.016 0.018 0.02

Initial Conditions Function
function u® = icFcn(region,interpolant)

ud = interpolant(region.x',region.y');
end

2-106

View, Edit, and Delete Initial Conditions

View, Edit, and Delete Initial Conditions

View Initial Conditions

A PDE model stores initial conditions in its InitialConditions property. Suppose model is the
name of your model. Obtain the initial conditions:

inits = model.InitialConditions;

To see the active initial conditions assignment for a region, call the findInitialConditions
function. For example, create a model and view the geometry.

model = createpde();
geometryFromEdges (model,@lshapeg);
pdegplot(model, 'FaceLabels', 'on")
ylim([-1.1,1.1])

axis equal

087
06T
F1
0475

027

F2 F3

Specify constant initial conditions over all the regions in the model.
setInitialConditions(model,2);
Specity a different initial condition on each subregion.

setInitialConditions(model, 3, 'Face',2);
setInitialConditions(model, 4, 'Face',3);

2-107

2 Setting Up Your PDE

2-108

View the initial condition assignment for region 2.

ics = model.InitialConditions;
findInitialConditions(ics, 'Face',?2)

ans =

GeometricInitialConditions with properties:

RegionType: 'face'
RegionID: 2
InitialValue: 3
InitialDerivative: []

This shows the "last assignment wins" characteristic.

View the initial conditions assignment for region 1.

findInitialConditions(ics, 'Face',1)

ans =

GeometricInitialConditions with properties:

RegionType: 'face’
RegionID: [1 2 3]
InitialValue: 2
InitialDerivative: []

The active initial conditions assignment for region 1 includes all three regions, though this
assignment is no longer active for regions 2 and 3.

Delete Existing Initial Conditions

To delete all the initial conditions in your PDE model, use delete. Suppose model is the name of
your model. Remove all initial conditions from mode'.

delete(model.InitialConditions)

To delete specific initial conditions assignments, delete them from the
model.InitialConditions.InitialConditionAssignments vector.

icv = model.InitialConditions.InitialConditionAssignments;
delete(icv(2))

Tip You do not need to delete initial conditions; you can override them by calling
setInitialConditions again. However, deleting unused assignments can make your model
smaller.

Change an Initial Conditions Assignment

To change an initial conditions assignment, you need the initial conditions handle. To get the initial
condition handle:

View, Edit, and Delete Initial Conditions

* Retain the handle when using setInitialConditions. For example,

icsl = setInitialConditions(model,?2);
* Obtain the handle using findInitialConditions. For example,

ics = model.InitialConditions;
icsl = findInitialConditions(ics, 'Face',2);

You can change any property of the initial conditions handle. For example,
icsl.RegionID = [1,3];

icsl.InitialValue = 2;
icsl.InitialDerivative = @utOfun;

Note Editing an existing assignment in this way does not change its priority. For example, if the
active initial conditions in region 3 was assigned after ics1, then editing ics1 to include region 3
does not make ics1 the active initial condition in region 3.

2-109

2 Setting Up Your PDE

No Boundary Conditions Between Subdomains

2-110

There are two types of boundaries:

* Boundaries between the interior of the region and the exterior of the region
* Boundaries between subdomains - these are boundaries in the interior of the region

Boundary conditions, either Dirichlet or generalized Neumann, apply only to boundaries between the
interior and exterior of the region. This is because the toolbox formulation uses the weak form of
PDEs. See “Finite Element Method Basics” on page 1-11. In the weak formulation you do not specify
boundary conditions between subdomains, even if coefficients are discontinuous between
subdomains. So the toolbox does not support defining boundary conditions on subdomain boundaries.

For example, look at a rectangular region with a circular subdomain. The red numbers are the
subdomain labels, the black numbers are the edge segment labels.

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]";

% Circle is code 1, center (.5,0), radius .2
Cl=1[1,.5,0,.2]";

% Pad C1l with zeros to enable concatenation with R1
Cl = [C1l;zeros(length(R1l)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects
ns = (char('R1','C1l'))";

% Set formula
sf = 'R1 + C1';

% Create geometry
gd = decsg(geom,sf,ns);

% View geometry

pdegplot(gd, 'EdgeLabels', 'on"',
'FaceLabels', 'on'")

xlim([-1.1 1.1])

axis equal

No Boundary Conditions Between Subdomains

0.4 T T T T EZ T T T T
0.2f — :
Fg F2 B\
0F E3 F1 | I =
02r —]
—D4 i i i i E"i i i i i

-1 0.8 -06 -04 -02 0 0.2 04 06 08 1

You need not give boundary conditions on segments 5, 6, 7, and 8, because these are subdomain
boundaries, not exterior boundaries.

However, if the circle is a hole, meaning it is not part of the region, then you do give boundary
conditions on segments 5, 6, 7, and 8.

2-111

2 Setting Up Your PDE

Identify Boundary Labels

You can see the edge labels by using the pdegplot function with the EdgeLabels name-value pair set
to 'on":

pdegplot(g, 'EdgelLabels', 'on')
For 3-D problems, set the FaceLabels name-value pairto 'on’.

For example, look at the edge labels for a simple annulus geometry:

el = [4;0;0;1;.5;0]; % Outside ellipse
e2 = [4;0;0;.5;.25;0]; % Inside ellipse
ee = [el e2]; % Both ellipses

lbls = char('outside', 'inside'); % Ellipse labels
lbls = lbls'; % Change to columns

sf = 'outside-inside'; % Set formula

dl = decsg(ee,sf,lbls); % Geometry now done
pdegplot(dl, 'EdgeLabels', 'on")

T T _J_,.-Etrl'dﬂ T —T— ____|______----- T T
D'q' B _-d'"f -""‘--\.__ T
- -
o s
T ——
0.2 B "E-y\ E\
0r | E
02t e 6 /
. ,f"/
e,
0.4+ T - _ﬂ_,,.FEZ’/ i
i i T i i——“‘flﬂf i i

08 06 04 02 0 0.2 0.4 0.6 0.8

2-112

Specify Boundary Conditions

Specify Boundary Conditions

Before you create boundary conditions, you need to create a PDEModel container. For details, see
“Solve Problems Using PDEModel Objects” on page 2-2. Suppose that you have a container named
model, and that the geometry is stored in model. Examine the geometry to see the label of each edge

or face.
pdegplot(model, 'EdgeLabels','on') % for 2-D
pdegplot(model, 'FacelLabels','on') % for 3-D

Now you can specify the boundary conditions for each edge or face. If you have a system of PDEs, you
can set a different boundary condition for each component on each boundary edge or face.

If you do not specify a boundary condition for an edge or face, the default is the Neumann boundary
condition with the zero values for 'g' and 'q"'.

If the boundary condition is a function of position, time, or the solution u, set boundary conditions by
using the syntax in “Nonconstant Boundary Conditions” on page 2-116.

Dirichlet Boundary Conditions
Scalar PDEs

The Dirichlet boundary condition implies that the solution u on a particular edge or face satisfies the
equation

hu=r,

where h and r are functions defined on 9Q, and can be functions of space (x, y, and, in 3-D, 2), the
solution u, and, for time-dependent equations, time. Often, you take h = 1, and set r to the
appropriate value. You can specify Dirichlet boundary conditions as the value of the solution u on the
boundary or as a pair of the parameters h and r.

Suppose that you have a PDE model named model, and edges or faces [el,e2,e3], where the
solution u must equal 2. Specify this boundary condition as follows.

% For 3-D geometry:
applyBoundaryCondition(model, 'dirichlet"', 'Face',[el,e2,e3],'u',2);
% For 2-D geometry:
applyBoundaryCondition(model, 'dirichlet"', 'Edge',[el,e2,e3],'u',2);

If the solution on edges or faces [el, e2, e3] satisfies the equation 2u = 3, specify the boundary
condition as follows.

[s)

% For 3-D geometry:

applyBoundaryCondition(model, 'dirichlet', 'Face',[el,e2,e3],'r"',3,'h",2);
% For 2-D geometry:

applyBoundaryCondition(model, 'dirichlet"', 'Edge',[el,e2,e3],'r"',3,'h",2);
* Ifyou do not specify 'r', applyBoundaryCondition sets its value to 0.

» Ifyou do not specify 'h', applyBoundaryCondition sets its value to 1.

2-113

2 Setting Up Your PDE

2-114

Systems of PDEs

The Dirichlet boundary condition for a system of PDEs is hu = r, where h is a matrix, u is the solution
vector, and r is a vector.

Suppose that you have a PDE model named model, and edge or face labels [el, e2,e3] where the
first component of the solution u must equal 1, while the second and third components must equal 2.
Specify this boundary condition as follows.

% For 3-D geometry:

applyBoundaryCondition(model, 'dirichlet', 'Face',[el,e2,e3], ...
'u',[1,2,2], 'EquationIndex',[1,2,3]);

% For 2-D geometry:

applyBoundaryCondition(model, 'dirichlet', 'Edge',[el,e2,e3], ...
'u',[1,2,2], 'EquationIndex',[1,2,3]);

* The 'u' and 'EquationIndex' arguments must have the same length.

* Ifyou exclude the 'EquationIndex' argument, the 'u' argument must have length N.

* Ifyou exclude the 'u' argument, applyBoundaryCondition sets the components in
"EquationIndex' to 0.

Suppose that you have a PDE model named model, and edge or face labels [el,e2,e3] where the
first, second, and third components of the solution u must satisfy the equations 2u; = 3, 4u, = 5, and
6uz = 7, respectively. Specify this boundary condition as follows.

HO = [2 0 0;
0 4 0;
00 6];
RO = [3;5;7];

% For 3-D geometry:

applyBoundaryCondition(model, 'dirichlet’,
'Face',[el,e2,e3],
"h',HO, "'r',R0O);

% For 2-D geometry:

applyBoundaryCondition(model, 'dirichlet’,
'Edge', [el,e2,e3],
"h',HO, 'r',R0O);

* The 'r' parameter must be a numeric vector of length N. If you do not specify 'r',
applyBoundaryCondition sets the values to 0.

¢ The 'h' parameter can be an N-by-N numeric matrix or a vector of length N? corresponding to
the linear indexing form of the N-by-N matrix. For details about the linear indexing form, see
“Array Indexing”. If you do not specify 'h', applyBoundaryCondition sets the value to the
identity matrix.

Neumann Boundary Conditions
Scalar PDEs

Generalized Neumann boundary conditions imply that the solution u on the edge or face satisfies the
equation

ﬁ-(cVu)+qu=g

Specify Boundary Conditions

The coefficient c is the same as the coefficient of the second-order differential operator in the PDE
equation

-V - (cVu) + au = f on domain Q

7 is the outward unit normal. q and g are functions defined on 9(, and can be functions of space (x, y,
and, in 3-D, 2), the solution u, and, for time-dependent equations, time.

Suppose that you have a PDE model named model, and edges or faces [el,e2,e3] where the
solution u must satisfy the Neumann boundary condition with q = 2 and g = 3. Specify this
boundary condition as follows.

% For 3-D geometry:
applyBoundaryCondition(model, 'neumann', 'Face',[el,e2,e3]1,'q',2,'q9"',3);
% For 2-D geometry:
applyBoundaryCondition(model, 'neumann', 'Edge', [el,e2,e3]1,'q"',2,'q9"',3);

» Ifyou do not specify 'g', applyBoundaryCondition sets its value to 0.
» Ifyou do not specify 'q', applyBoundaryCondition sets its value to 0.

Systems of PDEs

Neumann boundary conditions for a system of PDEs isn - (¢ ® Vu) + qu = ¢. For 2-D systems, the
notation n - (c ® Vu) means the N-by-1 vector with (i,1)-component

N
d d . d . i)
121 (cos(a)c,-, 13y + cos(a)g;, j, 1,2@ + sin(a)c;, j, 2,13y + sin(a)c;, j, 2,25) u;j
where the outward normal vector of the boundary n = (cos(a), sin(a)).

For 3-D systems, the notation n - (c ® Vu) means the N-by-1 vector with (i,1)-component

N

.
I
—
—_—

. d . d . d
sin(¢)cos(8)c;, j, L15x + sin(¢p)cos(0)c;, j, 125y + sin(¢p)cos(0)c;, j, 1135)%

N
. . 9) . 5 . .)
+ > (51n(<p)31n(9)ci,j, 2,15, T sin(@)sin(B)c;, j,2,2 55 + sin(g)sin(B)c;, j, 2,35)11]
j=1 y
N ; . 6
+ ;1 (COS(G)Ci, J,3,155 +cos(6)c;, j, 3,29y cos(0)ci, 3,357 |uj

.

where the outward normal vector of the boundary n = (sin(@)cos(6), sin(¢)sin(8), cos(¢)). For each
edge or face segment, there are a total of N boundary conditions.

Suppose that you have a PDE model named model, and edges or faces [el,e2,e3] where the first
component of the solution u must satisfy the Neumann boundary condition withq = 2andg = 3,
and the second component must satisfy the Neumann boundary condition withq = 4and g = 5.
Specify this boundary condition as follows.

[2 0; 0 4];

[3;5];

% For 3-D geometry:

applyBoundaryCondition(model, 'neumann', 'Face',[el,e2,e3],'q"',Q,"'qg"',G);

% For 2-D geometry:
applyBoundaryCondition(model, 'neumann', 'Edge', [el,e2,e3],'q',Q,'g"',G);

[aF =]

2-115

2 Setting Up Your PDE

2-116

* The 'g' parameter must be a numeric vector of length N. If you do not specify 'g"’,
applyBoundaryCondition sets the values to 0.

« The 'q' parameter can be an N-by-N numeric matrix or a vector of length N? corresponding to
the linear indexing form of the N-by-N matrix. For details about the linear indexing form, see
“Array Indexing”. If you do not specify 'q', applyBoundaryCondition sets the values to 0.

Mixed Boundary Conditions

If some equations in your system of PDEs must satisfy the Dirichlet boundary condition and some
must satisfy the Neumann boundary condition for the same geometric region, use the 'mixed’
parameter to apply boundary conditions in one call. Note that applyBoundaryCondition uses the
default Neumann boundary condition with g = 0 and q = 0 for equations for which you do not
explicitly specify a boundary condition.

Suppose that you have a PDE model named model, and edge or face labels [el,e2,e3] where the
first component of the solution u must equal 11, the second component must equal 22, and the third
component must satisfy the Neumann boundary condition with g = 3 and g = 4. Express this
boundary condition as follows.

[000;, OO0 0; 00 3];

[0;0;41;

% For 3-D geometry:

applyBoundaryCondition(model, 'mixed', 'Face', [el,e2,e3],...
'u',[11,22], 'EquationIndex"',[1,2],...
'q9',Q,'9",G6);

[aR =]

[J)

% For 2-D geometry:

applyBoundaryCondition(model, 'mixed"', ...
"Edge',[el,e2,e3],'u',[11,22], ...
'EquationIndex',[1,2],'q',Q,'g"',G);

Suppose that you have a PDE model named model, and edges or faces [el,e2,e3] where the first
component of the solution u must satisfy the Dirichlet boundary condition 2u; = 3, the second
component must satisfy the Neumann boundary condition with q = 4 and g = 5, and the third
component must satisfy the Neumann boundary condition with q = 6 and g = 7. Express this
boundary condition as follows.

h=1[200;, 000; 00 0];
r=1[3;0;0];

Q=[000; 040; 00 6];
G = [0;5;7];

% For 3-D geometry:

applyBoundaryCondition(model, ‘mixed"',
'Face',[el,e2,e3],
IhlihilrllrrquIO;IgIIG);

% For 2-D geometry:

applyBoundaryCondition(model, 'mixed"', .
'Edge', [el,e2,e3],
‘h',h,'r',r,'q",Q,'9"',G);

Nonconstant Boundary Conditions

Use functions to express nonconstant boundary conditions.

applyBoundaryCondition(model, 'dirichlet’,
'"Edge', 1,

Specify Boundary Conditions

‘r',@myrfun);
applyBoundaryCondition(model, 'neumann',

'Face',2, ...

‘g',@mygfun,'q",@myqfun);
applyBoundaryCondition(model, ‘mixed"', ...

'Edge', [3,4],

‘u',@myufun, ...

"EquationIndex',[2,3]1);

Each function must have the following syntax.

function bcMatrix = myfun(location,state)

solvepde or solvepdeeig compute and populate the data in the Llocation and state structure
arrays and pass this data to your function. You can define your function so that its output depends on
this data. You can use any names instead of location and state, but the function must have exactly
two arguments. To use additional arguments in your function, wrap your function (that takes
additional arguments) with an anonymous function that takes only the Llocation and state

arguments. For example:

uval = ...

@(location,state) myfunWithAdditionalArgs(location,state,argl,arg2...)

applyBoundaryCondition(model, ‘mixed"', ...
"Edge',[3,4],
"u',uval,
"EquationIndex',[2,31]1);

* location — A structure containing the following fields. If you pass a name-value pair to
applyBoundaryCondition with Vectorized setto 'on', then location can contain several
evaluation points. If you do not set Vectorized or use Vectorized, 'off', then solvers pass

just one evaluation point in each call.

* Tlocation.x — The x-coordinate of the point or points

* location.y — The y-coordinate of the point or points

* location.z — For 3-D geometry, the z-coordinate of the point or points

Furthermore, if there are Neumann conditions, then solvers pass the following data in the

location structure.

* location.nx — x-component of the normal vector at the evaluation point or points

* location.ny — y-component of the normal vector at the evaluation point or points

* location.nz — For 3-D geometry, z-component of the normal vector at the evaluation point

or points

* state — For transient or nonlinear problems.

* state.u contains the solution vector at evaluation points. state.u is an N-by-M matrix,
where each column corresponds to one evaluation point, and M is the number of evaluation

points.

* state.time contains the time at evaluation points. state.time is a scalar.

Your function returns bcMatrix. This matrix has the following form, depending on the boundary

condition type.

2-117

2 Setting Up Your PDE

* 'u' — NI-by-M matrix, where each column corresponds to one evaluation point, and M is the
number of evaluation points. N1 is the length of the 'EquationIndex' argument. If there is no
'"EquationIndex' argument, then NI = N.

* 'r'or'g'— N-by-M matrix, where each column corresponds to one evaluation point, and M is
the number of evaluation points.

« 'h'or'q' — N?by-M matrix, where each column corresponds to one evaluation point via linear
indexing of the underlying N-by-N matrix, and M is the number of evaluation points. Alternatively,
an N-by-N-by-M array, where each evaluation point is an N-by-N matrix. For details about linear
indexing, see “Array Indexing”.

If boundary conditions depend on state.u or state.time, ensure that your function returns a
matrix of NaN of the correct size when state.u or state.time are NaN. Solvers check whether a
problem is nonlinear or time-dependent by passing NaN state values, and looking for returned NaN

values.

See “Solve PDEs with Nonconstant Boundary Conditions” on page 2-123.

2-118

Solve PDEs with Constant Boundary Conditions

Solve PDEs with Constant Boundary Conditions

This example shows how to apply various constant boundary condition specifications for both scalar
PDEs and systems of PDEs.

Geometry

All the specifications use the same 2-D geometry, which is a rectangle with a circular hole.

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]1";

% Circle is code 1, center (.5,0), radius .2
cl=1[1,.5,0,.21";

% Pad Cl with zeros to enable concatenation with R1
Cl = [C1l;zeros(length(R1l)-length(C1),1)];

geom = [R1,C1];

% Names for the two geometric objects
ns = (char('R1','C1'))";

% Set formula
sf = 'R1L - C1';

% Create geometry
g = decsg(geom,sf,ns);

% Create geometry model
model = createpde;

% Include the geometry in the model
% and view the geometry
geometryFromEdges (model,g);
pdegplot(model, 'EdgelLabels', 'on")
xlim([-1.1 1.1])

axis equal

2-119

2 Setting Up Your PDE

2-120

0.4 T T T T B T T T T
0.2 F S |
."Eé EY\'
0F E3 | : E1 -
)
02F ~— 1
_D4 1 i i 1 E|4 1 1 1 1

-1 0.8 -06 -04 -02 0 0.2 04 06 08 1

Scalar Problem

Suppose that edge 3 has Dirichlet conditions with value 32, edge 1 has Dirichlet conditions with value
72, and all other edges have Neumann boundary conditions withq = 0,g = -1.

applyBoundaryCondition(model, 'dirichlet’,
'Edge',3,'u',32);

applyBoundaryCondition(model, 'dirichlet’,
'Edge',1,'u',72);

applyBoundaryCondition(model, 'neumann', ...
'Edge',[2,4:8],'qg"',-1);

This completes the boundary condition specification.

Solve an elliptic PDE with these boundary conditions withc = 1,a = 0, and f = 10. Because the
shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse choose a maximum
mesh size Hmax = 0.1.

specifyCoefficients(model, 'm',0,'d"',0,'c',1,'a"',0,'f",10);
generateMesh(model, 'Hmax',0.1);

results = solvepde(model);

u = results.NodalSolution;

pdeplot(model, 'XYData',u, 'ZData',u)

view(-23,8)

Solve PDEs with Constant Boundary Conditions

System of PDEs
Suppose that the system has N = 2.

* Edge 3 has Dirichlet conditions with values [32,72].
* Edge 1 has Dirichlet conditions with values [72,32].

* Edge 4 has a Dirichlet condition for the first component with value 52, and has a Neumann
condition for the second component withgq = 0,g = -1.

* Edge 2 has Neumann boundary conditions withq = [1,2;3,4] andg = [5,-6].
* The circular edges (edges 5 through 8) have g = @andg = 0.

model = createpde(2);
geometryFromEdges (model,g);

applyBoundaryCondition(model, 'dirichlet', ...
'Edge',3,'u',[32,72]);
applyBoundaryCondition(model, 'dirichlet', ...
'Edge',1,'u',[72,32]);
applyBoundaryCondition(model, 'mixed"', ...
'Edge',4,'u',52, ...
'EquationIndex',1,'qg"',[0,-1]);

Q2 = [1,2;3,4];
G2 = [5,-6];
applyBoundaryCondition(model, 'neumann',

'Edge’, 2,
'q',Q2,'9",G2);

2-121

2 Setting Up Your PDE

The next step is optional,

because it sets 'g' to its default value
applyBoundaryCondition(model, 'neumann', ...
'Edge',5:8,'g',[0,0]);

)
©
)

©

This completes the boundary condition specification.

Solve an elliptic PDE with these boundary conditions usingc = 1,a = 0,and f = [10;-10].
Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse choose
a maximum mesh size Hmax = 0.1.

specifyCoefficients(model, 'm',0,'d"',0,'c',1, ...
'a',0,'f', [10;-10]);

generateMesh(model, 'Hmax',0.1);

results = solvepde(model);

u = results.NodalSolution;

pdeplot(model, 'XYData',u(:,2), 'ZData',u(:,2))

70

See Also

More About
. “Specify Boundary Conditions” on page 2-113
. “Solve PDEs with Nonconstant Boundary Conditions” on page 2-123

2-122

Solve PDEs with Nonconstant Boundary Conditions

Solve PDEs with Nonconstant Boundary Conditions

This example shows how to write functions for a nonconstant boundary condition specification.
Geometry

All the specifications use the same geometry, which is a rectangle with a circular hole.

% Rectangle is code 3, 4 sides,

% followed by x-coordinates and then y-coordinates
R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]1";

% Circle is code 1, center (.5,0), radius .2
cl=1[1,.5,0,.21";

% Pad Cl with zeros to enable concatenation with R1
Cl1 = [C1l;zeros(length(R1l)-length(C1),1)];
geom = [R1,C1];

% Names for the two geometric objects
ns = (char('R1','C1"))";

% Set formula
sf = 'R1-C1';

% Create geometry
g = decsg(geom,sf,ns);

% Create geometry model
model = createpde;

% Include the geometry in the model
% and view the geometry
geometryFromEdges (model,g);
pdegplot(model, 'EdgeLabels', 'on')
xlim([-1.1 1.1])

axis equal

2-123

2 Setting Up Your PDE

2-124

0.4 T T T T B T T T T
0.2 F S |
."Eé EY\'
0F E3 | : E1 -
\)
B&_E6
02F ~— 1
_D. 4 1 i i 1 E|4 1 1 1 1

-1 0.8 -06 -04 -02 0 0.2 04 06 08 1

Scalar Problem

* Edge 3 has Dirichlet conditions with value 32.
* Edge 1 has Dirichlet conditions with value 72.
* Edges 2 and 4 have Dirichlet conditions that linearly interpolate between edges 1 and 3.
» The circular edges (5 through 8) have Neumann conditions withq = 0,g = -1.
applyBoundaryCondition(model, 'dirichlet"', ...

'Edge',3,'u',32);
applyBoundaryCondition(model, 'dirichlet’,

‘Edge’,1,'u',72);
applyBoundaryCondition(model, 'neumann',

'Edge',5:8, ...

'g',-1); % q = 0 by default

Edges 2 and 4 need functions that perform the linear interpolation. Each edge can use the same
function that returns the value u(x, y) = 52 + 20x.

You can implement this simple interpolation in an anonymous function.
myufunction = @(location,state)52 + 20*location.x;
Include the function for edges 2 and 4. To help speed the solver, allow a vectorized evaluation.

applyBoundaryCondition(model, 'dirichlet",
"Edge',[2,4], ...

Solve PDEs with Nonconstant Boundary Conditions

'u',myufunction, ...
'Vectorized', 'on');

Solve an elliptic PDE with these boundary conditions, using the parametersc = 1,a = 0,and |f=
10|. Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too coarse
choose a maximum mesh size Hmax = 0.1.

specifyCoefficients(model, 'm',0,'d"',0,'c',1,
‘a',0,'f",10);

generateMesh(model, 'Hmax',0.1);

results = solvepde(model);

u = results.NodalSolution;

pdeplot(model, 'XYData',u)

0.4
70

0.3
65

0.2
60

0.1
55

0
50

0.1
45

0.2
40

0.3
35

0.4

1 05 0 0.5 1

System of PDEs
Suppose that the system has N = 2.

* Edge 3 has Dirichlet conditions with values [32,72].
* Edge 1 has Dirichlet conditions with values [72,32].

* Edges 2 and 4 have Dirichlet conditions that interpolate between the conditions on edges 1 and 3,
and include a sinusoidal variation.

* Circular edges (edges 5 through 8) have q = @ andg = -10.

model = createpde(2);
geometryFromEdges (model,g);

2-125

2 Setting Up Your PDE

2-126

applyBoundaryCondition(model, 'dirichlet"', ...
'Edge',3,'u',[32,72]);

applyBoundaryCondition(model, 'dirichlet"', ...
"Edge',1,'u',[72,32]);

applyBoundaryCondition(model, 'neumann', ...
'Edge',5:8,'qg',[-10,-10]1);

The first component of edges 2 and 4 satisfies the equation uj(x) = 52 + 20x + 10sin(mx%),

The second component satisfies u(x) = 52 — 20x — 10sin(mx).

Write a function file myufun.m that incorporates these equations in the syntax described in
“Nonconstant Boundary Conditions” on page 2-116.

function bcMatrix = myufun(location,state)
bcMatrix = [52 + 20*location.x + 10*sin(pi*(location.x.”3));

52 - 20*location.x - 1O0*sin(pi*(location.x.”3))]; % OK to vectorize
end

Include this function in the edge 2 and edge 4 boundary condition.

applyBoundaryCondition(model, 'dirichlet', 'Edge',[2,4], ...
'u',@myufun, ...
'Vectorized','on');

Solve an elliptic PDE with these boundary conditions, with the parametersc = 1,a = 0,and f =
(10, -10). Because the shorter rectangular side has length 0.8, to ensure that the mesh is not too
coarse choose a maximum mesh size Hmax = 0.1.

specifyCoefficients(model, 'm',0,'d"',0,'c',1, ...
'a',0,'f',[10;-10]);

generateMesh(model, 'Hmax',0.1);

results = solvepde(model);

u = results.NodalSolution;

subplot(1,2,1)

pdeplot(model, 'XYData',u(:,1),
'ZData',u(:,1), ...
'ColorBar','off'")

view(-9,24)

subplot(1,2,2)

pdeplot(model, 'XYData',u(:,2),
'ZData',u(:,2), ...
'ColorBar','off'")

view(-9,24)

Solve PDEs with Nonconstant Boundary Conditions

—
—

-0.5 0 -0.5 0

2-127

2 Setting Up Your PDE

View, Edit, and Delete Boundary Conditions

In this section...

“View Boundary Conditions” on page 2-128
“Delete Existing Boundary Conditions” on page 2-129
“Change a Boundary Conditions Assignment” on page 2-130

View Boundary Conditions

A PDE model stores boundary conditions in its BoundaryConditions property. To obtain the
boundary conditions stored in the PDE model called model, use this syntax:

BCs = model.BoundaryConditions;

To see the active boundary condition assignment for a region, call the findBoundaryConditions
function.

For example, create a model and view the geometry.

model = createpde(3);
importGeometry(model, 'Block.stl');
pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

<

40 -

20~ F6

F3

Set zero Dirichlet conditions for all equations and all regions in the model.

2-128

View, Edit, and Delete Boundary Conditions

applyBoundaryCondition(model, 'dirichlet', 'Face',1:6,'u',[0,0,0]);

On face 3, set the Neumann boundary condition for equation 1 and Dirichlet boundary condition for
equations 2 and 3.

h=[000;010;001];
r=10;3;31;
q=[100;000;000];
g = [10;0;0];

applyBoundaryCondition(model, 'mixed', 'Face',3,'h',h,'r',r,'qg',9,'q',q);

View the boundary condition assignment for face 3. The result shows that the active boundary
condition is the last assignment.

BCs = model.BoundaryConditions;
findBoundaryConditions(BCs, 'Face',3)

ans =
BoundaryCondition with properties:

BCType: 'mixed’
RegionType: 'Face'
RegionID: 3

r: [3x1 double]

[

h: [3x3 double]

g: [3x1 doublel

g: [3x3 doublel
u: [1
EquationIndex: []

Vectorized: 'off'

View the boundary conditions assignment for face 1.
findBoundaryConditions(BCs, 'Face',1)

ans =
BoundaryCondition with properties:

BCType: 'dirichlet'’
RegionType: 'Face'’
RegionID: [1 2 3 4 5 6]
r:

[
h: []
g: [1]
q: [1]
u: [0 0 0]
EquationIndex: []
Vectorized: 'off'

The active boundary conditions assignment for face 1 includes all six faces, though this assignment is
no longer active for face 3.

Delete Existing Boundary Conditions

To remove all the boundary conditions in the PDE model called pdem, use delete.

2-129

2 Setting Up Your PDE

2-130

delete(pdem.BoundaryConditions)

To remove specific boundary conditions assignments from pdem, delete them from the
pdem.BoundaryConditions.BoundaryConditionAssignments vector. For example,

BCv = pdem.BoundaryConditions.BoundaryConditionAssignments;
delete(BCv(2))

Tip You do not need to delete boundary conditions; you can override them by calling
applyBoundaryCondition again. However, removing unused assignments can make your model
more concise.

Change a Boundary Conditions Assignment

To change a boundary conditions assignment, you need the boundary condition’s handle. To get the
boundary condition’s handle:

* Retain the handle when using applyBoundaryCondition. For example,

bcl = applyBoundaryCondition(model, 'dirichlet’,
'"Face',1:6, ...
‘u', [0 0 0]);

* Obtain the handle using findBoundaryConditions. For example,

BCs = model.BoundaryConditions;
bcl = findBoundaryConditions(BCs, 'Face',2)
bcl =

BoundaryCondition with properties:

BCType: 'dirichlet'
RegionType: 'Face'

RegionID: [1 2 3 4 5 6]

r: [

h: [

g: [

q: [

u: [
EquationIndex: [
Vectorized: 'off'

You can change any property of the boundary conditions handle. For example,

bcl.BCType = 'neumann’;

bcl.u = [];
bcl.g = [0 0 0];
bcl.qg = [0 0 0];
bcl

bcl =

BoundaryCondition with properties:

BCType: 'neumann'
RegionType: 'Face'

View, Edit, and Delete Boundary Conditions

RegionID:

u:
EquationIndex:

[1
r: [1]
h: [1]
g: [0 0 0]
gq: [0 0 0]
[]
[]
Vectorized: 'o

Note Editing an existing assignment in this way does not change its priority. For example, if the
active boundary condition was assigned after bc1, then editing bc1 does not make bcl the active

boundary condition.

See Also

Related Examples
. “Specify Boundary Conditions” on page 2-113

2-131

2 Setting Up Your PDE

Generate Mesh

The generateMesh function creates a triangular mesh for a 2-D geometry and a tetrahedral mesh
for a 3-D geometry. By default, the mesh generator uses internal algorithms to choose suitable sizing
parameters for a particular geometry. You also can use additional arguments to specify the following
parameters explicitly:

+ Target maximum mesh edge length, which is an approximate upper bound on the mesh edge
lengths. Note that occasionally, some elements can have edges longer than this parameter.

* Target minimum mesh edge length, which is an approximate lower bound on the mesh edge
lengths. Note that occasionally, some elements can have edges shorter than this parameter.

* Mesh growth rate, which is the rate at which the mesh size increases away from the small parts of
the geometry. The value must be between 1 and 2. This ratio corresponds to the edge length of
two successive elements. The default value is 1.5, that is, the mesh size increases by 50%.

* Quadratic or linear geometric order. A quadratic element has nodes at its corners and edge
centers, while a linear element has nodes only at its corners.

Create a PDE model.

model = createpde;

Include and plot the following geometry.

importGeometry(model, 'PlateSquareHolePlanar.stl');
pdegplot(model)

2007

180 1

160

140

120 1

100 :

80 |

60

40

20T

0 a0 100

2-132

Generate Mesh

Generate a default mesh. For this geometry, the default target maximum and minimum mesh edge
lengths are 8.9443 and 4.4721, respectively.

mesh _default = generateMesh(model)

mesh default =
FEMesh with properties:

Nodes: [2x1218 double]
Elements: [6x574 double]
MaxElementSize: 8.9443
MinElementSize: 4.4721
MeshGradation: 1.5000
GeometricOrder: 'quadratic'

View the mesh.

figure
pdemesh(mesh _default)

200 T T T

180 7

160 7

140 | -

120 4

10071 T

-50 0 50 100 150

For comparison, create a mesh with the target maximum element edge length of 20.

mesh_Hmax generateMesh(model, 'Hmax"',20)

mesh Hmax =
FEMesh with properties:

2-133

2 Setting Up Your PDE

Nodes: [2x286 double]
Elements: [6x126 double]
MaxElementSize: 20
MinElementSize: 10
MeshGradation: 1.5000
GeometricOrder: 'quadratic'

figure
pdemesh(mesh Hmax)

200 . .

180

160

140

120

100

40

20

Now create a mesh with the target minimum element edge length of 0.5.

mesh Hmin = generateMesh(model, 'Hmin',0.5)

mesh _Hmin =
FEMesh with properties:

Nodes: [2x1378 double]
Elements: [6x654 double]
MaxElementSize: 8.9443
MinElementSize: 0.5000
MeshGradation: 1.5000
GeometricOrder: 'quadratic'

figure
pdemesh(mesh Hmin)

2-134

Generate Mesh

200 T T T

180 7

160 7

140 1

120 4

100 7

40 | -

20 7

Create a mesh, specifying both the maximum and minimum element edge lengths instead of using the
default values.

mesh HminHmax = generateMesh(model, 'Hmax',20,
"Hmin',0.5)

mesh HminHmax =
FEMesh with properties:

Nodes: [2x458 double]
Elements: [6x212 double]
MaxElementSize: 20
MinElementSize: 0.5000
MeshGradation: 1.5000
GeometricOrder: 'quadratic'

View the mesh.

figure
pdemesh (mesh HminHmax)

2-135

2 Setting Up Your PDE

200 T T T

180 7

160 7

140 1

120 4

100 7

-50 0 50 100 150

Create a mesh with the same maximum and minimum element edge lengths, but with the growth rate
of 1.9 instead of the default value of 1.5.

mesh Hgrad = generateMesh(model, 'Hmax',?20,
'"Hmin',0.5, ...
'Hgrad',1.9)

mesh Hgrad =
FEMesh with properties:

Nodes: [2x390 double]
Elements: [6x178 double]
MaxElementSize: 20
MinElementSize: 0.5000
MeshGradation: 1.9000
GeometricOrder: 'quadratic'

figure
pdemesh(mesh _Hgrad)

2-136

Generate Mesh

200 T T T

180 7

160 7

140 1

120 4

100 7

-50 0 50 100 150

You also can choose the geometric order of the mesh. The toolbox can generate meshes made up of
quadratic or linear elements. By default, it uses quadratic meshes, which have nodes at both the edge
centers and corner nodes.

mesh quadratic = generateMesh(model, 'Hmax',50);
figure
pdemesh(mesh quadratic, 'NodelLabels','on')
hold on
plot(mesh quadratic.Nodes(1,:),

mesh _quadratic.Nodes(2,:),

'ok', '"MarkerFaceColor','g")

2-137

2 Setting Up Your PDE

200 T

180

160

140

120

100

150

To save memory or solve a 2-D problem using a legacy solver, override the default quadratic
geometric order. Legacy PDE solvers require linear triangular meshes for 2-D geometries.

mesh linear = generateMesh(model,
"Hmax',50, ...
'GeometricOrder', 'linear');
figure
pdemesh(mesh linear, 'NodelLabels', 'on"')
hold on
plot(mesh linear.Nodes(1,:),
mesh linear.Nodes(2,:),
'ok', '"MarkerFaceColor','g")

2-138

Generate Mesh

200 T

180

160

140

120

100

2-139

2 Setting Up Your PDE

Find Mesh Elements and Nodes by Location

Partial Differential Equation Toolbox™ allows you to find mesh elements and nodes by their geometric
location or proximity to a particular point or node. This example works with a group of elements and
nodes located within the specified bounding disk.

Create a steady-state thermal model.

thermalmodel = createpde('thermal', 'steadystate');

Import and plot the geometry.

importGeometry(thermalmodel, 'PlateHolePlanar.stl');
pdegplot(thermalmodel, 'FacelLabels', 'on"',
"EdgelLabels', 'on')

201 E3
18 |
16 |
14 |

121

F1

E2

Assign the thermal conductivity of the material.

thermalProperties(thermalmodel, 'ThermalConductivity',1);

Apply a constant temperature of 20°C to the left edge and a constant temperature of —10°Cto the
right edge. All other edges are insulated by default.

thermalBC(thermalmodel, 'Edge', 4, 'Temperature',20);
thermalBC(thermalmodel, 'Edge',1, 'Temperature',-10);

2-140

Find Mesh Elements and Nodes by Location

Generate a mesh and solve the problem. For this example, use a linear mesh to better see the nodes
on the mesh plots. Additional nodes on a quadratic mesh make it difficult to see the plots in this
example clearly.

mesh = generateMesh(thermalmodel,
'GeometricOrder', 'linear');
thermalresults = solve(thermalmodel);

The solver finds the temperatures and temperature gradients at all nodal locations. Plot the
temperatures.

pdeplot(thermalmodel, 'XYData', thermalresults.Temperature)
axis equal

147

12 F

(4]

107

=

! -10
15

0 :

Suppose you need to analyze the results around the center hole more closely. First, find the nodes
and elements located next to the hole by using the findNodes and findElements functions. For
example, find nodes and elements located within the radius of 2.5 from the center [5 10].

Nr
Er

findNodes (mesh, 'radius',[5 10]1,2.5);
findElements(mesh, 'radius',[5 10],2.5);

Highlight the nodes within this radius on the mesh plot using a green marker.

figure

pdemesh(thermalmodel)

hold on

plot(mesh.Nodes(1,Nr),mesh.Nodes(2,Nr),
‘or', 'MarkerFaceColor','g")

2-141

2 Setting Up Your PDE

20 T T T

Find the minimal and maximal temperatures within the specified radius.

[Temps disk] = thermalresults.Temperature(Nr);
[T _min,index_min] min(Temps_disk);
[T _max,index_max] max (Temps_disk);

T min
T min = -2.1698
T max
T max = 12.2420

Find the IDs of the nodes corresponding to the minimal and maximal temperatures. Plot these nodes
on the mesh plot.

nodeIDmin = Nr(index min);
nodeIDmax = Nr(index max);
figure
pdemesh(thermalmodel)

hold on

plot(mesh.Nodes(1,nodeIDmin),
mesh.Nodes(2,nodeIDmin),
'or', 'MarkerFaceColor','b"')

plot(mesh.Nodes(1,nodeIDmax),
mesh.Nodes(2,nodeIDmax),
'or', 'MarkerFaceColor', 'r')

2-142

Find Mesh Elements and Nodes by Location

20 T T T

187 7

14 -

Now highlight the elements within the specified radius on the mesh plot using a green marker.

figure

pdemesh (thermalmodel)

hold on

pdemesh (mesh.Nodes,mesh.Elements(:,Er),
'EdgeColor', 'green')

2-143

2 Setting Up Your PDE

20 T T

12r PAVAYAR=

10r

Show the solution for only these elements.
figure

pdeplot(mesh.Nodes,mesh.Elements(:,Er),
'XYData',thermalresults.Temperature)

2-144

10

15

Find Mesh Elements and Nodes by Location

12571 20
12
15
1151
1T
10
10.51
107 5
9.5
0
g -
857
-5
E -
7.5 -10
25

2-145

2 Setting Up Your PDE

Assess Quality of Mesh Elements

2-146

Partial Differential Equation Toolbox™ uses the finite element method to solve PDE problems. This
method discretizes a geometric domain into a collection of simple shapes that make up a mesh. The
quality of the mesh is crucial for obtaining an accurate approximation of a solution.

Typically, PDE solvers work best with meshes made up of elements that have an equilateral shape.
Such meshes are ideal. In reality, creating an ideal mesh for most 2-D and 3-D geometries is
impossible because geometries have tiny or narrow regions and sharp angles. For such regions, a
mesh generator creates meshes with some elements that are much smaller than the rest of mesh
elements or have drastically different side lengths.

As mesh elements become distorted, numeric approximations of a solution typically become less
accurate. Refining a mesh using smaller elements produces better shaped elements and, therefore,
more accurate results. However, it also can be computationally expensive.

Checking if the mesh is of good quality before running an analysis is a good practice, especially for
simulations that take a long time. The toolbox provides the meshQuality function for this task.

meshQuality evaluates the shape quality of mesh elements and returns numbers from 0 to 1 for
each mesh element. The value 1 corresponds to the optimal shape of the element. By default, the
meshQuality function combines several criteria when evaluating the shape quality. In addition to
the default metric, you can use the aspect- ratio metric, which is based solely on the ratio of the
minimum dimension of an element to its maximum dimension.

Create a PDE model.

model = createpde;

Include and plot the torus geometry.
importGeometry(model, 'Torus.stl');

pdegplot(model)
camlight right

Assess Quality of Mesh Elements

40

Generate a coarse mesh.

mesh = generateMesh(model, 'Hmax',10);
Evaluate the shape quality of all mesh elements.

Q = meshQuality(mesh);

Find the elements with quality values less than 0.3.
elemIDs = find(Q < 0.3);

Highlight these elements in blue on the mesh plot.
figure

pdemesh(mesh, 'FaceAlpha',0.5)

hold on
pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs),

'FaceColor', 'blue', 'EdgeColor', 'blue')

2-147

2 Setting Up Your PDE

<

Determine how much of the total mesh volume belongs to elements with quality values less than 0.3.
Return the result as a percentage.

mv@3 percent = volume(mesh,elemIDs)/volume(mesh)*100

mvO3 percent = 0.0198

Evaluate the shape quality of the mesh elements by using the ratio of minimal to maximal dimension
for each element.

Q = meshQuality(mesh, 'aspect-ratio');

Find the elements with quality values less than 0.3.
elemIDs = find(Q < 0.3);

Highlight these elements in blue on the mesh plot.
figure

pdemesh(mesh, 'FaceAlpha',0.5)

hold on

pdemesh(mesh.Nodes,mesh.Elements(:,elemIDs), ...
'FaceColor', 'blue', 'EdgeColor', 'blue')

2-148

Assess Quality of Mesh Elements

Pl

2-149

2 Setting Up Your PDE

Mesh Data as [p,e,t] Triples

2-150

Partial Differential Equation Toolbox uses meshes with triangular elements for 2-D geometries and
meshes with tetrahedral elements for 3-D geometries. Earlier versions of Partial Differential Equation
Toolbox use meshes in the form of a [p, e, t] triple. The matrices p, e, and t represent the points
(nodes), elements, and triangles or tetrahedra of a mesh, respectively. Later versions of the toolbox
support the [p, e, t] meshes for compatibility reasons.

Note New features might not be compatible with the legacy workflow. For description of the mesh
data in the recommended workflow, see “Mesh Data” on page 2-153.

The mesh data for a 2-D mesh has these components:

p (points, the mesh nodes) is a 2-by-Np matrix of nodes, where Np is the number of nodes in the
mesh. Each column p(:, k) consists of the x-coordinate of point k in p(1, k) and the y-coordinate
of point kKin p(2, k).

e (edges) is a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. The mesh
edges in e and the edges of the geometry have a one-to-one correspondence. The e matrix
represents the discrete edges of the geometry in the same manner as the t matrix represents the
discrete faces. Each column in the e matrix represents one edge.

* e(1,k) is the index of the first point in mesh edge k.
* e(2,k) is the index of the second point in mesh edge k.

* e(3,k) is the parameter value at the first point of edge k. The parameter value is related to
the arc length along the geometric edge.

* e(4,k) is the parameter value at the second point of edge k.

* e(5,k) is the ID of the geometric edge containing the mesh edge. You can see edge IDs by
using the command pdegplot(geom, 'EdgeLabels', 'on').

* e(6,k) is the subdomain number on the left side of the edge. The direction along the edge is
given by increasing parameter values. The subdomain 0 is the exterior of the geometry.

* e(7,k) is the subdomain number on the right side of the edge.

t (triangles) is a 4-by-Nt matrix of triangles or a 7-by-Nt matrix of triangles, depending on
whether you call generateMesh with the GeometricOrder name-value pair set to 'quadratic'
or 'linear’', respectively. initmesh creates only ' linear' elements, which have size 4-by-Nt.
Nt is the number of triangles in the mesh. Each column of t contains the indices of the points in p
that form the triangle. The exception is the last entry in the column, which is the subdomain
number. Triangle points are ordered as shown.

Mesh Data as [p,e,t] Triples

3 3
B
.1
]
4
2 2
2-D linear element. 2-D quadratic element
showing node numbering showing node numbering

The mesh data for a 3-D mesh has these components:

* p (points, the mesh nodes) is a 3-by-Np matrix of nodes, where Np is the number of nodes in the
mesh. Each column p(:, k) consists of the x-coordinate of point k in p(1, k), the y-coordinate of
point k in p(2, k), and the z-coordinate of point k in p(3, k).

* e is an object that associates the mesh faces with the geometry boundaries. Partial Differential
Equation Toolbox functions use this association when converting the boundary conditions, which
you set on geometry boundaries, to the mesh boundary faces.

* 1t (tetrahedra) is either an 11-by-Nt matrix of tetrahedra or a 5-by-Nt matrix of tetrahedra,
depending on whether you call generateMesh with the GeometricOrder name-value pair set to
"quadratic' or 'linear’, respectively. Nt is the number of tetrahedra in the mesh. Each
column of t contains the indices of the points in p that form the tetrahedron. The exception is the
last element in the column, which is the subdomain number. Tetrahedron points are ordered as
shown.

2-151

2 Setting Up Your PDE

4 4
10
B
3 3
1
i B
b
2 2
3-D linear element 3-00 quadratic element
showing node numbering showing node numbering

You can create a [p, e, t] mesh by using one of these approaches:

* Use the initmesh function to create a 2-D [p, e, t] mesh.

* Use the generateMesh function to create a 2-D or 3-D mesh as a FEMesh object. Then use the
meshToPet function to convert the mesh toa [p, e, t] mesh.

2-152

Mesh Data

Mesh Data

Partial Differential Equation Toolbox uses meshes with triangular elements for 2-D geometries and
meshes with tetrahedral elements for 3-D geometries. In both cases, it uses the quadratic geometric
order by default, and provides the option to switch to the linear geometric order. A mesh always
consists of elements of the same order. The toolbox does not support mixed meshes.

The triangles in 2-D meshes are specified by three nodes for linear elements or six nodes for
quadratic elements. A triangle representing a linear element has nodes at the corners. A triangle
representing a quadratic element has nodes at its corners and edge centers.

3 3
6
1 1
5
4
2 2
2-D linear element 2-D quadratic element
showing node numbering showing node numbering

The tetrahedra in 3-D meshes are specified by four nodes for linear elements or 10 nodes for
quadratic elements. A tetrahedron representing a linear element has nodes at the corners. A
tetrahedron representing a quadratic element has nodes at its corners and edge centers.

2-153

2 Setting Up Your PDE

2-154

4 4
10
B
3 3
i B
b
2 2
3-D linear element 3-00 quadratic element
showing node numbering showing node numbering

The center nodes in quadratic meshes are always added at half-distance between corners. For
geometries with curved surfaces and edges, center nodes might not appear on the edge or surface
itself.

The model container object stores the parameters of the PDE model. The toolbox offers several types
of model container objects, each for a particular application area. For example, for linear elasticity
problems, the model container is a StructuralModel object, and for heat transfer problems, the
model container is a ThermalModel object. For general PDE problems, the toolbox uses the
PDEModel object.

The Mesh property of the model container object stores mesh data. The Mesh property contains a
FEMesh object. FEMesh include information on the nodes and elements of the mesh, mesh growth
rate, and target minimum and maximum element size. The properties also indicate whether the mesh
is linear or quadratic. You can specify these mesh parameters when creating a mesh.

To generate a mesh for your PDE model, use the generateMesh function.

By default, generateMesh uses the quadratic geometric order, which typically produces more
accurate results than the linear geometric order. To switch to the linear geometric order, call the
mesh generator and set the GeometricOrder name-value pair to ' linear"'.

Solving PDEs

* “von Mises Effective Stress and Displacements: PDE Modeler App” on page 3-3
* “Clamped Square Isotropic Plate with Uniform Pressure Load” on page 3-7

» “Deflection of Piezoelectric Actuator” on page 3-11

* “Dynamics of Damped Cantilever Beam” on page 3-21

* “Dynamic Analysis of Clamped Beam” on page 3-28

* “Reduced-Order Modeling Technique for Beam with Point Load” on page 3-33

* “Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm”
on page 3-40

* “Thermal Stress Analysis of Jet Engine Turbine Blade” on page 3-50

* “Finite Element Analysis of Electrostatically Actuated MEMS Device” on page 3-58
* “Deflection Analysis of Bracket” on page 3-71

* “Vibration of Square Plate” on page 3-78

* “Structural Dynamics of Tuning Fork” on page 3-82

* “Modal Superposition Method for Structural Dynamics Problem” on page 3-91

* “Stress Concentration in Plate with Circular Hole” on page 3-95

* “Thermal Deflection of Bimetallic Beam” on page 3-103

* “Axisymmetric Thermal and Structural Analysis of Disc Brake” on page 3-110

» “Electrostatic Potential in Air-Filled Frame” on page 3-121

» “Electrostatic Potential in Air-Filled Frame: PDE Modeler App” on page 3-123

* “Electrostatic Analysis of Transformer Bushing Insulator” on page 3-125

* “Magnetic Flux Density in H-Shaped Magnet” on page 3-131

* “Magnetic Flux Density in Electromagnet” on page 3-136

» “Linear Elasticity Equations” on page 3-146

* “Magnetic Field in Two-Pole Electric Motor” on page 3-151

* “Magnetic Field in Two-Pole Electric Motor: PDE Modeler App” on page 3-156

* “Scattering Problem” on page 3-160

» “Electrostatics and Magnetostatics” on page 3-165

» “Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App” on page 3-166
» “Current Density Between Two Metallic Conductors: PDE Modeler App” on page 3-174

* “Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App”
on page 3-177

* “Temperature Distribution in Heat Sink” on page 3-181

* “Nonlinear Heat Transfer in Thin Plate” on page 3-190

* “Poisson's Equation on Unit Disk: PDE Modeler App” on page 3-198
* “Poisson's Equation on Unit Disk” on page 3-204

3 Solving PDEs

3-2

“Scattering Problem: PDE Modeler App” on page 3-212

“Minimal Surface Problem” on page 3-216

“Minimal Surface Problem: PDE Modeler App” on page 3-220

“Poisson's Equation with Point Source and Adaptive Mesh Refinement” on page 3-222
“Heat Transfer in Block with Cavity: PDE Modeler App” on page 3-227

“Heat Transfer in Block with Cavity” on page 3-231

“Heat Transfer Problem with Temperature-Dependent Properties” on page 3-235
“Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux” on page 3-243
“Inhomogeneous Heat Equation on Square Domain” on page 3-250

“Heat Distribution in Circular Cylindrical Rod” on page 3-254

“Thermal Analysis of Disc Brake” on page 3-260

“Heat Distribution in Circular Cylindrical Rod: PDE Modeler App” on page 3-268
“Wave Equation on Square Domain” on page 3-271

“Wave Equation on Square Domain: PDE Modeler App” on page 3-275

“Eigenvalues and Eigenmodes of L-Shaped Membrane” on page 3-278

“Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App” on page 3-284
“L-Shaped Membrane with Rounded Corner: PDE Modeler App” on page 3-287
“Eigenvalues and Eigenmodes of Square” on page 3-290

“Eigenvalues and Eigenmodes of Square: PDE Modeler App” on page 3-295
“Vibration of Circular Membrane” on page 3-298

“Solution and Gradient Plots with pdeplot and pdeplot3D” on page 3-302

“2-D Solution and Gradient Plots with MATLAB® Functions” on page 3-311

“3-D Solution and Gradient Plots with MATLAB® Functions” on page 3-317
“Dimensions of Solutions, Gradients, and Fluxes” on page 3-329

von Mises Effective Stress and Displacements: PDE Modeler App

von Mises Effective Stress and Displacements: PDE Modeler

App

This example shows how to compute the displacements u and v and the von Mises effective stress for
a steel plate that is clamped along a right-angle inset at the lower-left corner, and pulled along a
rounded cut at the upper-right corner. The example uses the PDE Modeler app. The app also lets you
compute and visualize other properties, such as the x- and y-direction strains and stresses and the
shear stress.

Consider a steel plate that is clamped along a right-angle inset at the lower-left corner, and pulled
along a rounded cut at the upper-right corner. All other sides are free. The steel plate has the
following properties:

* Dimensions 1 m-by-1 m-by 0.001 m;

* Insetis 1/3-by-1/3 m

* The rounded cut runs from (2/3, 1) to (1, 2/3)

* Young's modulus: 196 - 103 (MN/m?)

* Poisson's ratio: 0.31.

The curved boundary is subjected to an outward normal load of 500 N/m. To specify a surface
traction, divide the load by the thickness (0.001 m). Thus, the surface traction is 0.5 MN/m?2. The
force unit in this example is MN.

To solve this problem in the PDE Modeler app, follow these steps:

1 Draw a polygon with corners (0 1), (2/3,1), (1,2/3), (1,0), (1/3,0), (1/3,1/3), (0,1/3) and a circle
with the center (2/3, 2/3) and radius 1/3.

pdepoly([06 2/3 11 1/3 1/3 0],[112/3 00 1/3 1/3])
pdecirc(2/3,2/3,1/3)

2 Set the x-axis limitto [-0.5 1.5] and y-axis limit to [0 1.2]. To do this, select Options >
Axes Limits and set the corresponding ranges.

3 Model the geometry by entering P1+C1 in the Set formula field.
Set the application mode to Structural Mechanics, Plane Stress.

Remove all subdomain borders. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Then select Boundary > Remove All Subdomain Borders.

6 Display the edge labels by selecting Boundary > Show Edge Labels.

3-3

3 Solving PDEs

3-4

4. PDE Modeler - [Untitled]
File Edit Options DOraw Boundary PDE Mesh Solve Plot Window Help

O || E| 2 | 00| ppe| S| A = |- e\.[struduraIMech..PIaneStress

-

X082

Yoo o1.134

Set formula: P+

1.2 T T

08r

[&)]

0.2

o 1 1
0.5 0 0.5

[}

15

Info: The current y-axis coordinate is displayed here.

—

7 Specify the boundary conditions. To do this, select Boundary > Specify Boundary Conditions.

» For convenience, first specify the Neumann boundary condition g1 = g2 = 0, qll = ql2 =
g21 = g22 = 0 (no normal stress) for all boundaries. Use Edit > Select All to select all

boundaries.

* For the two clamped boundaries at the inset in the lower left (edges 4 and 5), specify the
Dirichlet boundary condition with zero displacements: h11 = 1, hl12 = 0, h21 = 0, h22 =

1, rl = 0, r2 = 0. Use Shift+click to select several boundaries.

» For the rounded cut (edge 7), specify the Neumann boundary condition: g1 = 0.5*nx, g2 =

0.5*ny, ql1l = ql2 = 21 = g22 = 0.

8 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify E = 196E3 and nu = 0.31. The material is homogeneous, so the same
values E and nu apply to the entire 2-D domain. Because there are no volume forces, specify Kx
= Ky = 0. The elliptic type of PDE for plane stress does not use density, so you can specify any

value. For example, specify pho = 0.

9 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >

Refine Mesh.

von Mises Effective Stress and Displacements: PDE Modeler App

10 Refining the mesh in areas where the gradient of the solution (the stress) is large. To do this,
select Solve > Parameters. In the resulting dialog box, select Adaptive mode. Use the default
adaptation options: the Worst triangles triangle selection method with the Worst triangle
fraction set to 0.5.

11 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

12 Plot the von Mises effective stress using color. Plot the displacement vector field (u,v) using a
deformed mesh. To do this:
a Select Plot > Parameters.

b In the resulting dialog box, select the Color and Deformed mesh options. Select von
Mises from the Color drop-down menu. Select Show Mesh to observe the refined mesh in
large stress areas.

"4 PDE Modeler - [Untitled] = EeR (==

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
Dl E‘l(:)l@l 2 |3n|pDEl-&'|&| = |"@~|@‘~I Structural Mech., Plane Stress «|| * -0.2882 ¥: 1.083

Set formula: P+
Color: von Mises Displacement: (u,v)
R 0.8
L O P 4
1 hf""
0.7
0.8 1 0.6
0.5
06 .
04
0.4r] 0.3
0.2
02 4
041
0
1] 0.3333 0.6667 1
Info: Enter axes limits.

By selecting other options from the Color drop-down menu, you can visualize different strain and
stress properties, such as the x- and y-direction strains and stresses, the shear stress, and the

3-5

3 Solving PDEs

principal stresses and strains. You also can plot combinations of scalar and vector properties by using
color, height, vector field arrows, and displacements in a 3-D plot to represent different properties.

3-6

Clamped Square Isotropic Plate with Uniform Pressure Load

Clamped Square Isotropic Plate with Uniform Pressure Load

This example shows how to calculate the deflection of a structural plate under a pressure loading.
The partial differential equation for a thin isotropic plate with a pressure loading is

v2(DV?w) = - p,
where D is the bending stiffness of the plate given by

3
D:LZI
12(1 = v*)

and E is the modulus of elasticity, v is Poisson's ratio, h is the plate thickness, w is the transverse
deflection of the plate, and p is the pressure load.

The boundary conditions for the clamped boundaries are w = 0 and w’ = 0, where w’ is the derivative
of w in a direction normal to the boundary.

Partial Differential Equation Toolbox™ cannot directly solve this fourth-order plate equation. Convert
the fourth-order equation to these two second-order partial differential equations, where v is the new
dependent variable.

Vw=v
DV?y = -p

You cannot directly specify boundary conditions for both w and w’ in this second-order system.
Instead, specify that w' is 0, and define v’ so that w also equals 0 on the boundary. To specify these
conditions, use stiff "springs" distributed along the boundary. The springs apply a transverse shear
force to the plate edge. Define the shear force along the boundary due to these springs as

n-DVv = —kw, where n is the normal to the boundary, and k is the stiffness of the springs. This
expression is a generalized Neumann boundary condition supported by the toolbox. The value of k
must be large enough so that w is approximately 0 at all points on the boundary. It also must be small
enough to avoid numerical errors due to an ill-conditioned stiffness matrix.

The toolbox uses the dependent variables u; and uy instead of w and v. Rewrite the two second-order
partial differential equations using variables uj and uy:

- Vzul +uy;=0
—DV2u2 =p
Create a PDE model for a system of two equations.

model = createpde(2);

Create a square geometry and include it in the model.

len = 10;
gdm = [3 4 0 len len 0 0 O len len]';
g:

decsg(gdm, 'S1',('S1')"');
geometryFromEdges (model,g);

3 Solving PDEs

Plot the geometry with the edge labels.

figure

pdegplot(model, 'EdgelLabels', 'on')
ylim([-1,11])

axis equal

title 'Geometry With Edge Labels Displayed'

Geometry With Edge Labels Displayed

10 E3

PDE coefficients must be specified using the format required by the toolbox. For details, see

» “c Coefficient for specifyCoefficients” on page 2-76
* “m, d, or a Coefficient for specifyCoefficients” on page 2-91
« “f Coefficient for specifyCoefficients” on page 2-74

The c coefficient in this example is a tensor, which can be represented as a 2-by-2 matrix of 2-by-2
blocks:

c(1) c(2)
. c(B)‘

c(4) c(b)
c(6)

This matrix is further flattened into a column vector of six elements. The entries in the full 2-by-2
matrix (defining the coefficient a) and the 2-by-1 vector (defining the coefficient f) follow directly from
the definition of the two-equation system.

3-8

Clamped Square Isotropic Plate with Uniform Pressure Load

E = 1.0e6; % Modulus of elasticity
nu = 0.3; % Poisson's ratio

thick = 0.1; % Plate thickness
pres = 2; % External pressure

D = E*thick™3/(12*(1 - nu™2));
c=[101DGO0D]';
a=[0010]";

f = [0 pres]';

specifyCoefficients(model,'m',0,'d",0,'c',c,'a',a, " 'f',f);
To define boundary conditions, first specify spring stiffness.
k = 1le7;

Define distributed springs on all four edges.

bOuter = applyBoundaryCondition(model, 'neumann', 'Edge', (1:4),...

'g',[00],'q",[0 0; k0O]);
Generate a mesh.
generateMesh(model);
Solve the model.
res = solvepde(model);
Access the solution at the nodal locations.
u = res.NodalSolution;
Plot the transverse deflection.
numNodes = size(model.Mesh.Nodes,2);
figure

pdeplot(model, 'XYData',u(:,1), 'Contour', 'on")
title 'Transverse Deflection'

3-9

3 Solving PDEs

3-10

Transverse Deflection

10 ¢ 0
g -
sl -0.05
T L

0.1
ﬁ -
5 -

-0.15
4t
37 02
2 -
1t -0.25
0

Find the transverse deflection at the plate center.

numNodes = size(model.Mesh.Nodes,?2);
wMax = min(u(l:numNodes,1))

wMax = -0.2763

Compare the result with the deflection at the plate center computed analytically.
wMax = -.0138*pres*len™4/(E*thick”3)

wMax = -0.2760

Deflection of Piezoelectric Actuator

Deflection of Piezoelectric Actuator

This example shows how to solve a coupled elasticity-electrostatics problem.

Piezoelectric materials deform under an applied voltage. Conversely, deforming a piezoelectric
material produces a voltage. Therefore, analysis of a piezoelectric part requires the solution of a set
of coupled partial differential equations with deflections and electrical potential as dependent
variables.

In this example, the model is a two-layer cantilever beam, with both layers made of the same
polyvinylidene fluoride (PVDF) material. The polarization direction points down (negative y-direction)
in the top layer and points up in the bottom layer. The typical length to thickness ratio is 100. When
you apply a voltage between the lower and upper surfaces of the beam, the beam deflects in the y-
direction because one layer shortens and the other layer lengthens.

Electrodes

T,

Clamped,
displacement=0

Tip deflection in response
. — to voltage difference

The equilibrium equations describe the elastic behavior of the solid:
—_ v 0= f

Here, 0 is the stress tensor, and f is the body force vector. Gauss's Law describes the electrostatic
behavior of the solid:

V-D=p

D is the electric displacement, and p is the distributed free charge. Combine these two PDE systems
into this single system:

- of=)
D —p
For a 2-D analysis, o has the components 011, 093, and g1y = 031, and D has the components D; and

D,.

3-11

3 Solving PDEs

3-12

The constitutive equations for the material define the stress tensor and electric displacement vector
in terms of the strain tensor and electric field. For a 2-D analysis of an orthotropic piezoelectric
material under plane stress conditions, you can write these equations as

o11] [C11 C12 e11 es |[en
02| |C12 Cx2 e13 e33 || €x
o2t = Gi2 e1a €34 |{ V12
Dy e1] e13 el — &1 -k
Dy | |e31 e33 ex —-&|(—E2

Cij are the elastic coefficients, &; are the electrical permittivities, and e;; are the piezoelectric stress
coefficients. The piezoelectric stress coefficients in these equations conform to conventional notation
in piezoelectric materials where the z-direction (the third direction) aligns with the "poled" direction
of the material. For the 2-D analysis, align the "poled" direction with the y-axis. Write the strain
vector in terms of the x-displacement u and y-displacement v:

u
€11 ax
€n = 3_;
Y12 a_u + a_v

ay ox

Write the electric field in terms of the electrical potential ¢:

¢
E1__W
Bl |ag
ay

You can substitute the strain-displacement equations and electric field equations into the constitutive
equations and get a system of equations for the stresses and electrical displacements in terms of
displacement and electrical potential derivatives. Substituting the resulting equations into the PDE
system equations yields a system of equations that involve the divergence of the displacement and
electrical potential derivatives. As the next step, arrange these equations to match the form required
by the toolbox.

Partial Differential Equation Toolbox™ requires a system of elliptic equations to be expressed in a
vector form:

-V:(c®Vu)+au=f
or in a tensor form:

9 auj
Cijk’a_xl

T +ajjuj = fj

where repeated indices imply summation. For the 2-D piezoelectric system in this example, the
system vector u is

Deflection of Piezoelectric Actuator

u

Il
<

¢

ou
X
ou
ay
v
X
v
ay
¢
X
(1]
ay

“c Coefficient for specifyCoefficients” on page 2-76
“m, d, or a Coefficient for specifyCoefficients” on page 2-91
“f Coefficient for specifyCoefficients” on page 2-74

c(3)|c(

c(1) c(2)|c(4) c(6) |c(1

5) ¢(7) |c

c(10)|c

C1111 C1112
C1122

(
(
c(8) c(9) |c(1
(
(

C1211 C1212
C1221 C1222

C1311
C1321

C1312
C1322

C2211 €2212
C2222

C2311
C2321

C2312
C2322

C3311

C3312
C3322

This is an N = 3 system. The gradient of u is

au
X
au
0y
v
X
v
ay
@
X
o)
0y

For details on specifying the coefficients in the format required by the toolbox, see:

The c coefficient in this example is a tensor. You can represent it as a 3-by-3 matrix of 2-by-2 blocks:

To map terms of constitutive equations to the form required by the toolbox, write the ¢ tensor and the
solution gradient in this form:

3-13

3 Solving PDEs

From this equation, you can map the traditional constitutive coefficients to the form required for the
¢ matrix. The minus sign in the equations for the electric field is incorporated into the ¢ matrix to
match the toolbox's convention.

u
X
Cii - | - Cizlenn exn su
ay
v
Giz - |es exn aX

Cy2| e13 es3 v
Ze ay
9
X
1)
- ay

G12|G12 - |els exn

Beam Geometry

Create a PDE model. The equations of linear elasticity have three components, so the model must
have three equations.

model = createpde(3);

Create the geometry and include it in the model.

L = 100e-3; % Beam length in meters
H = 1le-3; % Overall height of the beam
H2 = H/2; % Height of each layer in meters

topLayer = [3 4 0 L L OO O H2 H2];
bottomLayer = [3 4 0 L L O -H2 -H2 0 0];
gdm = [topLayer;bottomLayer]"';

g = decsg(gdm, 'R1+R2',['R1';'R2']"');

geometryFromEdges (model,g);

Plot the geometry with the face and edge labels.

figure

pdegplot(model, 'EdgelLabels', 'on"',
'FacelLabels', 'on')

xlabel('X-coordinate, meters')

ylabel('Y-coordinate, meters')

axis([-.1*L,1.1*L,-4*H2,4*H2])

axis square

3-14

Deflection of Piezoelectric Actuator

(=
()
m

F2

EC

| it]

F1

Y-coordinate, meters
=
n o
1
i}

i
=5
T
i

i
=i
o

T
i

_2 i i i i i i
0.02 0.04 0.06 0.08 0.1

X-coordinate, meters

=

Material Properties

Specify the material properties of the beam layers. The material in both layers is polyvinylidene
fluoride (PVDF), a thermoplastic polymer with piezoelectric behavior.

E = 2.0e9; % Elastic modulus, N/m"™2

NU = 0.29; % Poisson's ratio

G = 0.775€9; % Shear modulus, N/m"2

d31 = 2.2e-11; % Piezoelectric strain coefficients, C/N
d33 = -3.0e-11;

Specify relative electrical permittivity of the material at constant stress.
relPermittivity = 12;
Specify the electrical permittivity of vacuum.

permittivityFreeSpace = 8.854187817620e-12; % F/m

C11 = E/(1 - NU"2);
C12 = NU*C11;
c2d = [C11 C12 0; C12 C11 O@; O O GI;

pzeD = [0 d31; 0 d33; 0 0];
Specify the piezoelectric stress coefficients.
pzeE = c2d*pzeD;

D const stress = [relPermittivity 0;
0 relPermittivity]*permittivityFreeSpace;

3-15

3 Solving PDEs

Convert the dielectric matrix from constant stress to constant strain.
D const strain = D const stress - pzeD'*pzeE;

You can view the 21 coefficients as a 3-by-3 matrix of 2-by-2 blocks. The cij matrices are the 2-by-2
blocks in the upper triangle of this matrix.

cll = [c2d(1,1) c2d(1,3) c2d(3,3)];
cl2 = [c2d(1,3) c2d(1,2); c2d(3,3) c2d(2,3)]1;
c22 = [c2d(3,3) c2d(2,3) c2d(2,2)];
cl3 = [pzeE(1,1) pzeE(1,2); pzeE(3,1) pzeE(3,2)];
c23 = [pzeE(3,1) pzeE(3,2); pzeE(2,1) pzeE(2,2)];
¢33 = [D _const strain(1,1)
D const strain(2,1)
D const strain(2,2)1;
ctop = [cl1(:); cl12(:); c22(:); -cl13(:); -c23(:); -c33(:)1;
cbot = [cl1l(:); cl2(:); c22(:); «c13(:); «c23(:); -c33(:)1;

= [0 0 0]
specifyCoefficients(model, 'm

'c',ctop,'a',q,'f"',f, 'Face',2);
specifyCoefficients(model, 'm '

’ 0 ’ ’
,0,'c',cbot,'a',0,'f",f, 'Face',1);
Boundary Conditions
Set the voltage (solution component 3) on the top of the beam (edge 1) to 100 volts.
voltTop = applyBoundaryCondition(model, 'mixed',

'Edge’,1

'u',100, ...

'EquationIndex',3);
Specify that the bottom of the beam (edge 2) is grounded by setting the voltage to 0.
voltBot = applyBoundaryCondition(model, 'mixed’,
'"Edge',2

‘'u',0,...
"EquationIndex',3);

Specify that the left side (edges 6 and 7) is clamped by setting the x- and y-displacements (solution
components 1 and 2) to 0.
clampLeft = applyBoundaryCondition(model, 'mixed', ...

'"Edge',6:7, ...

u',[0 0],...

"EquationIndex',1:2);

The stress and charge on the right side of the beam are zero. Accordingly, use the default boundary
condition for edges 3 and 4.

Finite Element and Analytical Solutions
Generate a mesh and solve the model.

msh = generateMesh(model, 'Hmax',65e-4);
result = solvepde(model)

result =
StationaryResults with properties:

3-16

Deflection of Piezoelectric Actuator

NodalSolution: [3605x3 double]
XGradients: [3605x3 double]
YGradients: [3605x3 double]
ZGradients: [0x3 double]

Mesh: [1x1 FEMesh]

Access the solution at the nodal locations. The first column contains the x-deflection. The second
column contains the y-deflection. The third column contains the electrical potential.

rs = result.NodalSolution;

Find the minimum y-deflection.

feTipDeflection = min(rs(:,2));
fprintf('Finite element tip deflection is: %12.4e\n',feTipDeflection);

Finite element tip deflection is: -3.2900e-05

Compare this result with the known analytical solution.

tipDeflection = -3*d31*100*L"2/(8*H2"2);
fprintf('Analytical tip deflection is: %12.4e\n',tipDeflection);

Analytical tip deflection is: -3.3000e-05

Plot the deflection components and the electrical potential.

varsToPlot = char('X-Deflection, meters',
'Y-Deflection, meters',
'"Electrical Potential, Volts');
for i = 1:size(varsToPlot,1)
figure;
pdeplot(model, 'XYData',rs(:,1i), 'Contour','on")
title(varsToPlot(i,:))
% scale the axes to make it easier to view the contours
axis([0, L, -4*H2, 4*H2])
xlabel('X-Coordinate, meters')
ylabel('Y-Coordinate, meters')
axis square
end

3-17

3 Solving PDEs

<1073 X-Deflection, meters 107

Y-Coordinate, meters

_2 i i i i i
1] 0.02 0.04 0.06 0.08 0.1

X-Coordinate, meters

3-18

Deflection of Piezoelectric Actuator

Y-Coordinate, meters

%1073 Y-Deflection, meters

_2 i i i i i
0 0.02 0.04 0.06 0.08 0.1 w1075

X-Coordinate, meters

3-19

3 Solving PDEs

w1073 Electrical Potential, Volts

Y-Coordinate, meters

i i i i n
0 0.02 0.04 0.06 0.08 0.1

X-Coordinate, meters

References

1 Hwang, Woo-Seok, and Hyun Chul Park. "Finite Element Modeling of Piezoelectric Sensors and
Actuators." AIAA Journal 31, no.5 (May 1993): 930-937.

2 Pieford, V. "Finite Element Modeling of Piezoelectric Active Structures." PhD diss., Universite
Libre De Bruxelles, 2001.

3-20

Dynamics of Damped Cantilever Beam

Dynamics of Damped Cantilever Beam

This example shows how to include damping in the transient analysis of a simple cantilever beam.

The damping model is basic viscous damping distributed uniformly through the volume of the beam.
The beam is deformed by applying an external load at the tip of the beam and then released at time

t = 0. This example does not use any additional loading, so the displacement of the beam decreases

as a function of time due to the damping. The example uses plane-stress modal, static, and transient
analysis models in its three-step workflow:

1 Perform modal analysis to compute the fundamental frequency of the beam and to speed up
computations for the transient analysis.

2 Find the static solution of the beam with a vertical load at the tip to use as an initial condition for
a transient model.

3 Perform the transient analysis with and without damping.

Damping is typically expressed as a percentage of critical damping, &, for a selected vibration
frequency. This example uses & = 0.03, which is three percent of critical damping.

The example specifies values of parameters using the imperial system of units. You can replace them
with values specified in the metric system. If you do so, ensure that you specify all values throughout
the example using the same system.

Modal Analysis
Create a modal analysis model for a plane-stress problem.

modelM = createpde('structural', 'modal-planestress');

Create the geometry and include it in the model. Suppose, the beam is 5 inches long and 0.1 inches
thick.

width = 5;
height = 0.1;

gdm = [3;4;0;width;width;0;0;0;height;height];
g = decsg(gdm, 'S1',('S1')"');
geometryFromEdges (modelM,qg);

Plot the geometry with the edge labels.

figure;

pdegplot(modelM, 'EdgelLabels','on');

axis equal

title 'Geometry With Edge Labels Displayed'

3-21

3 Solving PDEs

Geometry With Edge Labels Displayed

D-EE& | | I | 1 | | | | =}e)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Define a maximum element size so that there are five elements through the beam thickness. Generate
a mesh.

hmax = height/5;
msh = generateMesh(modelM, 'Hmax ', hmax) ;

Specify the Young's modulus, Poisson's ratio, and mass density of steel.

E = 3.0e7;
nu = 0.3;
rho = 0.3/386;

structuralProperties(modelM, 'YoungsModulus',E,
'PoissonsRatio',nu,
'MassDensity', rho);

Specify that the left edge of the beam is a fixed boundary.
structuralBC(modelM, 'Edge"',4, 'Constraint', 'fixed");

Solve the problem for the frequency range from 0 to 1e5. The recommended approach is to use a
value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0.

res = solve(modelM, 'FrequencyRange',[-0.1,1e5]")

res =
ModalStructuralResults with properties:

NaturalFrequencies: [8x1 double]

3-22

Dynamics of Damped Cantilever Beam

ModeShapes: [1x1 FEStruct]
Mesh: [1x1 FEMesh]

By default, the solver returns circular frequencies.
modeID = 1l:numel(res.NaturalFrequencies);

Express the resulting frequencies in Hz by dividing them by 2. Display the frequencies in a table.

tmodalResults = table(modeID.', res.NaturalFrequencies/(2*pi));
tmodalResults.Properties.VariableNames = {'Mode', 'Frequency'};

disp(tmodalResults)
Mode Frequency

1 126.94

2 794.05

3 2216.8

4 4325.3

5 7110.7

6 9825.9

7 10551

8 14623

Compute the analytical fundamental frequency (Hz) using the beam theory.

I = height"3/12;
fregAnalytical = 3.516*sqrt(E*I/(width™4*rho*height))/(2*pi)

fregAnalytical = 126.9498

Compare the analytical result with the numerical result.
fregNumerical = res.NaturalFrequencies(1)/(2*pi)
fregNumerical = 126.9416

Compute the period corresponding to the lowest vibration mode.
longestPeriod = 1/freqNumerical

longestPeriod = 0.0079

Plot the y-component of the solution for the lowest beam frequency.
figure;

pdeplot(modelM, 'XYData', res.ModeShapes.uy(:,1))

title('Lowest Frequency Vibration Mode')
axis equal

3-23

3 Solving PDEs

Lowest Frequency Vibration Mode

0
2 -
-10
15T 20
1r -30
0.5 40
T
g 50
60
.57
-70
A+t
-80
1.6
-a0
_2 -
i i i i i '1DD
0 1 2 3 4 5

Initial Displacement from Static Solution

The beam is deformed by applying an external load at its tip and then released at time t = 0. Find the
initial condition for the transient analysis by using the static solution of the beam with a vertical load
at the tip.

Create a static plane-stress model.
modelS = createpde('structural', 'static-planestress');
Use the same geometry and mesh that you used for the modal analysis.

geometryFromEdges (modelS,g);
modelS.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.
structuralProperties(modelS, 'YoungsModulus',E,

'PoissonsRatio',nu,

'MassDensity',rho);

Specify the same constraint on the left end of the beam.

structuralBC(modelS, 'Edge',4, 'Constraint', 'fixed');

Apply the static vertical load on the right side of the beam.

3-24

Dynamics of Damped Cantilever Beam

structuralBoundarylLoad(modelS, 'Edge',2, 'SurfaceTraction',[0;1]);

Solve the static model. The resulting static solution serves as an initial condition for transient
analysis.

Rstatic = solve(modelS);
Transient Analysis

Perform the transient analysis of the cantilever beam with and without damping. Use the modal
superposition method to speed up computations.

Create a transient plane-stress model.
modelT = createpde('structural', 'transient-planestress');
Use the same geometry and mesh that you used for the modal analysis.

geometryFromEdges (modelT,g);
modelT.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.
structuralProperties(modelT, 'YoungsModulus',E,

'"PoissonsRatio',nu,
'MassDensity', rho);

Specify the same constraint on the left end of the beam.
structuralBC(modelT, 'Edge',4, 'Constraint', 'fixed');
Specify the initial condition by using the static solution.
structuralIC(modelT,Rstatic)

ans =
NodalStructuralICs with properties:

InitialDisplacement: [6511x2 double]
InitialVelocity: [6511x2 double]

Solve the undamped transient model for three full periods corresponding to the lowest vibration
mode.

tlist = 0:longestPeriod/100:3*longestPeriod;
resT = solve(modelT,tlist, 'ModalResults',res);

Interpolate the displacement at the tip of the beam.
intrpUt = interpolateDisplacement(resT,[5;0.05]);

The displacement at the tip is a sinusoidal function of time with amplitude equal to the initial y-
displacement. This result agrees with the solution to the simple spring-mass system.

plot(resT.SolutionTimes, intrpUt.uy)

grid on
title('Undamped Solution'")

3-25

3 Solving PDEs

xLlabel('Time")
ylabel('Tip of beam displacement')
Undamped Solution

%1073
/

-l
s [}
T T
—
e

=
o

Tip of beam displacement
=
[y =

i

=4

T
—

_2 1 1 1 1
0.005 0.01 0.015 0.02 0.025
Time

i
-y

n
T

Now solve the model with damping equal to 3% of critical damping.

zeta = 0.03;

omega = 2*pi*freqNumerical;
structuralDamping(modelT, 'Zeta', zeta);
resT = solve(modelT, tlist, 'ModalResults',res);

Interpolate the displacement at the tip of the beam.
interpolateDisplacement(resT,[5;0.05]);
The y-displacement at the tip is a sinusoidal function of time with amplitude exponentially decreasing

intrpUt =

with time.
figure

hold on

plot(resT.SolutionTimes,intrpUt.uy)
plot(tlist,intrpUt.uy(1l)*exp(-zeta*omega*tlist), 'Color','r")
grid on

title('Damped Solution')

xlabel('Time")

ylabel('Tip of beam displacement')

3-26

Dynamics of Damped Cantilever Beam

Tip of beam displacement

1.5

=4

0.5

i
=
on

%1072 Damped Solution

0 0.005 0.01 0.015 0.02 0.025

3-27

3 Solving PDEs

Dynamic Analysis of Clamped Beam

3-28

This example shows how to analyze the dynamic behavior of a beam under a uniform pressure load
and clamped at both ends.

This example uses the Imperial system of units. If you replace them with values specified in the
metric system, ensure that you specify all values using the same system.

In this example, the pressure load is suddenly applied at time equal to zero. The pressure magnitude
is high enough to produce deflections on the same order as the beam thickness. Accurate prediction

of this type of behavior requires geometrically nonlinear elasticity equations. This example solves the
clamped beam elasticity problem using both linear and nonlinear formulations of elasticity equations.

One approach to handling the large deflections is to consider the elasticity equations in the deformed
position. However, the toolbox uses the equations based on the original geometry. Therefore, you
must use a Lagrangian formulation of nonlinear elasticity where stresses, strains, and coordinates
refer to the original geometry. The Lagrangian formulation of the equilibrium equations is

pu—-V-(F-8)=f

where p is the material density, u is the displacement vector, F is the deformation gradient, S is the
second Piola-Kirchoff stress tensor, and f is the body force vector. You also can write this equation in
the tensor form:

au;
a_x; + 5ik)5kj] = fi

d

pu; — a_xJ

Although this formulation accounts for large deflections, it assumes that the strains remain small, so
that linear elastic constitutive relations apply. For the 2-D plane stress case, you can write the
constitutive relations in matrix form:

S11 C11 Ci2 E1q
S22t =1(C12 C2 Ep;
S12 2G12||E12

Ejjis the Green-Lagrange strain tensor:

du; ouj dugxdu
EU=1_4+_4 IUk OUk
2 0X; 09X 0X; 0X;

For an isotropic material:

E
Ci=Cn=7_7:
Ev

Ciy = —22 _

12 1_1)2
_E

G12 = 30 41

where E is the Young's modulus, and v is the Poisson's ratio. For more details about the Lagrangian
formulation for nonlinear elasticity, see [1] on page 3-0

Dynamic Analysis of Clamped Beam

These equations completely define the geometrically nonlinear plane stress problem. This example
uses Symbolic Math Toolbox™ to define the ¢ coefficient in the form required by Partial Differential
Equation Toolbox™. The ¢ coefficient is a function cCoefficientLagrangePlaneStress. You can
use it with any geometric nonlinear plane stress analysis of a model made from an isotropic material.
You can find it under matlab/R20XXx/examples/pde/main.

Linear Solution
Create a PDE model for a system of two equations.
model = createpde(2);

Create the following beam geometry.

sigma

length height

Specify the length and thickness of the beam.

blength = 5; % Beam length, in
height = 0.1; % Thickness of the beam, in

Because the beam geometry and loading are symmetric about the beam center, you can simplify the
model by considering only the right half of the beam.

12
h2

blength/2;
height/2;

Create the edges of the rectangle representing the beam.

rect = [340 12120 -h2 -h2 h2 h2]';
g = decsg(rect, 'R1',('R1")");

Create the geometry from the edges and include it in the model.
pg = geometryFromEdges(model,g);

Plot the geometry with the edge labels.

figure

pdegplot(g, 'EdgeLabels', 'on")
axis([-.1 1.1*12 -5*h2 5*h2])

3-29

3 Solving PDEs

3-30

0.2r b
0 -EA > 2 -
1
D.Z i 1 1 1 i i]
0 0.5 1 1.5 2 2.5

Derive the equation coefficients using the material properties. For the linear case, the ¢ coefficient
matrix is constant.

E = 3.0e7; % Young's modulus of the material, lbs/in"2
gnu = 0.3; % P01sson's ratio of the material

rho = 0.3/386; % Density of the material

G =E/(2. *(1 + gnu))

mu = 2*G*gnu/(1 - gnu);

c = [2*G + mu 0; G; 0; G; mu; 0; G; 0; 2*G + mu];

f =10 0]"; % No body forces

spec1fyCoeff1c1ents(model rho,'d"',0,'c',c,'a",0,'f",f);

Apply the boundary conditions. From the symmetry condition, the x-displacement equals zero at the
left edge.

symBC = applyBoundaryCondition(model, 'mixed",
'Edge' ,4
'u',0, ...
'"EquationIndex',1);

Because the beam is clamped, the x- and y-displacements equal zero along the right edge.
clampedBC = applyBoundaryCondition(model, 'dirichlet’,

'Edge’',2, ...

‘u', [0 0]);

Apply a constant vertical stress along the top edge.

Dynamic Analysis of Clamped Beam

sigma = 2e2;
presBC = applyBoundaryCondition(model, 'neumann', 'Edge’',3,"'g"',[0 sigmal);

Set the zero initial displacements and velocities.

setInitialConditions(model,0,0);

Generate a mesh.

generateMesh(model);

Solve the model.

tlist = linspace(0,3e-3,100);
result = solvepde(model, tlist);

Interpolate the solution at the geometry center for the y-component (component 2) at all solution
times.

xc = 1.25;
yc = 0;
udLinear = interpolateSolution(result,xc,yc,2,1l:length(tlist));

Nonlinear Solution

Specify the coefficients for the nonlinear case. The cCoefficientLagrangePlaneStress function
takes the isotropic material properties and location and state structures, and returns a c-matrix for a
nonlinear plane stress analysis. It assumes that strains are small, that is, E and v are independent of
the solution.

¢ = @(location,state)cCoefficientLagrangePlaneStress(E,gnu,
location,state);
specifyCoefficients(model, 'm',rho,'d',0,'c', c,'a',0,'f',f);

Solve the model.

result = solvepde(model, tlist);

Interpolate the solution at the geometry center for the y-component (component 2) at all solution
times.

ud4NonLinear = interpolateSolution(result,xc,yc,2,1l:1length(tlist));

Solution Plots

Plot the y-deflection at the center of the beam as a function of time. The nonlinear analysis yields
substantially smaller displacements than the linear analysis. This "stress stiffening" effect also results
in the higher oscillation frequency from the nonlinear analysis.

figure
plot(tlist,udlLinear(:),tlist,ud4NonLinear(:))
legend('Linear"', 'Nonlinear")

title 'Deflection at Beam Center'

xlabel 'Time, seconds'

ylabel 'Deflection, inches'

grid on

3-31

3 Solving PDEs

Deflection at Beam Center
0.15 T T T
7 Linear
I|,-"l l."' Monlinear
/ f
) [ll
f / f
/ ' /
f f |
o 01F \ f =
a | f
E |I I|I P |II d'!!:
= | \ \ |
f I:f .I'-I |I|l ! |II f I I.
'.'E | ! |I 'I ||I |I |
(] | I'[i
[il] II| | | |'I [
E | I'II \ IIII I|I I|II
B gosf / [
|II) { .II III III Illl
|II [lII = I|I
n'l .'I |'I I', |'II|II
I." .'ll II|.' ,-'Iu'l
: \ / \ /f
/ / ‘
oL \/, N Y%
0.5 1 1.5 2 2.5 3
Time, seconds w102

References
Malvern, Lawrence E. Introduction to the Mechanics of a Continuous Medium. Prentice Hall
Series in Engineering of the Physical Sciences. Englewood Cliffs, NJ: Prentice-Hall, 1969.

1

3-32

Reduced-Order Modeling Technique for Beam with Point Load

Reduced-Order Modeling Technique for Beam with Point Load

This example shows how to eliminate degrees of freedom (DoFs) that are not on the boundaries of
interest by using the Craig-Bampton reduced-order modeling technique. The example also uses the
smaller dimension superelement to analyze the dynamics of the system. For comparison, the example
also performs a direct transient analysis on the original structure.

Create a structural model for transient analysis.

modelT = createpde('structural', 'transient-solid');

Create a square cross-section beam geometry and include it in the model.

gm = multicuboid(0.05,0.003,0.003);
modelT.Geometry = gm;

Plot the geometry, displaying face and edge labels.

figure
pdegplot(modelT, 'FaceLabels', 'on', 'FaceAlpha',0.5)
view([71 4])

x 1073
0 -
it
-5 -
-0
15 b
-0.04
-0.02
0 . ' T
0.02 15 -10 5 0 \
=10
figure

pdegplot(modelT, 'EdgeLabels', 'on', 'FaceAlpha',0.5)
view([71 4])

3-33

3 Solving PDEs

3-34

%1073

10 -

-0.04
-0.02

0.02 -15 -10 -5

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelT, 'YoungsModulus',h210E9,
'PoissonsRatio',0.3,
'MassDensity',7800);

Fix one end of the beam.

structuralBC(modelT, 'Edge',[2 8 11 12], 'Constraint', 'fixed');
Add a vertex at the center of face 3.

loadedVertex = addVertex(gm, 'Coordinates',[0.025 0.0 0.0015]);
figure

pdegplot(modelT, 'VertexLabels', 'on', 'FaceAlpha',0.5)
view([78 2.5])

» 1073

Reduced-Order Modeling Technique for Beam with Point Load

-0.02

0.02 15 -10 -5 0

Generate a mesh.

generateMesh(modelT);

Apply a sinusoidal concentrated force in the z-direction on the new vertex.

structuralBoundarylLoad(modelT, 'Vertex', loadedVertex,
'"Force',[0;0;10], 'Frequency',6000);

Specify zero initial conditions.
structuralIC(modelT, 'Velocity',[0 O O], 'Displacement',[0 0 0]);
Solve the model.

tlist = 0:0.00005:3E-3;
RT = solve(modelT,tlist);

Define superelement interfaces using the fixed and loaded boundaries. In this case, the reduced order
model retains the degrees of freedom (DoFs) on the fixed face and the loaded vertex while
condensing all other DoFs in favor of modal DoFs. For better performance, use the set of edges
bounding face 5 instead of using the entire face.

structuralSEInterface(modelT, 'Edge',[2 8 11 12]);
structuralSEInterface(modelT, 'Vertex', LloadedVertex);

Reduce the structure, retaining all fixed interface modes up to 5e5.

3-35

3 Solving PDEs

3-36

rom = reduce(modelT, 'FrequencyRange',[-0.1,5e5]);

Next, use the reduced order model to simulate the transient dynamics. Use the odel5s function
directly to integrate the reduced system ODE. Working with the reduced model requires indexing into
the reduced system matrices rom.K and rom.M. First, construct mappings of indices of K and M to
loaded and fixed DoFs by using the data available in rom.

DoFs correspond to translational displacements. If the number of mesh points in a model is Nn, then
the toolbox assigns the IDs to the DoFs as follows: the first 1 to Nn are x-displacements, Nn+1 to 2*Nn
are y-displacements, and 2Nn+1 to 3*Nn are z-displacements. The reduced model object rom contains
these IDs for the retained DoFs in rom.RetainedDoF.

Create a function that returns DoF IDs given node IDs and the number of nodes.
getDoF = @(x,numNodes) [x(:); x(:) + numNodes; x(:) + 2*numNodes];

Knowing the DoF IDs for the given node IDs, use the intersect function to find the required
indices.

numNodes = size(rom.Mesh.Nodes,2);
loadedNode = findNodes(rom.Mesh, 'region', 'Vertex',b loadedVertex);

loadDoFs = getDoF(loadedNode, numNodes) ;
[~,loadNodeROMIds,~] = intersect(rom.RetainedDoF,loadDoFs);

In the reduced matrices rom.K and rom.M, generalized modal DoFs appear after the retained DoFs.
fixedIntModeIds = (numel(rom.RetainedDoF) + 1l:size(rom.K,1))"';

Because fixed-end DoFs are not a part of the ODE system, the indices for the ODE DoFs in reduced
matrices are as follows.

odeDoFs = [loadNodeROMIds; fixedIntModelIds];
The relevant components of rom.K and rom.M for time integration are:
Kconstrained rom.K(odeDoFs,odeDoFs);

Mconstrained rom.M(odeDoFs,odeDoFs);
numODE = numel(odeDoFs);

Now you have a second-order system of ODEs. To use odel5s, convert this into a system of first-
order ODEs by applying linearization. Such a first-order system is twice the size of the second-order
system.

Mode = [eye(numODE, numODE), zeros (numODE, numODE) ;
zeros (numODE, numODE), Mconstrained];

Kode = [zeros(numODE,numODE), -eye(numODE, numODE);
Kconstrained, zeros (numODE, numODE)];

Fode = zeros(2*numODE,1);

The specified concentrated force load in the full system is along the z-direction, which is the third
DoF in the ODE system. Accounting for the linearization to obtain the first-order system gives the
loaded ODE DoF.

loadODEDoF = numODE + 3;

Specify the mass matrix and the Jacobian for the ODE solver.

Reduced-Order Modeling Technique for Beam with Point Load

odeoptions = odeset;
odeoptions = odeset(odeoptions, 'Jacobian’', -Kode);
odeoptions = odeset(odeoptions, 'Mass',Mode);

Specify zero initial conditions.

u® = zeros(2*numODE,1);

Solve the reduced system by using ode15s and the helper function CMSODEf, which is defined at the
end of this example.

sol = odel5s(@(t,y) CMSODEf(t,y,Kode,Fode,loadODEDoF),
tlist,u0,odeoptions);

Compute the values of the ODE variable and the time derivatives.

[displ,vel] = deval(sol,tlist);

Plot the z-displacement at the loaded vertex and compare it to the third DoF in the solution of the
reduced ODE system.

figure

plot(tlist,RT.Displacement.uz(loadedVertex,:))
hold on

plot(tlist,displ(3,:), 'r*")
title('Z-Displacement at Loaded Vertex')
legend('full model', 'rom')

1072 Z-Displacement at Loaded Vertex
2. 5 T T T T T
full model
2r * rom T
F
15 [%
T Foo
-1 -~ _I*l .'.I || _*_ -
* | 1
0.5 F \ f |
#* * +
D-x—*-**’* / | -'_I*- I|I 4
:*' j -#l- I'I I|
L | I I
o ﬁw*f x 7 1
2t +
_2. 5 i i i i i -*-
0 0.5 1 15 2 25 3
%1073

3-37

3 Solving PDEs

Knowing the solution in terms of the interface DoFs and modal DoFs, you can reconstruct the solution
for the full model. The reconstructSolution function requires the displacement, velocity, and
acceleration at all DoFs in rom. Construct the complete solution vector, including the zero values at
the fixed DoFs.

u = zeros(size(rom.K,1),numel(tlist));

ut = zeros(size(rom.K,1),numel(tlist));
utt = zeros(size(rom.K,1),numel(tlist));
u(odeDoFs,:) = displ(1:numODE,:);

ut (odeDoFs,:) = vel(1l:numODE,:);
utt(odeDoFs,:) = vel(numODE+1:2*numODE, :);

Construct a transient results object using this solution.
RTrom = reconstructSolution(rom,u,ut,utt,tlist);

For comparison, compute the displacement in the interior at the center of the beam using the full and
reconstructed solutions.

coordCenter = [0;0;0];

iDispRT = interpolateDisplacement(RT, coordCenter);
iDispRTrom = interpolateDisplacement (RTrom, coordCenter);
figure

plot(tlist,iDispRT.uz, 'k")

hold on

plot(tlist,iDispRTrom.uz, 'g*")

title('Z-Displacement at Geometric Center')

legend('full model', 'rom")

w1074 Z-Displacement at Geometric Center
8 . : . :

T
full model
6 rom .

ol \ ./ _
o |
-10 ' ' ' ' '

0 0.5 1 1.5 2 2.5 3

3-38

Reduced-Order Modeling Technique for Beam with Point Load

ODE Helper Function

function f = CMSODETf(t,u,Kode, Fode, loadedVertex)
Fode(loadedVertex) = 10*sin(6000%*t);

f = -Kode*u +Fode;

end

3-39

3 Solving PDEs

Modal and Frequency Response Analysis for Single Part of
Kinova® Gen3 Robotic Arm

3-40

This example shows how to analyze the shoulder link of a Kinova® Gen3 Ultra lightweight robotic
arm for possible deformation under pressure.

Robotic arms perform precise manipulations in a wide variety of applications from factory automation
to medical surgery. Typically, robotic arms consist of several links connected in a serial chain, with a
base attached to a tabletop or the ground and an end-effector attached at the tip. These links must be
structurally strong to avoid any vibrations when the rotors are moving with a load on them.

Loads at the tips of robotic arm cause pressure on the joints of each link. The direction of pressure
depends on the direction of the load.

Pressure on
shoulder link

Direction
of load

This example computes deformations of the shoulder link under the applied pressure by performing a
modal analysis and frequency response analysis simulation. You can find the helper function
animateSixLinkModes.m and the geometry file Gen3Shoulder.stl under matlab/R20XXx/
examples/pde/main.

Modal Analysis

Assuming that one end of the robotic arm is fixed, find the natural frequencies and mode shapes.
Create a structural model for modal analysis.

model = createpde('structural', 'modal-solid"');

To perform unconstrained modal analysis of a structure, you must specify the geometry, mesh, and
material properties. First, import the geometry of the shoulder part of the robotic arm.

importGeometry(model, 'Gen3Shoulder.stl');
Generate a mesh.

generateMesh(model);
pdemesh (model)

Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

I~

Specify the Young's modulus, Poisson's ratio, and mass density of the material in consistent units.
Typically, the material used for the link is carbon fiber reinforced plastic. Assume that the material is
homogeneous.

E = 1.5E11;
nu = 0.3;
rho = 2000;

structuralProperties(model, 'YoungsModulus',E,
'PoissonsRatio’,nu,
'MassDensity',rho);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure

pdegplot(model, 'FacelLabels', 'on")

view([-1 2])

title('Shoulder Link Geometry with Face Labels')

3-41

3 Solving PDEs

3-42

Shoulder Link Geometry with Face Labels
0.16 |

0.14 11

012

0.1

0.08 %
0.06
0.04

0.02

0 E10

-

-0.02

-0.04

The shoulder link is fixed on one end (face 3) and connected to a moving link on the other end (face
4). Apply the fixed boundary condition on face 3.

structuralBC(model, 'Face',3, 'Constraint', 'fixed"');

Solve the model for a chosen frequency range. Specify the lower frequency limit below zero so that
all modes with frequencies near zero, if any, appear in the solution.

RF = solve(model, 'FrequencyRange',[-1,10000]*2*pi);

By default, the solver returns circular frequencies.

modeID = 1l:numel(RF.NaturalFrequencies);

Express the resulting frequencies in Hz by dividing them by 2m. Display the frequencies in a table.
tmodalResults = table(modelD.',RF.NaturalFrequencies/2/pi);
tmodalResults.Properties.VariableNames = {'Mode', 'Frequency'};

disp(tmodalResults);

Mode Frequency

1947.2

2662
4982.3
5112.6
7819.5

U WNRE

Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

6 8037.1
7 9361

The best way to visualize the mode shapes is to animate the harmonic motion at their respective
frequencies. The animateSixLinkModes function animates the first six modes. The resulting plot
shows the areas of dominant deformation under load.

figure
frames = animateSixLinkModes(RF);
Flexible Mode 1 Flexible Mode 2 Flexible Mode 3
Frequency = 1947.18 Hz Frequency = 2662.04 Hz Frequency = 4982.31 Hz
Flexible Mode 4 Flexible Mode 5 Flexible Mode 6
Frequency = 5112.6 Hz Frequency = 7819.53 Hz Frequency = 8037.08 Hz
‘\ ~

)

3

rv

o

To play the animation, use the following command:

movie(figure('units', 'normalized’', 'outerposition',[0 0 1 1]),frames,5,30)
Frequency Response Analysis
Simulate the dynamics of the shoulder under pressure loading on a face, assuming that the attached

link applies an equal and opposite amount of pressure on the halves of the face. Analyze the
frequency response and deformation of a point in the face.

3-43

3 Solving PDEs

Pressure on
shoulder link

First, create a structural model for the frequency response analysis.

fmodel = createpde('structural', 'frequency-solid');

Import the same geometry for the shoulder part that you used for the modal analysis.
importGeometry(fmodel, 'Gen3Shoulder.stl');

Generate a mesh.

mesh = generateMesh(fmodel);

Specify the Young's modulus, Poisson's ratio, and mass density.

structuralProperties(fmodel, 'YoungsModulus', E,
'PoissonsRatio',nu,
'MassDensity',rho);

The shoulder link is fixed on one end (face 3) and connected to a moving link on the other end (face
4). Apply the fixed boundary condition on face 3.

structuralBC(fmodel, 'Face',3, 'Constraint', 'fixed');

Estimate the pressure that the moving link applies on face 4 when the arm carries a load. This figure
shows two halves of face 4 divided at the center along the y-coordinate.

3-44

Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

05

05

005] 0.05

Use the pressFcnFR function to apply the boundary load on face 4. This function applies a push and
a twist pressure signals. The push pressure component is uniform. The twist component applies
positive pressure on the left side and negative pressure on the right side of the face. For the
definition of the pressFcnFR function, see the Pressure Function section at the bottom of this page.
This function does not have an explicit dependency on frequency. Therefore, in the frequency domain,
this pressure load acts across all frequencies of the solution.

structuralBoundarylLoad(fmodel,
'Face',4,
'Pressure’,
@(region,state)pressFcnFR(region,state),
'Vectorized','on');
Define the frequency list for the solution as 0 to 3500 Hz with 200 steps.
flist = linspace(0,3500,200)*2*pi;

Solve the model using the modal frequency response solver by specifying the model results object RF
as one of the inputs.

R = solve(fmodel, flist, 'ModalResults',RF);

3-45

3 Solving PDEs

Plot the frequency response at a point on the loaded face. A point on face 4 located at maximum
negative pressure loading is (0.003; 0.0436; 0.1307). Interpolate the displacement to this point
and plot the result.

queryPoint = [0.003; 0.0436; 0.1307];
queryPointDisp = interpolateDisplacement(R,queryPoint);

figure
plot(R.SolutionFrequencies/2/pi,abs(queryPointDisp.uy))
title('Transverse Displacement at Point on Loaded Face')
xlabel('Frequency (Hz)"')

ylabel('Y-Displacement')

x1im([0.0000 3500])

+10°* Transverse Displacement at Point on Loaded Face

1.2

Y¥-Displacement
=
=]

04 r 7
|
0.2 1 [1
l |I II
| I
/| J
D i i) — —— I"{ ——— |] —]
1] 500 1000 1500 2000 2500 3000 3500

Frequency (Hz)

The peak of the response occurs near 2662 Hz, which is close to the second mode of vibration. A
smaller response also occurs at first mode close to 1947 Hz.

Find the peak response frequency index by using the max function with two output arguments. The
second output argument provides the index of the peak frequency.

[M, Il = max(abs(queryPointDisp.uy))

M 1.1256e-04

I =152

Plot the deformation at the peak response frequency. The applied loading is such that it
predominantly excites the opening mode and the bending mode of the shoulder.

3-46

Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

RD = struct();

RD.ux = R.Displacement.ux(:,I);
RD.uy = R.Displacement.uy(:,I);
RD.uz = R.Displacement.uz(:,I);

figure('units', 'normalized’', 'outerposition',[0 0 1 1]);

subplot(2,2,1)

pdeplot3D(fmodel, 'ColorMapData',R.Displacement.ux(:,I),
'Deformation',RD, 'DeformationScaleFactor',1);

title('X-Displacement')

subplot(2,2,2)

pdeplot3D(fmodel, 'ColorMapData',R.Displacement.uy(:,I),
'Deformation',RD, 'DeformationScaleFactor',1);

title('Y-Displacement')

subplot(2,2,3)

pdeplot3D(fmodel, 'ColorMapData',R.Displacement.uz(:,I),
'Deformation',RD, 'DeformationScaleFactor',1);

title('Z-Displacement')

subplot(2,2,4)

pdeplot3D(fmodel, 'ColorMapData',R.Displacement.Magnitude(:,I),
'Deformation',RD, 'DeformationScaleFactor',1);

title('Magnitude')

3-47

3 Solving PDEs

X-Displacement 0% Y-Displacement N
[-2
4 -4
£
2
-8
0 -10
-2 -12
z z
. -14
Y i ¥
L/ { // -16
<, . —
-18
108
Z-Displacement <108 Magnitude <107
2
3
' ’
y '
-
T,
0 1
-1
z z
-2
P P L/,v
e——x 3 TT—x
0

Pressure Function

Define a pressure function, pressFcnFR, to calculate a push and a twist pressure signals. The push
pressure component is uniform. The twist pressure component applies positive pressure on the left
side and negative pressure on the right side of the face. The value of the twist pressure loading
increases in a parabolic distribution from the minimum at point C to the positive peak at L and to the
negative peak at R. The twist pressure factor for the parabolic distribution obtained in pressFcnFR
is multiplied with a sinusoidal function with a magnitude of 0.1 MPa. The uniform push pressure
value is 10 kPa.

function p = pressFcnFR(region,~)
meanY = mean(region.y);
absMaxY = max(abs(region.y));

scaleFactor = zeros(size(region.y));

% Find IDs of the points on the left
% and right halves of the face

3-48

Modal and Frequency Response Analysis for Single Part of Kinova® Gen3 Robotic Arm

[)

% using y-coordinate values.
leftHalfIdx = region.y <= meanY;
rightHalfIdx = region.y >= meanY;

% Define a parabolic scale factor

% for each half of the face.

scaleFactor(leftHalfIdx) = ...
((region.y(leftHalfIdx) - meanY)/absMaxY)."2;

scaleFactor(rightHalfIdx) = ...
-((region.y(rightHalfIdx) - meanY)/absMaxY)."2;

p = 10E3 + 0.1E6*scaleFactor;

end

3-49

3 Solving PDEs

Thermal Stress Analysis of Jet Engine Turbine Blade

3-50

This example shows how to compute the thermal stress and deformation of a turbine blade in its
steady-state operating condition. The blade has interior cooling ducts. The cool air flowing through
the ducts maintains the temperature of the blade within the limit for its material. This feature is
common in modern blades.

A turbine is a component of the jet engine. It is responsible for extracting energy from the high-
temperature and high-pressure gas produced in the combustion chamber and transforming it into
rotational motion to produce thrust. The turbine is a radial array of blades typically made of nickel
alloys. These alloys resist the extremely high temperatures of the gases. At such temperatures, the
material expands significantly, producing mechanical stress in the joints and significant deformations
of several millimeters. To avoid mechanical failure and friction between the tip of the blade and the
turbine casing, the blade design must account for the stress and deformations.

The example shows a three-step workflow:

1 Perform structural analysis accounting only for pressure of the surrounding gases while ignoring
thermal effects.

2 Compute the thermal stress while ignoring the pressure.
3 Combine the pressure and thermal stress.

Pressure Loading

The blade experiences high pressure from the surrounding gases. Compute the stress caused only by
this pressure.

First, create a static structural model.

smodel = createpde('structural', 'static-solid');
Import and plot the geometry, displaying face labels.
importGeometry(smodel, 'Blade.stl');

figure
pdegplot(smodel, 'FacelLabels','on', 'FaceAlpha',0.5)

Thermal Stress Analysis of Jet Engine Turbine Blade

0.05

Generate a mesh with the maximum element size 0.01.

msh = generateMesh(smodel, 'Hmax',0.01);

Specify the Young's modulus, Poisson's ratio, and coefficient of thermal expansion for nickel-based
alloy (NIMONIC 90).

E = 227E9; % in Pa

CTE = 12.7E-6; % in 1/K

nu = 0.27;

structuralProperties(smodel, 'YoungsModulus',E,
'PoissonsRatio',nu,
"CTE',CTE);

Specify that the face of the root that is in contact with other metal is fixed.

structuralBC(smodel, 'Face',3, 'Constraint', 'fixed');

Specify the pressure load on the pressure and suction sides of the blade. This pressure is due to the
high-pressure gas surrounding these sides of the blade.

structuralBoundarylLoad(smodel, 'Face', 11, 'Pressure',pl); % Pressure side
structuralBoundarylLoad(smodel, 'Face',10, 'Pressure',p2); % Suction side

3-51

3 Solving PDEs

Solve the structural problem.
Rs = solve(smodel);

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better
visualize the deformation.

figure

pdeplot3D(smodel, 'ColorMapData',Rs.VonMisesStress,
'Deformation',Rs.Displacement,
'DeformationScaleFactor',100)

view([116,25]);

The maximum stress is around 100 Mpa, which is significantly below the elastic limit.
Thermal Stress

Determine the temperature distribution and compute the stress and deformation due to thermal
expansion only. This part of the example ignores the pressure.

First, create a thermal model for steady-state thermal analysis.
tmodel = createpde('thermal', 'steadystate');
Import the same geometry and use the same mesh as for the structural analysis.

importGeometry(tmodel, 'Blade.stl');
tmodel.Mesh = msh;

3-52

Thermal Stress Analysis of Jet Engine Turbine Blade

Assuming that the blade is made of nickel-based alloy (NIMONIC 90), specify the thermal
conductivity.

kapp = 11.5; % in W/m/K
thermalProperties(tmodel, 'ThermalConductivity', kapp);

Convective heat transfer between the surrounding fluid and the faces of the blade defines the
boundary conditions for this problem. The convection coefficient is greater where the gas velocity is
higher. Also, the gas temperature is different around different faces. The temperature of the interior

cooling air is 150°C, while the temperature on the pressure and suction sides is 1000°C.

% Interior cooling

thermalBC(tmodel, 'Face',[15 12 14],
"ConvectionCoefficient"', 30,
"AmbientTemperature',150);

% Pressure side

thermalBC(tmodel, 'Face', 11,
'"ConvectionCoefficient',50,
'"AmbientTemperature',1000);

% Suction side

thermalBC(tmodel, 'Face', 10,
"ConvectionCoefficient', 40,
'"AmbientTemperature',1000);

% Tip

thermalBC(tmodel, 'Face', 13,
"ConvectionCoefficient"', 20,
"AmbientTemperature',1000);

% Base (exposed to hot gases)

thermalBC(tmodel, 'Face',1,
"ConvectionCoefficient', 40,
"AmbientTemperature',800);

% Root in contact with hot gases

thermalBC(tmodel, 'Face',[6 9 8 2 7],
'ConvectionCoefficient', 15,
"AmbientTemperature',400);

The boundary condition for the faces of the root in contact with other metal is a thermal contact that
can be modeled as convection with a very large coefficient (around 1000 W/ (mZK) for metal-metal
contact).

% Root in contact with metal

thermalBC(tmodel, 'Face',[3 4 5],
'"ConvectionCoefficient', 1000,
'"AmbientTemperature',300);

Solve the thermal model.

Rt = solve(tmodel);

Plot the temperature distribution. The temperature between the tip and the root ranges from around

820°C to 330°C. The exterior gas temperature is 1000°C. The interior cooling is efficient: it
significantly lowers the temperature.

figure
pdeplot3D(tmodel, 'ColorMapData',Rt.Temperature)
view([130,-20]);

3-53

3 Solving PDEs

800

750

1 700

400

350

Now, create a static structural model to compute the stress and deformation due to thermal
expansion.

tsmodel = createpde('structural', 'static-solid');

Import the same geometry, and use the same mesh and structural properties of the material as for the
structural analysis.

importGeometry(tsmodel, 'Blade.stl');

tsmodel.Mesh = msh;

structuralProperties(tsmodel, 'YoungsModulus',E,
'"PoissonsRatio', nu,
'"CTE',CTE);

Specify the reference temperature.

tsmodel.ReferenceTemperature = 300; %in degrees C
structuralBodyLoad(tsmodel, 'Temperature',Rt);

Specify the boundary condition.

structuralBC(tsmodel, 'Face',3, 'Constraint', 'fixed"');
Solve the thermal stress problem.

Rts = solve(tsmodel);

3-54

Thermal Stress Analysis of Jet Engine Turbine Blade

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better
visualize the deformation. The stress concentrates in the constrained root because it cannot freely
expand, and also in the junction between the blade and the root.

figure('units', 'normalized', 'outerposition',[0 0 1 1]);

pdeplot3D(tsmodel, 'ColorMapData',Rts.VonMisesStress,
'Deformation',Rts.Displacement,
'DeformationScaleFactor',100)

caxis([0, 200e6])
view([116,25]);

Evaluate the displacement at the tip. In the design of the cover, this displacement must be taken into
account to avoid friction between the cover and the blade.

max (Rts.Displacement.Magnitude)

ans = 0.0015

3-55

3 Solving PDEs

3-56

Combined Pressure Loading and Thermal Stress
Compute the stress and deformations caused by the combination of thermal and pressure effects.

Use the same model as for the thermal stress analysis. Add the pressure load on the pressure and
suction sides of the blade. This pressure is due to the high-pressure gas surrounding these sides of
the blade.

% Pressure side
structuralBoundaryLoad(tsmodel, 'Face', 11,
'"Pressure',pl);
% Suction side
structuralBoundaryLoad(tsmodel, 'Face', 10,
'"Pressure',p2);

Solve the model.

Rc = solve(tsmodel);

Plot the von Mises stress and the displacement. Specify a deformation scale factor of 100 to better
visualize the deformation.

figure('units', 'normalized’', 'outerposition',[0 0 1 1]);

pdeplot3D(tsmodel, 'ColorMapData',Rc.VonMisesStress,
'Deformation',Rc.Displacement,
'DeformationScaleFactor',100)

caxis([0, 200e6])

view([116,25]);

Thermal Stress Analysis of Jet Engine Turbine Blade

0

Evaluate the maximum stress and maximum displacement. The displacement is almost the same as
for the thermal stress analysis, while the maximum stress, 854 MPa, is significantly higher.

max (Rc.VonMisesStress)
ans = 9.8378e+08
max (Rc.Displacement.Magnitude)

ans = 0.0015

3-57

3 Solving PDEs

Finite Element Analysis of Electrostatically Actuated MEMS
Device

This example shows a simple approach to the coupled electromechanical finite element analysis of an
electrostatically actuated micro-electromechanical (MEMS) device. For simplicity, this example uses
the relaxation-based algorithm rather than the Newton method to couple the electrostatic and the
mechanical domains.

MEMS Devices

MEMS devices typically consist of movable thin beams or electrodes with a high aspect ratio that are
suspended over a fixed electrode.

T T e O S TR W — —— 17
1 T

..;I gl
t |
ce]

Figure 1. MEMS5-based accelerometer. Image courtesy Figure 2. Electrostatic comb drive. Image
MEMSIC Inc. courtesy Compliant Mechanisms Research

3-58

Group, Brigham Young University.

Actuation, switching, and other signal and information processing functions can use the electrode
deformation caused by the application of voltage between the movable and fixed electrodes. FEM
provides a convenient tool for characterizing the inner workings of MEMS devices, and can predict
temperatures, stresses, dynamic response characteristics, and possible failure mechanisms. One of

the most common MEMS switches is the series of cantilever beams suspended over a ground
electrode.

Finite Element Analysis of Electrostatically Actuated MEMS Device

F
beams)
F

r[‘*

Figure 3. MEMS cantilever switch. Image courtesy Advanced
Diamond Technologies.

This example uses the following geometry to model a MEMS switch. The top electrode is 150 pm in
length and 2 pm in thickness. The Young’s modulus E is 170 GPa, and the Poisson ratio v is 0.34. The
bottom electrode is 50 pm in length and 2 pm in thickness, and is located 100 pm from the leftmost
end of the top electrode. The gap between the top and bottom electrodes is 2 pm.

L=150

. -..|
.] rl

- Movakle top electrode at 200

~T |¢2
=

- i

| |
T T e : z
Fixed hottom electrode at 0W

100 a0
I: :I‘-

Figure 4. Cantilever switch modeled geometry.

3-59

3 Solving PDEs

3-60

A voltage applied between the top electrode and the ground plane induces electrostatic charges on
the surface of the conductors which, in turn, leads to electrostatic forces acting normal to the surface
of the conductors. Because the ground plane is fixed, the electrostatic forces deform only the top
electrode. When the beam deforms, the charge redistributes on the surface of the conductors. The
resultant electrostatic forces and the deformation of the beam also change. This process continues
until the system reaches a state of equilibrium.

Approach for Coupled Electromechanical Analysis

For simplicity, this example uses the relaxation-based algorithm rather than the Newton method to
couple the electrostatic and the mechanical domains. The example follows these steps:

1. Solve the electrostatic FEA problem in the nondeformed geometry with the constant potential V0
on the movable electrode.

2. Compute the load and boundary conditions for the mechanical solution by using the calculated
values of the charge density along the movable electrode. The electrostatic pressure on the movable
electrode is given by

12
P=5|DP,

where |D| is the magnitude of the electric flux density and e is the electric permittivity next to the
movable electrode.

3. Compute the deformation of the movable electrode by solving the mechanical FEA problem.

4. Update the charge density along the movable electrode by using the calculated displacement of the
movable electrode,

IDaes®)| = 1Do()| 5=y

where |Dger(x)| is the magnitude of the electric flux density in the deformed electrode, |Dgy(x)| is the
magnitude of the electric flux density in the undeformed electrode, G is the distance between the
movable and fixed electrodes in the absence of actuation, and v(x)is the displacement of the movable
electrode at position x along its axis.

5. Repeat steps 2-4 until the electrode deformation values in the last two iterations converge.

Electrostatic Analysis

In the electrostatic analysis part of this example, you compute the electric potential around the
electrodes.

First, create the cantilever switch geometry by using the constructive solid geometry (CSG) modeling
approach. The geometry for electrostatic analysis consists of three rectangles represented by a
matrix. Each column of the matrix describes a basic shape.

rect domain = [3 4 1.75e-4 1.75e-4 -1.75e-4 -1.75e-4 ...
-1.7e-5 1.3e-5 1.3e-5 -1.7e-5]"';
rect movable = [3 4 7.5e-5 7.5e-5 -7.5e-5 -7.5e-5 ...
2.0e-6 4.0e-6 4.0e-6 2.0e-6]";
rect fixed = [3 4 7.5e-5 7.5e-5 2.5e-5 2.5e-5 -2.0e-6 0 0 -2.0e-6]";
gd = [rect domain, rect movable,rect fixed];

Finite Element Analysis of Electrostatically Actuated MEMS Device

Create a name for each basic shape. Specify the names as a matrix whose columns contain the names
of the corresponding columns in the basic shape matrix.

ns
ns

char('rect domain', 'rect movable', 'rect fixed');
ns';

Create a formula describing the unions and intersections of basic shapes.
sf = 'rect domain-(rect movable+rect fixed)';

Create the geometry by using the decsg function.

dl = decsg(gd,sf,ns);

Create a PDE model and include the geometry in the model.

model = createpde;
geometryFromEdges (model,dl);

Plot the geometry.

pdegplot(model, 'EdgelLabels', 'on', 'FaceLabels', 'on")
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')

axis([-2e-4, 2e-4,-4e-5, 4e-5])

axis square

4 %1072 . . :
5| i
5l i
2]
= Et
o 17T 1
E
g F1 E3 o E11
m Or 0 i
= E2 ES
Z
o]
o1]
L
B
_2 o T
-3 r 1
-4 ' ' '
2 -1 0 1 2
x¥-coordinate, meters %107

The edge numbers in this geometry are as follows:

3-61

3 Solving PDEs

3-62

* Movable electrode: E3, E7, E11, E12
* Fixed electrode: E4, E8, E9, E10
* Domain boundary: E1, E2, E5, E6

Set constant potential values of 20 V to the movable electrode and 0 V to the fixed electrode and
domain boundary.

VO = 0;
V1 = 20;
applyBoundaryCondition(model, 'dirichlet’,
'Edge', [4,8,9,10],'u',V0);
applyBoundaryCondition(model, 'dirichlet"’,
'Edge',[1,2,5,6],'u',V0);
applyBoundaryCondition(model, 'dirichlet"’,
'Edge',[3,7,11,12],"'u',V1);

The PDE governing this problem is the Poisson equation,
-V-(eVV) =p,

where € is the coefficient of permittivity and p is the charge density. The coefficient of permittivity
does not affect the result in this example as long as the coefficient is constant. Assuming that there is
no charge in the domain, you can simplify the Poisson equation to the Laplace equation,

AV = 0.

Specify the coefficients.

specifyCoefficients(model, 'm',0,'d',0,'c',1,'a',0,'f",0);
Generate a relatively fine mesh.

hmax = 5e-6;
generateMesh(model, 'Hmax ', hmax) ;
pdeplot(model)
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square

Finite Element Analysis of Electrostatically Actuated MEMS Device

4 %1072

3|

5l

o

A n”m.
anhi#,w,;u e
WA i"“x"ﬂ“"lrhiu'llin'M"T

y-coordinate, meters
=

1&
ﬂlﬁﬂh

I 'ﬂm’uuﬁi‘ﬂn‘tﬂﬁ‘n‘wl'i'l't‘x t'ﬂ&':“i‘uu i
s 11111111
TRy duu llllll
A
n'uhi I mufnlmrmﬁr

i

H

At n‘u AN T'l'ﬁl ”" 1’1‘xfi'|ﬁulul"hfu I u”
hlumnﬁn i 1'1' i mﬂ IR
_2 -
At
-4
] -1 1] 2
x-coordinate, meters « 1074

Solve the model.

results = solvepde(model);

Plot the electric potential in the exterior domain.

u = results.NodalSolution;

figure

pdeplot(model, 'XYData', results.NodalSolution,...
'ColorMap', 'jet');

title('Electric Potential');
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-2e-4, 2e-4,-4e-5, 4e-5])
axis square

3-63

3 Solving PDEs

3-64

1 -5 Electric Potential

y-coordinate, meters
=

_4 i i i i I:I
=2 -1 0 1 2

x-coordinate, meters w104

Mechanical Analysis

In the mechanical analysis part of this example, you compute the deformation of the movable
electrode.

Create a structural model.

structuralmodel = createpde('structural', 'static-planestress');

Create the movable electrode geometry and include it in the model. Plot the geometry.

dl = decsg(rect movable);
geometryFromEdges(structuralmodel,dl);
pdegplot(structuralmodel, 'EdgeLabels', 'on")
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')

axis([-1le-4, le-4,-1e-5, le-51])

axis square

Finite Element Analysis of Electrostatically Actuated MEMS Device

%1072

02r 3 1

y-coordinate, meters
=

_"] L
-1 0 1

¥-coordinate, meters x10°

e

Specify the structural properties: the Young's modulus E is 170 GPa and the Poisson ratio v is 0.34.

structuralProperties(structuralmodel, 'YoungsModulus',170e9,
'PoissonsRatio',0.34);

Specify the pressure as a boundary load on the edges. The pressure tends to draw the conductor into
the field regardless of the sign of the surface charge. For the definition of the
CalculateElectrostaticPressure function, see Electrostatic Pressure Function on page 3-0

pressureFcn = @(location,state) -
CalculateElectrostaticPressure(results,[],location);
structuralBoundarylLoad(structuralmodel, 'Edge',[1,2,4],
'Pressure',pressurefFcn,
'Vectorized', 'on');

Specify that the movable electrode is fixed at edge 3.
structuralBC(structuralmodel, 'Edge',3, 'Constraint', 'fixed');
Generate a mesh.

hmax = le-6;
generateMesh(structuralmodel, 'Hmax', hmax) ;
pdeplot(structuralmodel);
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')
axis([-1le-4, le-4,-1le-5, le-5])

axis square

3-65

3 Solving PDEs

3-66

%1072

027

y-coordinate, meters
=

02T i
047 .
0er T
0ar T

-1 :
-1 1] 1
¥-coordinate, meters %1074

Solve the equations.

R = solve(structuralmodel);

Plot the displacement for the movable electrode.

pdeplot(structuralmodel, 'XYData',R.VonMisesStress,
'Deformation',R.Displacement,
'DeformationScaleFactor', 10,
"ColorMap', 'jet');

title('von Mises Stress in Deflected Electrode')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')

axis([-1le-4, le-4,-1e-5, 1le-5])

axis square

Finite Element Analysis of Electrostatically Actuated MEMS Device

. 10-von Mises Stress in Deflected Electrode <10°
-1 -
0.8 | A5
06 3
wm 04T —
& 125
E D2 L [
4]
T of 2
=
2
g 0.2 115
e
0.4 7
1
0.6
0.5
087
__1 i i
-1 0 1

¥-coordinate, meters %1072

Find the maximal displacement.

maxdisp = max(abs(R.Displacement.uy));
fprintf('Finite element maximal tip deflection is: %12.4e\n',
maxdisp);

Finite element maximal tip deflection is: 1.5630e-07

Repeatedly update the charge density along the movable electrode and solve the model until the
electrode deformation values converge.

olddisp = 0;
while abs((maxdisp-olddisp)/maxdisp) > le-10
% Impose boundary conditions
pressureFcn = @(location,state) -
CalculateElectrostaticPressure(results,R,location);
bl = structuralBoundaryLoad(structuralmodel,
'"Edge',[1,2,4],
'Pressure',pressurefFcn,
'Vectorized', 'on');
% Solve the equations
R = solve(structuralmodel);
olddisp = maxdisp;
maxdisp = max(abs(R.Displacement.uy));
delete(bl)
end

Plot the displacement.

3-67

3 Solving PDEs

pdeplot(structuralmodel, 'XYData',R.VonMisesStress,
'Deformation',R.Displacement,
'DeformationScaleFactor', 10,
"ColorMap', 'jet');

title('von Mises Stress in Deflected Electrode')
xlabel('x-coordinate, meters')
ylabel('y-coordinate, meters')

axis([-1le-4, le-4,-1e-5, 1le-5])

axis square

. 10-wvon Mises Stress in Deflected Electrode <10°
-1 -
0.8 4
0.6 3.5
o 04r — |
E 3
2 021 ——
- 125
&
£ 12
g 0.2
iy 115
0.4
1
06|
08| 05
__1 i i
-1 0 1

¥-coordinate, meters %1072

Find the maximal displacement.

maxdisp = max(abs(R.Displacement.uy));
fprintf('Finite element maximal tip deflection is: %12.4e\n', maxdisp);

Finite element maximal tip deflection is: 1.8162e-07

References

[1] Sumant, P. S., N. R. Alury, and A. C. Cangellaris. “A Methodology for Fast Finite Element Modeling
of Electrostatically Actuated MEMS.” International Journal for Numerical Methods in Engineering.
Vol 77, Number 13, 2009, 1789-1808.

Electrostatic Pressure Function

The electrostatic pressure on the movable electrode is given by

3-68

Finite Element Analysis of Electrostatically Actuated MEMS Device

1
= 5g1DI%

where |D| = €| E| is the magnitude of the electric flux density, € is the electric permittivity next to the
movable electrode, and |E| is the magnitude of the electric field. The electric field E is the gradient of
the electric potential V:

E=-VV.

Solve the mechanical FEA to compute the deformation of the movable electrode. Using the calculated
displacement of the movable electrode, update the charge density along the movable electrode.

Daer®)] = 1009 g =30

where |Dger(x)| is the magnitude of the electric flux density in the deformed electrode, |Dg(x)| is the

magnitude of the electric flux density in the undeformed electrode, G is the distance between the
movable and fixed electrodes in the absence of actuation, and v(x)is the displacement of the movable
electrode at position x along its axis. Initially, the movable electrode is undeformed, v(x) = 0, and
therefore, |Dgee(X)| = |Do(X)]-

function ePressure = ...
CalculateElectrostaticPressure(elecResults,structResults, location)
Function to compute electrostatic pressure.
structuralBoundarylLoad is used to specify

the pressure load on the movable electrode.

Inputs:

elecResults: Electrostatic FEA results

structResults: Mechanical FEA results (optional)

location: The x,y coordinate

where pressure is obtained

Output:
ePressure: Electrostatic pressure at location

location.x : The x-coordinate of the points
location.y : The y-coordinate of the points
location.x;
location.y;

0° 0% 0% 3% 0° ° O° O° O° O° O° P O° o°

Xq
yq

Compute the magnitude of the electric field

from the potential difference.

[gradx,grady] = evaluateGradient(elecResults,xq,yq);
abskE = sqrt(gradx.”2 + grady.”2);

)
“©
)

“©

% The permittivity of vacuum is 8.854*10"-12 farad/meter.
epsilon@ = 8.854e-12;

% Compute the magnitude of the electric flux density.
absDO = epsilon@*abskE;
absD = absDO;

% If structResults (deformation) is available,
% update the charge density along the movable electrode.
if ~isempty(structResults)

% Displacement of the movable electrode at position x
intrpDisp = interpolateDisplacement(structResults,xq,yq);

3-69

3 Solving PDEs

vdisp = abs(intrpDisp.uy);
G = 2e-6; % Gap 2 micron
absD = absD0O.*G./(G-vdisp);
end

% Compute the electrostatic pressure.
ePressure = absD.”2/(2*epsilon0d);

end

3-70

Deflection Analysis of Bracket

Deflection Analysis of Bracket

This example shows how to analyze a 3-D mechanical part under an applied load using finite element
analysis (FEA) and determine the maximal deflection.

Create Structural Analysis Model

The first step in solving a linear elasticity problem is to create a structural analysis model. This is a
container that holds the geometry, structural material properties, damping parameters, body loads,
boundary loads, boundary constraints, superelement interfaces, initial displacement and velocity, and
mesh.

model = createpde('structural','static-solid');
Import Geometry

Import an STL file of a simple bracket model using the importGeometry function. This function
reconstructs the faces, edges and vertices of the model. It can merge some faces and edges, so the
numbers can differ from those of the parent CAD model.

importGeometry(model, 'BracketWithHole.stl');
Plot the geometry, displaying face labels.

figure

pdegplot(model, 'FacelLabels', 'on')
view(30,30);

title('Bracket with Face Labels')

Bracket with Face Labels

3-71

3 Solving PDEs

figure

pdegplot(model, 'FaceLabels', 'on")
view(-134,-32)

title('Bracket with Face Labels, Rear View')

Bracket with Face Labels, Rear View

0.15 4 F F4

0.1 A

0.05

P

-0.05 4

0.2

Specify Structural Properties of Material

Specify Young's modulus and Poisson's ratio of the material.

structuralProperties(model, 'YoungsModulus',b200e9,
'PoissonsRatio',0.3);

Apply Boundary Conditions and Loads

The problem has two boundary conditions: the back face (face 4) is fixed, and the front face has an
applied load. All other boundary conditions, by default, are free boundaries.

structuralBC(model, 'Face',4, 'Constraint', 'fixed');

Apply a distributed load in the negative z-direction to the front face (face 8).
structuralBoundarylLoad (model, 'Face',8, 'SurfaceTraction',[0;0;-1e4]);
Generate Mesh

Generate and plot a mesh.

generateMesh(model);
figure

3-72

Deflection Analysis of Bracket

pdeplot3D(model)
title('Mesh with Quadratic Tetrahedral Elements');

Mesh with Quadratic Tetrahedral Elements

AT AT AT AT
WAV W

o

£ .L":: L

TR LT
K,

.

Calculate Solution

Use the solve function to calculate the solution.
result = solve(model)

result =
StaticStructuralResults with properties:

Displacement: [1x1 FEStruct]
Strain: [1x1 FEStruct]
Stress: [1x1 FEStruct]
[
[

VonMisesStress: [5993x1 double]
Mesh: [1x1 FEMesh]

Examine Solution

Find the maximal deflection of the bracket in the z-direction.

minUz = min(result.Displacement.uz);
fprintf('Maximal deflection in the z-direction is %g meters.', minUz)

Maximal deflection in the z-direction is -4.43075e-05 meters.

3-73

3 Solving PDEs

Plot Displacement Components

Plot the components of the solution vector. The maximal deflections are in the z-direction. Because
the part and the loading are symmetric, the x-displacement and z-displacement are symmetric, and
the y-displacement is antisymmetric with respect to the center line.

Here, the plotting routine uses the 'jet' colormap, which has blue as the color representing the
lowest value and red representing the highest value. The bracket loading causes face 8 to dip down,
so the maximum z-displacement appears blue.

figure

pdeplot3D(model, 'ColorMapData', result.Displacement.ux)
title('x-displacement')

colormap('jet")

x-displacement

(]

!

T

figure

pdeplot3D(model, 'ColorMapData', result.Displacement.uy)
title('y-displacement')

colormap('jet")

3-74

Deflection Analysis of Bracket

y-displacement x 107

\ﬁ y

-0.5

™~

i

— A

figure

pdeplot3D(model, 'ColorMapData', result.Displacement.uz)
title('z-displacement')

colormap('jet")

3-75

3 Solving PDEs

z-displacement

<107

Plot von Mises Stress

Plot values of the von Mises stress at nodal locations. Use the same jet colormap.
figure

pdeplot3D(model, 'ColorMapData’', result.VonMisesStress)

title('von Mises stress')
colormap('jet")

3-76

Deflection Analysis of Bracket

™~

von Mises stress

3-77

3 Solving PDEs

Vibration of Square Plate

3-78

This example shows how to calculate the vibration modes and frequencies of a 3-D simply supported,
square, elastic plate.

The dimensions and material properties of the plate are taken from a standard finite element
benchmark problem published by NAFEMS, FV52 (See Reference).

First, create a structural model container for your 3-D modal analysis problem. This is a container
that holds the geometry, properties of the material, body loads, boundary loads, boundary constraints,
and mesh.

model = createpde('structural', 'modal-solid');

Import an STL file of a simple plate model using the importGeometry function. This function
reconstructs the faces, edges, and vertices of the model. It can merge some faces and edges, so the
numbers can differ from those of the parent CAD model.

importGeometry(model, 'PlatelOx10x1.stl"');

Plot the geometry and turn on face labels. You need the face labels when defining the boundary
conditions.

figure

hc = pdegplot(model, 'FacelLabels', 'on');
hc(1l).FaceAlpha = 0.5;

title('Plate with Face Labels')

Plate with Face Labels

Vibration of Square Plate

Define the elastic modulus of steel, Poisson's ratio, and the material density.

structuralProperties(model, 'YoungsModulus',6200e9, ...
'PoissonsRatio',0.3,
'MassDensity',8000);

In this example, the only boundary condition is the zero z-displacement on the four edge faces. These
edge faces have labels 1 through 4.

structuralBC(model, 'Face',1:4, 'ZDisplacement',0);

Create and plot a mesh. Specify the target minimum edge length so that there is one row of elements
per plate thickness.

generateMesh(model, 'Hmin',1.3);

figure

pdeplot3D(model);

title('Mesh with Quadratic Tetrahedral Elements');

Mesh with Quadratic Tetrahedral Elements

(]

For comparison with the published values, load the reference frequencies in Hz.

refFreqHz = [0 0 0 45.897 109.44 109.44 167.89 193.59 206.19 206.19];
Solve the problem for the specified frequency range. Define the upper limit as slightly larger than the

highest reference frequency and the lower limit as slightly smaller than the lowest reference
frequency.

3-79

3 Solving PDEs

3-80

maxFreq = 1.1*refFreqHz(end)*2*pi;
result = solve(model, 'FrequencyRange',[-0.1 maxFreq]);

Calculate frequencies in Hz.
freqHz = result.NaturalFrequencies/(2*pi);

Compare the reference and computed frequencies (in Hz) for the lowest 10 modes. The lowest three
mode shapes correspond to rigid-body motion of the plate. Their frequencies are close to zero.

tfreqgHz = table(refFreqHz.',freqHz(1:10));
tfregHz.Properties.VariableNames = {'Reference', 'Computed'};

disp(tfregHz);

Reference Computed
0 6.4321e-05

0 1.1519e-05

0 2.9842e-05
45.897 44.871
109.44 109.74
109.44 109.77
167.89 168.59
193.59 193.74
206.19 207.51
206.19 207.52

You see good agreement between the computed and published frequencies.

Plot the third component (z-component) of the solution for the seven lowest nonzero-frequency
modes.

h = figure;

h.Position = [100,100,900,600];

numToPrint = min(length(freqHz),length(refFreqHz));

for i = 4:numToPrint
subplot(4,2,i-3);
pdeplot3D(model, 'ColorMapData’', result.ModeShapes.uz(:,1));
axis equal
title(sprintf(['Mode=%d, z-displacement\n',
'"Frequency(Hz): Ref=%g FEM=%g'],
i,refFreqHz(i),freqHz(1)));

end

Vibration of Square Plate

Mode=4, z-displacement
Frequency(Hz): Ref=45.897 FEM=44.8715 <10

<

X

[

Mode=6, z-displacement
Frequency(Hz): Ref=109.44 FEM=109.765

-
L_v,('

-2

Mode=8, z-displacement
Frequency(Hz): Ref=193.59 FEM=193.74

:
:
=]
:

-1
2

Mode=10, z-displacement
Frequency(Hz): Ref=206.19 FEM=207.517

Reference

Mode=5, z-displacement
Frequency(Hz): Ref=109.44 FEM=109.738

Mode=7, z-displacement
Frequency(Hz): Ref=167.89 FEM=168.592

-
, -

Mode=9, z-displacement
Frequency(Hz): Ref=206.19 FEM=207.512

, &,
L.”x

<10

-2

<10

-2

10
15

<108

[1] National Agency for Finite Element Methods and Standards. The Standard NAFEMS Benchmarks.

United Kingdom: NAFEMS, October 1990.

3-81

3 Solving PDEs

Structural Dynamics of Tuning Fork

3-82

Perform modal and transient analysis of a tuning fork.

A tuning fork is a U-shaped beam. When struck on one of its prongs or tines, it vibrates at its
fundamental (first) frequency and produces an audible sound.

The first flexible mode of a tuning fork is characterized by symmetric vibration of the tines: they move
towards and away from each other simultaneously, balancing the forces at the base where they
intersect. The fundamental mode of vibration does not produce any bending effect on the handle
attached at the intersection of tines. The lack of bending at the base enables easy handling of tuning
fork without influencing its dynamics.

Transverse vibration of the tines causes the handle to vibrate axially at the fundamental frequency.
This axial vibration can be used to amplify the audible sound by bringing the end of the handle in
contact with a larger surface area, like a metal table top. The next higher mode with symmetric mode
shape is about 6.25 times the fundamental frequency. Therefore, a properly excited tuning fork tends
to vibrate with a dominant frequency corresponding to fundamental frequency, producing a pure
audible tone. This example simulates these aspects of the tuning fork dynamics by performing a
modal analysis and a transient dynamics simulation.

You can find the helper functions animateSixTuningForkModes and tuningForkFFT and the
geometry file TuningFork.stl under matlab/R20XXx/examples/pde/main.

Modal Analysis of Tuning Fork

Find natural frequencies and mode shapes for the fundamental mode of a tuning fork and the next
several modes. Show the lack of bending effect on the fork handle at the fundamental frequency.

First, create a structural model for modal analysis of a solid tuning fork.

model = createpde('structural', 'modal-solid');

To perform unconstrained modal analysis of a structure, it is enough to specify geometry, mesh, and
material properties. First, import and plot the tuning fork geometry.

importGeometry(model, 'TuningFork.stl');
figure
pdegplot(model)

Specify the Young's modulus, Poisson's ratio, and mass density to model linear elastic material
behavior. Specify all physical properties in consistent units.

E = 210E9;
nu = 0.3;
rho = 8000;

structuralProperties(model, 'YoungsModulus',E,
'PoissonsRatio',nu,
'MassDensity',rho);

Generate a mesh.

generateMesh(model, 'Hmax',0.001);

Solve the model for a chosen frequency range. Specify the lower frequency limit below zero so that
all modes with frequencies near zero appear in the solution.

Structural Dynamics of Tuning Fork

RF = solve(model, 'FrequencyRange',[-1,4000]*2*pi);

By default, the solver returns circular frequencies.

modeID = 1l:numel(RF.NaturalFrequencies);

Express the resulting frequencies in Hz by dividing them by 2. Display the frequencies in a table.
tmodalResults = table(modeID.',RF.NaturalFrequencies/2/pi);
tmodalResults.Properties.VariableNames = {'Mode', 'Frequency'};

disp(tmodalResults);

Mode Frequency

.0072398
.0033543
.0025636
.0039618
.0053295
.0094544

460.42

706.34

1911.5
10 2105.5
11 2906.5
12 3814.7

OWoo~NoOouUu b WNRE
[cNoNoNoNOoNO]

Because there are no boundary constraints in this example, modal results include the rigid body
modes. The first six near-zero frequencies indicate the six rigid body modes of a 3-D solid body. The
first flexible mode is the seventh mode with a frequency around 460 Hz.

The best way to visualize mode shapes is to animate the harmonic motion at their respective
frequencies. The animateSixTuningForkModes function animates the six flexible modes, which are
modes 7 through 12 in the modal results RF.

frames = animateSixTuningForkModes (RF);

3-83

3 Solving PDEs

0.1

-0.02

-0.02

0.01

-0.02

0.08

Flexible Mode 1 Flexible Mode 2 Flexible Mode 3
Frequency = 460.421 Hz Frequency = 706.344 Hz Frequency = 1911.46 Hz

ol «
\ é \\\“ - \\"-

Flexible Mode 4 Flexible Mode 5 Flexible Mode 6
Frequency = 2105.52 Hz Frequency = 2906.55 Hz Frequency = 3814.74 Hz
\ < -

3-84

Structural Dynamics of Tuning Fork

To play the animation, use the following command:
movie(figure('units', 'normalized', 'outerposition',[0 0 1 1]),frames,5,30)

In the first mode, two oscillating tines of the tuning fork balance out transverse forces at the handle.
The next mode with this effect is the fifth flexible mode with the frequency 2906.5 Hz. This frequency
is about 6.25 times greater than the fundamental frequency 460 Hz.

Transient Analysis of Tuning Fork

Simulate the dynamics of a tuning fork being gently and quickly struck on one of its tines. Analyze
vibration of tines over time and axial vibration of the handle.

First, create a structural transient analysis model.

tmodel = createpde('structural','transient-solid');

Import the same tuning fork geometry you used for the modal analysis.
importGeometry(tmodel, 'TuningFork.stl');

Generate a mesh.

mesh = generateMesh(tmodel, '"Hmax',0.005);

Specify the Young's modulus, Poisson's ratio, and mass density.
structuralProperties(tmodel, 'YoungsModulus', E,

'PoissonsRatio',nu,
'MassDensity', rho);

Identify faces for applying boundary constraints and loads by plotting the geometry with the face
labels.

figure('units', 'normalized', 'outerposition',[0 @ 1 17])
pdegplot(tmodel, 'FacelLabels', 'on')

view(-50,15)

title 'Geometry with Face Labels'

3-85

3 Solving PDEs

3-86

Geometry with Face Labels

Impose sufficient boundary constraints to prevent rigid body motion under applied loading. Typically,
you hold a tuning fork by hand or mount it on a table. A simplified approximation to this boundary
condition is fixing a region near the intersection of tines and the handle (faces 21 and 22).

structuralBC(tmodel, 'Face',[21,22], 'Constraint', 'fixed"');

Approximate an impulse loading on a face of a tine by applying a pressure load for a very small
fraction of the time period of the fundamental mode. By using this very short pressure pulse, you
ensure that only the fundamental mode of a tuning fork is excited. To evaluate the time period T of
the fundamental mode, use the results of modal analysis.

T = 2*pi/RF.NaturalFrequencies(7);

Specify the pressure loading on a tine as a short rectangular pressure pulse.

structuralBoundaryLoad(tmodel, 'Face',11, 'Pressure',5E6, 'EndTime',T/300);

Apply zero displacement and velocity as initial conditions.
structuralIC(tmodel, 'Displacement',[0;0;0], 'Velocity',[0;0;0]);

Solve the transient model for 50 periods of the fundamental mode. Sample the dynamics 60 times per
period of the fundamental mode.

ncycle = 50;

samplingFrequency = 60/T;

tlist = linspace(0,ncycle*T,ncycle*T*samplingFrequency);
R = solve(tmodel, tlist)

R =
TransientStructuralResults with properties:

Structural Dynamics of Tuning Fork

Displacement: [1x1 FEStruct]

Velocity: [1x1 FEStruct]

Acceleration: [1x1 FEStruct]

SolutionTimes: [1x3000 double]
Mesh: [1x1 FEMesh]

Plot the time-series of the vibration of the tine tip, which is face 12. Find nodes on the tip face and
plot the y-component of the displacement over time, using one of these nodes.

excitedTineTipNodes = findNodes(mesh, 'region', 'Face',12);
tipDisp = R.Displacement.uy(excitedTineTipNodes(1),:);

figure

plot(R.SolutionTimes, tipDisp)
title('Transverse Displacement at Tine Tip')
x1im([0,0.1])

xlabel('Time")

ylabel('Y-Displacement')

103 Transverse Displacement at Tine Tip

1 T T T T T T T T T

08| 7

0.6 M

0.4

Y-Displacement
=

_1 i i i i i i i i i

1] 001 0.02 003 004 005 006 007 008 009 0.1
Time

Perform fast Fourier transform (FFT) on the tip displacement time-series to see that the vibration
frequency of the tuning fork is close to its fundamental frequency. A small deviation from the
fundamental frequency computed in an unconstrained modal analysis appears because of constraints
imposed in the transient analysis.

[fTip,PTip] = tuningForkFFT(tipDisp,samplingFrequency);
figure

3-87

3 Solving PDEs

plot(fTip,PTip)

title({'Single-sided Amplitude Spectrum', 'of Tip Vibration'})
xlabel('f (Hz)"')

ylabel(' |P1(f)]|")

x1im([0,4000])

Single-sided Amplitude Spectrum
1074 of Tip Vibration

IP1(f)

1t
\

0 500 1000 1500 2000 2500 3000 3500 4000

f (Hz)

Transverse vibration of tines causes the handle to vibrate axially with the same frequency. To observe
this vibration, plot the axial displacement time-series of the end face of the handle.

baseNodes = tmodel.Mesh.findNodes('region', 'Face',6);
baseDisp = R.Displacement.ux(baseNodes(1),:);

figure

plot(R.SolutionTimes,baseDisp)

title('Axial Displacement at the End of Handle')
x1im([0,0.1])

ylabel('X-Displacement')

xlabel('Time")

3-88

Structural Dynamics of Tuning Fork

w107 Axial Displacement at the End of Handle
2 T T T T T T T T

15T 7

o
n

X-Displacement
<
n =

_2 i i i i i i i i i
0 001 o002 003 004 005 006 007 008 009 04

Time

Perform an FFT of the time-series of the axial vibration of the handle. This vibration frequency is also
close to its fundamental frequency.

[fBase,PBase] = tuningForkFFT(baseDisp,samplingFrequency);
figure

plot(fBase,PBase)

title({'Single-sided Amplitude Spectrum', 'of Base Vibration'})
xlabel('f (Hz)')

ylabel('|P1(f)]|")

x1im([0,4000])

3-89

3 Solving PDEs

3-90

3.5

2.5

IP1(A)]

1.5

0.5

Single-sided Amplitude Spectrum

1078 of Base Vibration
\
AN I i 1 I e 1
500 1000 1500 2000 2500 3000 3500
f (Hz)

4000

Modal Superposition Method for Structural Dynamics Problem

Modal Superposition Method for Structural Dynamics Problem

This example shows how to solve a structural dynamics problem by using modal analysis results.
Solve for the transient response at the center of a 3-D beam under a harmonic load on one of its
corners. Compare the direct integration results with the results obtained by modal superposition.

Modal Analysis
Create a modal analysis model for a 3-D problem.

modelM = createpde('structural', 'modal-solid');

Create the geometry and include it in the model. Plot the geometry and display the edge and vertex
labels.

gm = multicuboid(0.05,0.003,0.003);

modelM. Geometry=gm;
pdegplot(modelM, 'EdgeLabels', 'on', 'VertexLabels', 'on');
view([95 5])

E5
%1073

E3

-1 E,, -10 -5 1] 0.02
»* 107

Generate a mesh.

msh = generateMesh(modelM);

Specify the Young's modulus, Poisson's ratio, and mass density of the material.

3-91

3 Solving PDEs

3-92

structuralProperties(modelM, 'YoungsModulus',b210E9,
'PoissonsRatio', 0.3,
'MassDensity',7800);

Specify minimal constraints on one end of the beam to prevent rigid body modes. For example,
specify that edge 4 and vertex 7 are fixed boundaries.

structuralBC(modelM, 'Edge',4, 'Constraint', 'fixed');
structuralBC(modelM, 'Vertex',7, 'Constraint', 'fixed');

Solve the problem for the frequency range from 0 to 500000. The recommended approach is to use a
value that is slightly smaller than the expected lowest frequency. Thus, use -0.1 instead of 0.

Rm = solve(modelM, 'FrequencyRange',[-0.1,500000]);
Transient Analysis

Create a transient analysis model for a 3-D problem.

modelD = createpde('structural', 'transient-solid');
Use the same geometry and mesh as for the modal analysis.

modelD.Geometry = gm;
modelD.Mesh = msh;

Specify the same values for the Young's modulus, Poisson's ratio, and mass density of the material.

structuralProperties(modelD, 'YoungsModulus',6210E9,
'PoissonsRatio', 0.3,
'MassDensity',7800);

Specify the same minimal constraints on one end of the beam to prevent rigid body modes.

structuralBC(modelD, 'Edge',4, 'Constraint', 'fixed');
structuralBC(modelD, 'Vertex',7, 'Constraint', 'fixed');

Apply a sinusoidal force on the corner opposite the constrained edge and vertex.

structuralBoundaryLoad(modelD, 'Vertex',5, ...
'"Force',[0,0,10],
'"Frequency',7600);

Specify the zero initial displacement and velocity.
structuralIC(modelD, 'Velocity',[0;0;0], 'Displacement',[0;0;0]);
Specify the relative and absolute tolerances for the solver.

modelD.SolverOptions.RelativeTolerance

= 1E-
modelD.SolverOptions.AbsoluteTolerance = 1E-

3;
9;
Solve the model using the default direct integration method.

tlist = linspace(0,0.004,120);
Rd = solve(modelD,tlist)

Rd =
TransientStructuralResults with properties:

Modal Superposition Method for Structural Dynamics Problem

Displacement: [1x1 FEStruct]
Velocity: [1x1 FEStruct]
Acceleration: [1x1 FEStruct]

SolutionTimes: [0 3.3613e-05 6.7227e-05 1.0084e-04 1.3445e-04 ...

Mesh: [1x1 FEMesh]

Now, solve the model using the modal results.

tlist = linspace(0,0.004,120);
Rdm = solve(modelD,tlist, 'ModalResults',Rm)

Rdm =
TransientStructuralResults with properties:

Displacement: [1x1 FEStruct]
Velocity: [1x1 FEStruct]
Acceleration: [1x1 FEStruct]

SolutionTimes: [0 3.3613e-05 6.7227e-05 1.0084e-04 1.3445e-04 ...

Mesh: [1x1 FEMesh]

Interpolate the displacement at the center of the beam.

intrpUd = interpolateDisplacement(Rd,0,0,0.0015);
intrpUdm = interpolateDisplacement(Rdm,0,0,0.0015);

Compare the direct integration results with the results obtained by modal superposition.

plot(Rd.SolutionTimes,intrpUd.uz, 'bo")

hold on

plot(Rdm.SolutionTimes,intrpUdm.uz, 'rx")

grid on

legend('Direct integration', 'Modal superposition')
xlabel('Time"');

ylabel('Center of beam displacement')

3-93

3 Solving PDEs

c
=
c =
2
s 8
=B
£ 3
£8
0=
O ®
T @w. T T 4n....u
@@ =
e :
&8
%@@@@@
- ® IHJ!I_
AL
@ @@
@2°° "
e g m
g © © © ® 9 =
®2,° ° ©
I e @@@.@1
e ® ©® @ e @°
e ® @
¥ ﬁ@
2 Cegg
Vn.. 1 ﬁ 1 1 D
(nn] — = —] _.1_”_

JUsWaoedsip wWeaq Jo Jajuan

3-94

Stress Concentration in Plate with Circular Hole

Stress Concentration in Plate with Circular Hole

Perform a 2-D plane-stress elasticity analysis.

A thin rectangular plate under a uniaxial tension has a uniform stress distribution. Introducing a
circular hole in the plate disturbs the uniform stress distribution near the hole, resulting in a
significantly higher than average stress. Such a thin plate, subject to in-plane loading, can be
analyzed as a 2-D plane-stress elasticity problem. In theory, if the plate is infinite, then the stress near
the hole is three times higher than the average stress. For a rectangular plate of finite width, the
stress concentration factor is a function of the ratio of hole diameter to the plate width. This example
approximates the stress concentration factor using a plate of a finite width.

Create Structural Model and Include Geometry

Create a structural model for static plane-stress analysis.

model = createpde('structural', 'static-planestress');

The plate must be sufficiently long, so that the applied loads and boundary conditions are far from the
circular hole. This condition ensures that a state of uniform tension prevails in the far field and,
therefore, approximates an infinitely long plate. In this example the length of the plate is four times
greater than its width. Specify the following geometric parameters of the problem.

radius = 20.0;

width = 50.0;
totalLength = 4*width;

Define the geometry description matrix (GDM) for the rectangle and circle.

Rl = [3 4 -totalLength totalLength ...
totalLength -totallLength ...
-width -width width width]';

Cl=1[100 radius © 6 06 6 06 0]"';

Define the combined GDM, name-space matrix, and set formula to construct decomposed geometry
using decsg.

gdm = [R1 C1];

ns = char('R1','Cl');

g = decsg(gdm, 'Rl - Cl',ns');

Create the geometry and include it into the structural model.
geometryFromEdges (model,g);

Plot the geometry displaying edge labels.

figure

pdegplot(model, 'EdgelLabel’, 'on');

axis([-1.2*totalLength 1.2*totallLength -1.2*width 1.2*width])
title 'Geometry with Edge Labels';

3-95

3 Solving PDEs

Geometry with Edge Labels

50 r E2
or E3 ?E_ET E1
ES_EG
'ED C i i i i EF“F i i i i
=200 -150 -100 -50 1] a0 100 150 200

Plot the geometry displaying vertex labels.

figure

pdegplot(model, 'VertexLabels', 'on');
axis([-1.2*totalLength 1.2*totallLength -1.2*width 1.2*width])
title 'Geometry with Vertex Labels';

3-96

Stress Concentration in Plate with Circular Hole

Geometry with Vertex Labels

50 VB V2 o
ff.ﬁ\\
or va B 4
\7‘5'/
-0 [1'|.I';5 i i i i i i i 1‘-":.'

=200 -150 -100 -50 0 50 100 18500 200

Specify Model Parameters

Specify the Young's modulus and Poisson's ratio to model linear elastic material behavior. Remember
to specify physical properties in consistent units.

structuralProperties(model, 'YoungsModulus',200E3, 'PoissonsRatio',0.25);

Restrain all rigid-body motions of the plate by specifying sufficient constraints. For static analysis, the
constraints must also resist the motion induced by applied load.

Set the x-component of displacement on the left edge (edge 3) to zero to resist the applied load. Set
the y-component of displacement at the bottom left corner (vertex 3) to zero to restraint the rigid
body motion.

structuralBC(model, 'Edge',3, 'XDisplacement',0);
structuralBC(model, 'Vertex',3, 'YDisplacement',0);

Apply the surface traction with a non-zero x-component on the right edge of the plate.
structuralBoundarylLoad(model, 'Edge',1, 'SurfaceTraction',[100;0]);
Generate Mesh and Solve

To capture the gradation in solution accurately, use a fine mesh. Generate the mesh, using Hmax to
control the mesh size.

generateMesh(model, 'Hmax', radius/6);

3-97

3 Solving PDEs

Plot the mesh.

figure
pdemesh (model)

150 7

100 7

-100 | 1

-150 1 1 i 1 1 1 1 7
=200 =150 =100 =50 0 50 100 150 200

Solve the plane-stress elasticity model.
R = solve(model);
Plot Stress Contours

Plot the x-component of the normal stress distribution. The stress is equal to applied tension far away
from the circular boundary. The maximum value of stress occurs near the circular boundary.

figure

pdeplot(model, 'XYData',R.Stress.sxx, 'ColorMap', 'jet")
axis equal

title 'Normal Stress Along x-Direction';

3-98

Stress Concentration in Plate with Circular Hole

Normal Stress Along x-Direction

350

150

=200 150 100 -50 0 50 100 150 200

Interpolate Stress

To see the details of the stress variation near the circular boundary, first define a set of points on the
boundary.

thetaHole = linspace(0,2*pi,200);
Xr = radius*cos(thetaHole);
yr = radius*sin(thetaHole);
CircleCoordinates = [xr;yrl;

Then interpolate stress values at these points by using interpolateStress. This function returns a
structure array with its fields containing interpolated stress values.

stressHole = interpolateStress(R,CircleCoordinates);

Plot the normal direction stress versus angular position of the interpolation points.
figure

plot(thetaHole,stressHole.sxx)

xlabel('\theta')

ylabel('\sigma {xx}")
title 'Normal Stress Around Circular Boundary';

3-99

3 Solving PDEs

Normal Stress Around Circular Boundary

400
\ /

350 [

300 |
| |
|I \
250 | \
| 1
|
| \

200
|
! | I

i

150 | |
| 1

1 II

100 | | \

50 /

t

Solve the Same Problem Using Symmetric Model
The plate with a hole model has two axes of symmetry. Therefore, you can model a quarter of the
geometry. The following model solves a quadrant of the full model with appropriate boundary

conditions.
Create a structural model for the static plane-stress analysis.

symModel = createpde('structural', 'static-planestress');
Create the geometry that represents one quadrant of the original model. You do not need to create

additional edges to constrain the model properly.

Rl = [3 4 0 totalLength/2 totallLength/2

0 0 0 width width]l';
100 radius 0 06 000 0]";

Cl =]

gm = [R1 C1];

sf = 'R1-C1l';

ns = char('R1','C1');

g = decsg(gm,sf,ns');
geometryFromEdges (symModel,g);

Plot the geometry displaying the edge labels.

figure
pdegplot(symModel, 'EdgelLabel’, 'on');

axis equal
title 'Symmetric Quadrant with Edge Labels';

3-100

Stress Concentration in Plate with Circular Hole

Symmetric Quadrant with Edge Labels
T T T = T T T

50 T

40 | -

30 r 1

20 4

0 10 20 30 40 50 G0 70 80 80 100

Specify structural properties of the material.

structuralProperties(symModel, 'YoungsModulus',b200E3,
'PoissonsRatio',0.25);

Apply symmetric constraints on the edges 3 and 4.

structuralBC(symModel, 'Edge',[3 4], 'Constraint', 'symmetric');

Apply surface traction on the edge 1.
structuralBoundaryLoad(symModel, 'Edge',1, 'SurfaceTraction',[100;0]);
Generate mesh and solve the symmetric plane-stress model.

generateMesh(symModel, 'Hmax', radius/6);
Rsym = solve(symModel);

Plot the x-component of the normal stress distribution. The results are identical to the first quadrant
of the full model.

figure

pdeplot(symModel, 'XYData',Rsym.Stress.sxx, 'ColorMap', 'jet");
axis equal

title 'Normal Stress Along x-Direction for Symmetric Model';

3-101

3 Solving PDEs

Normal Stress Along x-Direction for Symmetric Model

3-102

Thermal Deflection of Bimetallic Beam

Thermal Deflection of Bimetallic Beam

This example shows how to solve a coupled thermo-elasticity problem. Thermal expansion or
contraction in mechanical components and structures occurs due to temperature changes in the
operating environment. Thermal stress is a secondary manifestation: the structure experiences
stresses when structural constraints prevent free thermal expansion or contraction of the component.
Deflection of a bimetallic beam is a common physics experiment. A typical bimetallic beam consists of
two materials bonded together. The coefficients of thermal expansion (CTE) of these materials are
significantly different.

Invar
AT = 100

A

A

Copber

This example finds the deflection of a bimetallic beam using a structural finite-element model. The
example compares this deflection to the analytic solution based on beam theory approximation.

Create a static structural model.
structuralmodel = createpde('structural','static-solid');

Create a beam geometry with the following dimensions.

L=20.1; %m
W = 5E-3; %m
H=1E-3; % m

gm = multicuboid(L,W,[H,H], 'Zoffset',6[0,H]);
Include the geometry in the structural model.
structuralmodel.Geometry = gm;

Plot the geometry.

figure
pdegplot(structuralmodel)

3-103

3 Solving PDEs

-0.01

-0.02

-0.03
-0.08

0.04 -0.03

Identify the cell labels of the cells for which you want to specify material properties.

First, display the cell label for the bottom cell. To see the cell label clearly, zoom onto the left end of
the beam and rotate the geometry as follows.

figure

pdegplot(structuralmodel, 'CellLabels','on')
axis([-L/2 -L/3 -W/2 W/2 0 2*H])

view([0 0])

zticks([1)

3-104

Thermal Deflection of Bimetallic Beam

c2
C1

0.05 0.048 0O.046 0044 0042 004 0038 -0.036 -0.034

Now, display the cell label for the top cell. To see the cell label clearly, zoom onto the right end of the
beam and rotate the geometry as follows.

figure

pdegplot(structuralmodel, 'CellLabels"', 'on")
axis([L/3 L/2 -W/2 W/2 0 2*H])

view ([0 0])

zticks([])

3-105

3 Solving PDEs

3-106

0.034 0036 0038 004 0042 0044 0048 0048 0.05

Specify the Young's modulus, Poisson's ratio, and linear coefficient of thermal expansion to model
linear elastic material behavior. To maintain unit consistency, specify all physical properties in SI
units.

Assign the material properties of copper to the bottom cell.

Ec = 137E9; % N/m"2

nuc = 0.28;

CTEc = 20.00E-6; % m/m-C

structuralProperties(structuralmodel, 'Cell’,1,
"YoungsModulus' ,Ec,
'PoissonsRatio',nuc,
'CTE',CTEc);

Assign the material properties of invar to the top cell.

Ei = 130E9; % N/m"2

nui = 0.354;

CTEL = 1.2E-6; % m/m-C

structuralProperties(structuralmodel, 'Cell’,?2,
"YoungsModulus' ,Ei,
'PoissonsRatio',nui,
'"CTE',CTE1);

For this example, assume that the left end of the beam is fixed. To impose this boundary condition,
display the face labels on the left end of the beam.

Thermal Deflection of Bimetallic Beam

figure
pdegplot(structuralmodel, 'facelLabels', 'on', 'FaceAlpha',0.25)
axis([-L/2 -L/3 -W/2 W/2 0 2*H])

view([60 10])

xticks([1)

yticks([])

zticks([])

Apply a fixed boundary condition on faces 5 and 10.
structuralBC(structuralmodel, 'Face',[5,10], 'Constraint', 'fixed"');

Apply the temperature change as a thermal load. Use a reference temperature of 25 degrees Celsius
and an operating temperature of 125 degrees Celsius. Thus, the temperature change for this model is
100 degrees Celsius.

structuralBodylLoad(structuralmodel, 'Temperature',125);
structuralmodel.ReferenceTemperature = 25;

Generate a mesh and solve the model.

generateMesh(structuralmodel, 'Hmax',H/2);
R = solve(structuralmodel);

Plot the deflected shape of the bimetallic beam with the magnitude of displacement as the color map
data.

figure
pdeplot3D(structuralmodel, 'ColorMapData',R.Displacement.Magnitude,

3-107

3 Solving PDEs

'Deformation',R.Displacement,
'DeformationScaleFactor',?2)
title('Deflection of Invar-Copper Beam')

Deflection of Invar-Copper Beam

Compute the deflection analytically, based on beam theory. The deflection of the strip is
5 = 64 Tac—) L2

Ky
coefficients of thermal expansion of copper and invar, E, and E; are the Young's modulus of copper
and invar, and L is the length of the strip.

E. E;
, where K1 = 14 + F‘l’ + E—; AT is the temperature difference, a, and @; are the

K1 = 14 + (Ec/Ei)+ (Ei/Ec);
deflectionAnalytical = 3*(CTEc - CTEi)*100*2*H*L~2/(H"2*K1);

Compare the analytical results and the results obtained in this example. The results are comparable
because of the large aspect ratio.

PDEToobox Deflection = max(R.Displacement.uz);
percentError = 100* (PDEToobox Deflection -
deflectionAnalytical)/PDEToobox Deflection;

bimetallicResults = table(PDEToobox Deflection,
deflectionAnalytical, percentError);
bimetallicResults.Properties.VariableNames = {'PDEToolbox',
"Analytical’,
'PercentageError'};
disp(bimetallicResults)

3-108

Thermal Deflection of Bimetallic Beam

PDEToolbox Analytical PercentageError

0.0071061 0.0070488 0.80608

3-109

3 Solving PDEs

Axisymmetric Thermal and Structural Analysis of Disc Brake

3-110

This example shows a quasistatic axisymmetric thermal stress analysis workflow by reproducing the
results of the simplified disc brake model discussed in [1] on page 3-0 . Disc brakes absorb
mechanical energy through friction and transform it into thermal energy, which then dissipates. The
example uses a simplified model of a disc brake in a single braking process from a constant initial
angular speed to a standstill. The workflow has two steps:

1 Transient thermal analysis to compute the temperature distribution in the disc using the heat
flux from brake pads

2 Quasistatic structural analysis to compute thermal stresses at several solution times using
previously obtained temperature distribution to specify thermal loads

The resulting plots show the temperature distribution, radial stress, hoop stress, and von Mises stress
for the corresponding solution times.

Disc Brake Properties and Geometry

Based on the assumptions used in [1] on page 3-0 , the example reduces the analysis domain to a
rectangular region corresponding to the axisymmetric section of the annular disc. Because of the
geometric and load symmetry of the disc, the example models only half the thickness of the disc and
the effect of one pad. In the following figure, the left edge corresponds to the inner radius of the disc
rq. The right edge corresponds to the outer radius of the disc Ry and also coincides with the outer
radius of the pad Ry, The disc experiences pressure from the pad, which generates the heat flux.
Instead of modeling the pad explicitly, include its effect in the thermal analysis by specifying this heat
flux as a boundary condition from the inner radius of the pad r, to the outer radius of the pad Ry,

qqa(7,1)

R4,R,

Thermal Analysis: Compute Temperature Distribution
Create a transient axisymmetric thermal model.
modelT = createpde('thermal', 'transient-axisymmetric');

Create a geometry with two adjacent rectangles. The top edge of the longer rectangle (on the right)
represents the disc-pad contact region.

Axisymmetric Thermal and Structural Analysis of Disc Brake

R1
R2

[3,4, [66, 76.5, 76.5, 66, -5.5,
[3,4, [76.5, 113.5, 113.5, 76.5, -5.5,

0, 0]/1000]"';
0, 0]/1000]";

-5.5,
-5.5,
gdm = [R1 R2];

ns = char('R1','R2");

g = decsg(gdm, 'Rl + R2',ns');

Assign the geometry to the thermal model.
geometryFromEdges (modelT,qg);

Plot the geometry with the edge and face labels.

figure
pdegplot(modelT, 'EdgelLabels', 'on

, 'FacelLabels', 'on')

3
<10
0 ——E5— ; ; ; B ; ; ;
E1 F1 BY F2 HZ
A Lt IEE i i i I E‘l 1 1 i -

0.0y o0.0v5 008 0085 009 009 01 0105 011

Generate a mesh. To match the mesh used in [1] on page 3-0 , use the linear geometric order
instead of the default quadratic order.

generateMesh(modelT, 'Hmax',0.5E-04, 'GeometricOrder', 'linear"');

Specify the thermal material properties of the disc.

alphad = 1.44E-5; % Diffusivity of disc

Kd = 51;

rhod = 7100;

cpd = Kd/rhod/alphad;

thermalProperties(modelT, 'ThermalConductivity',Kd,

3-111

3 Solving PDEs

3-112

'MassDensity', rhod,
'SpecificHeat',cpd);

Specify the heat flux boundary condition to account for the pad region. For the definition of the qFcn
function, see Heat Flux Function on page 3-0

thermalBC(modelT, 'Edge',6, 'HeatFlux',@qgFcn);

Set the initial temperature.

thermalIC(modelT,20);

Solve the model for the times used in [1] on page 3-0

tlist = [0 0.1 0.2 1.0 2.0 3.0 3.96];
Rt = solve(modelT,tlist);

Plot the temperature variation with time at three key radial locations. The resulting plot is
comparable to the plot obtained in [1] on page 3-0

iTRd
iTrp
iTrd

interpolateTemperature(Rt,[0.1135;0],1:numel(Rt.SolutionTimes));
interpolateTemperature(Rt,[0.0765;0],1:numel(Rt.SolutionTimes));
interpolateTemperature(Rt,[0.066;0],1:numel(Rt.SolutionTimes));

figure

plot(tlist,iTRd)

hold on

plot(tlist,iTrp)

plot(tlist,iTrd)

title('Temperature Variation with Time at Key Radial Locations')
legend('R d','r p','r d")

xlabel 't, s'

ylabel 'T,”{\circ}C'

Axisymmetric Thermal and Structural Analysis of Disc Brake

Temperature Variation with Time at Key Radial Locations

110 T T T T T

100 -

o r /

T.C
\“\

40

300

20 '

Structural Analysis: Compute Thermal Stress

Create an axisymmetric static structural analysis model.

model = createpde('structural', 'static-axisymmetric');
Assign the geometry and mesh used for the thermal model.

model.Geometry = modelT.Geometry;
model.Mesh = modelT.Mesh;

Specify the structural properties of the disc.

structuralProperties(model, 'YoungsModulus',99.97E9,
'PoissonsRatio',0.29,
'CTE',1.08E-5);

Constrain the model to prevent rigid motion.

structuralBC(model, 'Edge',[3,4], 'ZDisplacement',0);

Specify the reference temperature that corresponds to the state of zero thermal stress of the model.

model.ReferenceTemperature

= 20;

Specify the thermal load by using the transient thermal results Rt. The solution times are the same as
in the thermal model analysis. For each solution time, solve the corresponding static structural
analysis problem and plot the temperature distribution, radial stress, hoop stress, and von Mises

3-113

3 Solving PDEs

3-114

stress. For the definition of the plotResults function, see Plot Results Function on page 3-0
results are comparable to figure 5 from [1] on page 3-0

for n = 2:numel(Rt.SolutionTimes)

structuralBodylLoad(model, 'Temperature',Rt, 'TimeStep',n);
R = solve(model);

plotResults(model,R,modelT,Rt,n);

end
Time=0.1s
Radial Stress
Temperature min = -23.17 MPa
max = 40.5839 C max = 5.51 MPa
40
0.01 (.01
a5 o
N e ———— S)
N 30 o -10
-0.01 o5 -0.01
0.02 -0.02 20
007 008008 01 011 007 0.08 008 01 011 « 10%
Hnn{:’g}reaa f.m
min = -24.78 MPa Von Mises Stress
max = 4.62 MPa max = 23.16 MPa %107
0.01) 0.01 2
-0.5
= ee— S S— -
P) 1
-0.01 1.5 -0.01
2 0.2
1 - S — - S —
0.07 008009 01 011 =107 007 008008 01 011
r, m r, m

. The

Axisymmetric Thermal and Structural Analysis of Disc Brake

0.01

Temperature
max = 48.5403°C

B e

M

-0.01

-0.02

0.01

0.07 D08 009 01 011

Hnn{:’g}reaa
min = -31.55 MPa
max = 8.36 MPa

T N———

M
-0.01

-0.02

0.07 008009 0.1 011
r.m

Time=0.2s

45
40
35

25

%107

0.01

= S———

-0.01

[N

-0.02

0.01

Radial Stress
min = -28.70 MPa
max = 10.20 MPa

0.07 0.080.09 01 0.11
r,m

Von Mises Stress
max = 29.35 MPa

T e——

M
-0.01

-0.02

0.07 0.080.09 01 0.11
r.m

=10

w10

25

1.5

0.5

3-115

3 Solving PDEs

3-116

m

m

0.01

0

-0.01

-0.02

0.01

0

-0.01

-0.02

Temperature
max = 76.533 C

0.07 D08 009 01 011

Hmfrg}ress
min = -40.69 MPa
max = 26.30 MPa

0.07 008009 01 011
r, m

Time=1s

E&883

=107

m

m

0.01

0o

-0.01

-0.02

0.01

0

-0.01

-0.02

Radial Stress
min = -29.49 MPa
max = 16.52 MPa

007 008008 01 011
F, m

Von Mises Stress
max = 35.61 MPa

| —

007 008008 01 011
F, m

Axisymmetric Thermal and Structural Analysis of Disc Brake

Time=2s

Radial Stress
Temperature

min = -18.96 MPa
max = 93.497 C

max = 12.98 MPa
0.01 a0 0.01 !
E 0 e—— E 0 0
e NS NI
-0.01 40 -0.01 -1
-0.02 -0.02

0.07 D08 009 01 011 0.07 0.080.09 01 0.11

10
Hmfrglress f.m
min = -37.56 MPa Von Mises Stress
max =42.13 MPa %107 max = 43.51 MPa x10°
4
0.01 0.01 4
2 3
= 0 E 0
fOOmm\NSS—— eS| |,
-0.01 5 -0.01]
1 - S — - S —
0.07 008009 01 011 007 008008 01 011
r, m

r, m

3-117

3 Solving PDEs

3-118

E

o

E
N

Temperature
max = 100.0329 C
0.01
0
=
-0.01
-0.02
0.07 008008 0.1 0.1
Hmfxﬁlrﬁs
min = -31.20 MPa
max = 48.08 MPa
0.01
0
S ——
-0.01
-0.02

0.07 0080098 01 011
r, m

Time=3s
Radial Stress
min = -8.56 MPa
max =9.08 MPa
100
0.01
80
s TeE——
60 m
-0.01
40
-0.02

%107

E
N

-0.01

-0.02

007 008008 01 011
F, m

Von Mises Stress
max = 49.49 MPa

0.01

? =

007 008008 01 011
r, m

% 107

—

Axisymmetric Thermal and Structural Analysis of Disc Brake

Time =396 s
Radial Stress
Temperature min = -0.39 MPa
max = 96.8461 C max = 6.41 MPa x 10°
[+
0.01 0.01
g 4
= U = EERES
o o
0.01 -0.01 2
0.02 40 0.02 0
0.07 0.080.090 0.1 0.11 0.07 0.080.00 0.1 0.11
Hoof Slress o
min = -22.44 MPa Von Mises Stress
max = 45.94 MPa %107 max = 47.15 MPa 107
0.01 4 0.0 4
E 0 2 E 0 3
C IRV <
001 0 0,01 2
1
0.02 -2 0.02

0.07 0.0 009 01 011 0.07 0.080.09 01 0.1
r,m r, m

Heat Flux Function

This helper function computes the transient value of the heat flux from the pad to the disc. It uses the
empirical formula from [1] on page 3-0

function q = gFcn(r,s)

alphad = 1.44E-5; % Diffusivity of disc

Kd = 51; % Conductivity of disc

rhod = 7100; % Density of disc

cpd = Kd/rhod/alphad; % Specific heat capacity of disc

alphap = 1.46E-5; % Diffusivity of pad
Kp = 34.3; % Conductivity of pad
rhop = 4700; % Density of pad

cpp = Kp/rhop/alphap; % Specific heat capacity of pad

f =0.5; % Coefficient of friction

omegal® = 88.464; % Initial angular velocity
ts = 3.96; % Stopping time
p0 = 1.47E6*(64.5/360); % Pressure only spans 64.5 deg occupied by pad

omegat = omegal@*(1l - s.time/ts); % Angular speed over time
eta = sqrt(Kd*rhod*cpd)/(sqrt(Kd*rhod*cpd) + sqrt(Kp*rhop*cpp));

g = (eta)*f*omegat*r.r*po;
end

3-119

3 Solving PDEs

Plot Results Function

This helper function plots the temperature distribution, radial stress, hoop stress, and von Mises
stress.

function plotResults(model,R,modelT,Rt,tID)

figure

subplot(2,2,1)

pdeplot(modelT, 'XYData',Rt.Temperature(:,tID),
'ColorMap', 'jet', 'Contour', 'on')

title({ ' Temperature';

['max = ' num2str(max(Rt.Temperature(:,tID))) '~{\circ}C']l})
xlabel 'r, m'
ylabel 'z, m'

subplot(2,2,2)

pdeplot(model, 'XYData',R.Stress.srr,
'ColorMap', 'jet', 'Contour','on')

title({'Radial Stress';

['min = ' num2str(min(R.Stress.srr)/1E6, '%3.2f') ' MPa'l;
['max = ' num2str(max(R.Stress.srr)/1E6, '%3.2f') ' MPa'l})
xlabel 'r, m'
ylabel 'z, m'

subplot(2,2,3)

pdeplot(model, 'XYData',R.Stress.sh,
'ColorMap', 'jet', 'Contour','on')

title({'Hoop Stress';

['min = ' num2str(min(R.Stress.sh)/1E6, '%3.2f') ' MPa'l];
['max = ' num2str(max(R.Stress.sh)/1E6, '%3.2f"') ' MPa']})
xlabel 'r, m'
ylabel 'z, m'

subplot(2,2,4)

pdeplot(model, 'XYData',R.VonMisesStress,
'ColorMap', 'jet', 'Contour','on')

title({'Von Mises Stress';

['max = ' num2str(max(R.VonMisesStress)/1E6, '%3.2f') ' MPa'l})
xlabel 'r, m'
ylabel 'z, m'
sgtitle(['Time = ' num2str(Rt.SolutionTimes(tID)) ' s'])
end
References

[1] Adamowicz, Adam. "Axisymmetric FE Model to Analysis of Thermal Stresses in a Brake Disc."
Journal of Theoretical and Applied Mechanics 53, issue 2 (April 2015): 357-370. https://doi.org/
10.15632/jtam-pl.53.2.357.

3-120

https://doi.org/10.15632/jtam-pl.53.2.357
https://doi.org/10.15632/jtam-pl.53.2.357

Electrostatic Potential in Air-Filled Frame

Electrostatic Potential in Air-Filled Frame

This example shows how to find the electrostatic potential in an air-filled annular quadrilateral frame.
The PDE governing this problem is the Poisson equation
-V (eVV) =p.

Here, p is the space charge density, and ¢ is the absolute dielectric permittivity of the material. The
toolbox uses the relative permittivity of the material ¢, such that € = g€y, where gyis the absolute
permittivity of the vacuum. The relative permittivity for air is 1.00059. Note that the permittivity of
the air does not affect the result in this example as long as the coefficient is constant.

Assuming that there is no charge in the domain, the Poisson equation simplifies to the Laplace
equation: AV = 0. For this example, use the following boundary conditions:

* The electrostatic potential at the inner boundary is 1000V.
* The electrostatic potential at the outer boundary is OV,

Create an electromagnetic model for electrostatic analysis.
emagmodel = createpde('electromagnetic', 'electrostatic');
Import and plot a geometry of a simple frame.

importGeometry(emagmodel, 'Frame.STL');
pdegplot(emagmodel, 'EdgeLabels', 'on')

0.25F ES

0.2r

0157

01F G

0.05 |

E1

ET

3-121

3 Solving PDEs

3-122

Specify the vacuum permittivity value in the SI system of units.
emagmodel.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the material.
electromagneticProperties(emagmodel, 'RelativePermittivity',1.00059);
Specify the electrostatic potential at the inner boundary.
electromagneticBC(emagmodel, 'Voltage',1000, 'Edge’,[1 2 4 6]);

Specify the electrostatic potential at the outer boundary.
electromagneticBC(emagmodel, 'Voltage',0, 'Edge',[3 5 7 8]);

Generate the mesh.

generateMesh(emagmodel) ;

Solve the model. Plot the electric potential using the Contour parameter to display equipotential
lines.

R = solve(emagmodel);
u = R.ElectricPotential;
pdeplot(emagmodel, 'XYData',u, 'Contour','on")

0.25

=
=

o
&

S
(X}

-0.25

Electrostatic Potential in Air-Filled Frame: PDE Modeler App

Electrostatic Potential in Air-Filled Frame: PDE Modeler App

Find the electrostatic potential in an air-filled annular quadrilateral frame using the PDE Modeler
app. For this example, use the following parameters:

* Inner square side is 0.2 m

* Outer square side is 0.5 m

» Electrostatic potential at the inner boundary is 1000V

» Electrostatic potential at the outer boundary is OV

The PDE governing this problem is the Poisson equation

-V (eVV) = p.

The PDE Modeler app uses the relative permittivity €, = ¢/, where ¢ is the absolute dielectric
permittivity of a vacuum (8.854 - 10! farad/meter). The relative permittivity for the air is 1.00059.
Note that the coefficient of permittivity does not affect the result in this example as long as the
coefficient is constant.

Assuming that there is no charge in the domain, you can simplify the Poisson equation to the Laplace
equation,

AV =0.

Here, the boundary conditions are the Dirichlet boundary conditions V = 1000 at the inner boundary
and V = 0 at the outer boundary.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw the following two squares.
pderect([-0.1 0.1 -0.1 0.1])

pderect([-0.25 0.25 -0.25 0.25])

2 Set both x- and y-axis limits to [-0.3 0.3]. To do this, select Options > Axes Limits and set
the corresponding ranges. Then select Options > Axes Equal.

3 Model the frame by entering SQ2-5SQ1 in the Set formula field.
Set the application mode to Electrostatics.

5 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

1000.

* For the outer boundaries, use the Dirichlet boundary condition withh = land r = 0.

6 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify epsilon = 1and rho = 0.

land r

» For the inner boundaries, use the Dirichlet boundary condition with h

Initialize the mesh by selecting Mesh > Initialize Mesh.
Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

Plot the equipotential lines using a contour plot. To do this, select Plot > Parameters and
choose the contour plot in the resulting dialog box.

3-123

3 Solving PDEs

10 Improve the accuracy of the solution by refining the mesh close to the reentrant corners where
the gradients are steep. To do this, select Solve > Parameters. Select Adaptive mode, use the
Worst triangles selection method, and set the maximum number of triangles to 500. Select
Mesh > Refine Mesh.

11 Solve the PDE using the refined mesh. To display equipotential lines at every 100th volt, select
Plot > Parameters and enter 0:100: 1000 in the Contour plot levels field.

4. PDE Modeler - [Untitled] =N Ech <"
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
O E o | 2 | 09 ppel £ £ = | - @\[Elmmstﬂﬁcs -] % o41as Y: 0.2862
Set formula: S-S0
Contour: V
T T T T T T T T T 1DDD
aon
0.2 T 7 800
_,—ﬂ‘""___:———
g ——
/".rf-’__—____—““‘“—::: \
e — Ton
0.1 ‘H ﬁ F— _
! |l‘I { 00
ol
|
ok . 500
N
\n
1 \]\lk 400
o \\\ ‘\Q\::::—————’] 300
\M:E__—__:_;::‘/
‘-"\—\._,_______'_-'_'_'_,_:—"
_ 200
D271 7
1100
—DE. 1 1 1 1 1 1 1 1 1 U
0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.

3-124

Electrostatic Analysis of Transformer Bushing Insulator

Electrostatic Analysis of Transformer Bushing Insulator

This example shows how to compute the electric field intensity in a bushing insulator of a
transformer. Bushing insulators must withstand large electric fields due to the potential difference
between the ground and the high-voltage conductor. This example uses a 3-D electrostatic model to
compute the voltage distribution and electric field intensity in the bushing.

Create an electromagnetic model for electrostatic analysis.

3-125

3 Solving PDEs

model = createpde('electromagnetic', 'electrostatic');

Import and plot the bushing geometry.

gmBushing = importGeometry('TransformerBushing.stl"');
pdegplot(gmBushing)

0.2

Model the surrounding air as a cuboid, and position the cuboid to contain the bushing at its center.
gmAir = multicuboid(1,0.4,0.4);

gmAir.translate([0.25,0.125,-0.07]);

gmModel = addCell(gmAir,gmBushing);

Plot the resulting geometry with the cell labels.

pdegplot(gmModel, 'CellLabels', 'on', 'FaceAlpha',0.25)

3-126

Electrostatic Analysis of Transformer Bushing Insulator

Include the geometry in the model.

model.Geometry = gmModel;

Specify the vacuum permittivity value in the SI system of units.
model.VacuumPermittivity = 8.8541878128E-12;

Specify the relative permittivity of the air.
electromagneticProperties(model, 'Cell’', 1, 'RelativePermittivity',1);
Specify the relative permittivity of the bushing insulator.
electromagneticProperties(model, 'Cell',2, 'RelativePermittivity',5);

Before specifying boundary conditions, identify the face IDs by plotting the geometry with the face
labels. To see the IDs more clearly, rotate the geometry.

pdegplot(gmModel, 'FacelLabels', 'on', 'FaceAlpha',0.2)
view([55 5])

3-127

3 Solving PDEs

3-128

0-3 7 <“——:2>

0.2

F5
0.1 S F12
Fa

|

0.2

0.3

0.4
02 g

0.6 02 0 0.2

Specify the voltage boundary condition on the inner walls of the bushing exposed to conductor.
electromagneticBC(model, 'Face',12, 'Voltage',10E3);

Specify the grounding boundary condition on the surface in contact with the oil tank.
electromagneticBC(model, 'Face',9, 'Voltage',0);

Generate a mesh and solve the model.

generateMesh(model);
R = solve(model)

R —1
ElectrostaticResults with properties:

ElectricPotential: [41046x1 double]
ElectricField: [1x1 FEStruct]
ElectricFluxDensity: [1x1 FEStruct]
Mesh: [1x1 FEMesh]

Plot the voltage distribution in the bushing.

elemsBushing = findElements(model.Mesh, 'Region', 'Cell"',2);

pdeplot3D(model.Mesh.Nodes,
model.Mesh.Elements(:,elemsBushing),
"ColorMapData’',R.ElectricPotential);

Electrostatic Analysis of Transformer Bushing Insulator

10000

8000

8000

1 7000

1 6000

1 5000
¥ 1 4000

/ 3000

2000

1000

Plot the magnitude of the electric field intensity in the bushing.

Emag = sqrt(R.ElectricField.Ex."2 + ...
R.ElectricField.Ey."2 + ...
R.ElectricField.Ez."2);

pdeplot3D(model.Mesh.Nodes,

model.Mesh.Elements(:,elemsBushing),
‘ColorMapData’,Emag) ;

3-129

3 Solving PDEs

3-130

i

Magnetic Flux Density in H-Shaped Magnet

Magnetic Flux Density in H-Shaped Magnet

This example shows how to solve a 2-D magnetostatic model for a ferromagnetic frame with an H-
shaped cavity. This setup generates a uniform magnetic field due to the presence of two coils.

Create a geometry that consists of a rectangular frame with an H-shaped cavity, four rectangles
representing the two coils, and a unit square representing the air domain around the magnet. Specify
all dimensions in millimeters, and use the value convfactor = 1000 to convert the dimensions to
meters.

convfactor = 1000;

Create the H-shaped geometry to model the cavity.

xCoordsCavity = [-425 -125 -125 125 125 425 425 ...
125 125 -125 -125 -425]/convfactor;
yCoordsCavity = [-400 -400 -100 -100 -400 -400 ...
400 400 100 100 400 400]/convfactor;
RH = [2;12;xCoordsCavity';yCoordsCavity'];

Create the geometry to model the rectangular ferromagnetic frame.
RS = [3;4;[-525;525;525;-525;-500;-500;500;500]/convfactor];
zeroPad = zeros(numel(RH)-numel(RS),1);

RS = [RS;zeroPad]l;

Create the geometries to model the coils.

RC1 = [3;4;[150;250;250;150;120;120;350;350]/convfactor;
zeroPad];

RC2 = [3;4;[-150;-250;-250;-150;120;120;350;350]/convfactor;
zeroPad];

RC3 = [3;4;[150;250;250;150;-120;-120;-350;-350]/convfactor;
zeroPad];

RC4 = [3;4;[-150;-250;-250;-150;-120;-120;-350;-350]/convfactor;
zeroPad];

Create the geometry to model the air domain around the magnet.

RD = [3;4;[-1000;1000;1000;-1000;-1000;
-1000;1000;1000]/convfactor;zeroPad];

Combine the shapes into one matrix.
gd = [RS,RH,RC1,RC2,RC3,RC4,RD];
Create a set formula and create the geometry.

ns = char('RS','RH','RC1",'RC2"',"'RC3"','RC4",'RD");
g = decsg(gd, ' (RS+RH+RC1+RC2+RC3+RC4)+RD',ns"');

Plot the geometry with the face labels.

figure
pdegplot(g, 'FacelLabels', 'on")

3-131

3 Solving PDEs

3-132

F2

F3

F1

Plot the geometry with the edge labels.

figure
pdegplot(g, 'EdgeLabels','on")

0.5

Magnetic Flux Density in H-Shaped Magnet

1 T E6 T

Et3 E3E31 E3E1 5

L
(&)
&1

Create a magnetostatic model and include the geometry in the model.

model = createpde('electromagnetic', 'magnetostatic');
geometryFromEdges (model,g);

Generate a mesh with fine refinement in the ferromagnetic frame.
generateMesh(model, 'Hface',{2,0.01}, '"Hmax',0.1, 'Hgrad',2);

figure
pdemesh(model)

3-133

3 Solving PDEs

Specify the vacuum permeability value in the SI system of units.
model.VacuumPermeability = 1.2566370614E-6;

Specify a relative permeability of 1 for all domains.
electromagneticProperties(model, 'RelativePermeability',1);

Now specify the large relative permeability of the ferromagnetic frame.
electromagneticProperties(model, 'RelativePermeability', 10000, 'Face',2);
Specify the current density values on the upper and lower coils.

electromagneticSource(model, 'CurrentDensity',1E6, 'Face',[5,6]);
electromagneticSource(model, 'CurrentDensity', -1E6, 'Face',[4,7]1);

Specify that the magnetic potential on the outer surface of the air domain is 0.
electromagneticBC(model, 'Edge',[5,6,13,14], 'MagneticPotential',0);
Solve the model.

R

solve(model)

R =
MagnetostaticResults with properties:

3-134

Magnetic Flux Density in H-Shaped Magnet

MagneticPotential:
MagneticField:
MagneticFluxDensity:
Mesh:

[26381x1 double]
[1x1 FEStruct]
[1x1 FEStruct]
[1x1 FEMesh]

Plot the magnitude of the flux density.

Bmag = sqrt(R.MagneticFluxDensity.Bx.”2 + ...

R.MagneticFluxDensity.By."2);

pdeplot(model, 'XYData',Bmag, ...
'FlowData', [R.MagneticFluxDensity.Bx ...
R.MagneticFluxDensity.By])

157

At

1t
05|
ot
057

—

-1.5 '

References

1 1.5

[1] Kozlowski, A., R. Rygal, and S. Zurek. "Large DC electromagnet for semi-industrial
thermomagnetic processing of nanocrystalline ribbon." IEEE Transactions on Magnetics 50, issue 4
(April 2014): 1-4. https://ieeexplore.ieee.org/document/6798057.

3-135

https://ieeexplore.ieee.org/document/6798057

3 Solving PDEs

Magnetic Flux Density in Electromagnet

This example shows how to solve a 3-D magnetostatic problem for a solenoid with a finite length iron
core. Using a ferromagnetic core with high permeability, such as an iron core, inside a solenoid
increases magnetic field and flux density. In this example, you find the magnetic flux density for a
geometry consisting of a coil with a finite length core in a cylindrical air domain.

— Core

— Coll

The first part of the example solves the magnetostatic problem using a 3-D model. The second part
solves the same problem using an axisymmetric 2-D model to speed up computations.

3-D Model of Coil with Core

Create geometries consisting of three cylinders: a solid circular cylinder models the core, an annular
circular cylinder models the coil, and a larger circular cylinder models the air around the coil.

3-136

Magnetic Flux Density in Electromagnet

coreGm multicylinder(0.03,0.1);
coilGm multicylinder([0.05 0.07],0.2,'Void',[1 0O]);
airGm = multicylinder(1,2);

Position the core and coil so that the finite length core is located near the top of coil.

translate(coreGm,[0 0 1.025]);
translate(coilGm, [0 0 0.9]);

coreGm
coilGm

Combine the geometries and plot the result.

gm addCell(airGm, coreGm);
gm addCell(gm,coilGm);
pdegplot(gm, 'FaceAlpha',0.2, " 'CellLabels','on")

L

Zoom in to see the cell labels on the core and coil.
figure

pdegplot(gm, 'FaceAlpha',0.2,'CellLabels','on")
axis([-0.1 0.1 -0.1 0.1 0.8 1.2])

3-137

3 Solving PDEs

3-138

1.2 -
1.15 -
1.1

1.05 ~

2D
0.95 -
0.9 -
0.85 -
0.1
0.8
0.1 0
0
04 01

Create an electromagnetic model and assign air geometry to the model.

model3D = createpde('electromagnetic', 'magnetostatic');
model3D.Geometry = gm;

Specify the vacuum permeability value in the SI system of units.
model3D.VacuumPermeability = 1.2566370614E-6;

Specify a relative permeability of 1 for all domains.
electromagneticProperties(model3D, 'RelativePermeability',1);
Now specify the large relative permeability of the core.

electromagneticProperties(model3D, 'RelativePermeability', 10000,
"Cell',2);

Assign an excitation current using a function that defines counterclockwise current density in the
coil.

electromagneticSource(model3D, 'CurrentDensity',@windingCurrent3D,
"Cell',3);

Specify that the magnetic potential on the outer surface of the air domain is 0.

electromagneticBC(model3D, 'MagneticPotential',[0;0;0], 'Face',1:3);

Magnetic Flux Density in Electromagnet

Generate a mesh where only the core and coil regions are well refined and the air domain is relatively
coarse to limit the size of the problem.

internalFaces = cellFaces(model3D.Geometry,2:3);
generateMesh(model3D, 'Hface', {internalFaces,0.007});

Solve the model.

R

solve(model3D)

R:
MagnetostaticResults with properties:

MagneticPotential: [1x1 FEStruct]

MagneticField: [1x1 FEStruct]

MagneticFluxDensity: [1x1 FEStruct]
Mesh: [1x1 FEMesh]

Find the magnitude of the flux density.

Bmag = sqrt(R.MagneticFluxDensity.Bx.”2 + ...
R.MagneticFluxDensity.By.”2 + ...
R.MagneticFluxDensity.Bz.”2);

Find the mesh elements belonging to the core and the coil.

coreAndCoilElem = findElements(model3D.Mesh, 'region', 'Cell',[2 3]);

Plot the magnitude of the flux density on the core and coil.

pdeplot3D(model3D.Mesh.Nodes,
model3D.Mesh.Elements(:,coreAndCoilElem),
"ColorMapData',Bmag)

axis([-0.1 0.1 -0.1 0.1 0.8 1.2])

3-139

3 Solving PDEs

=
n

0.45

015
0.1

0.05

Interpolate the flux to a grid covering the portion of the geometry near the core.

X -0.05:0.01:0.05;

Z 1.02:0.01:1.14;

y = X;

[X,Y,Z] = meshgrid(x,y,z);

intrpBcore = R.interpolateMagneticFlux(X,Y,Z);

Reshape intrpBcore.Bx, intrpBcore.By, and intrpBcore.Bz and plot the magnetic flux density
as a vector plot.

Bx = reshape(intrpBcore.Bx,size(X));
By = reshape(intrpBcore.By,size(Y));
Bz = reshape(intrpBcore.Bz,size(Z));

quiver3(X,Y,Z,Bx,By,Bz, 'Color"','r')
hold on
pdegplot(coreGm, 'FaceAlpha',0.2);

3-140

Magnetic Flux Density in Electromagnet

0.05

0.05

2-D Axisymmetric Model of Coil with Core
Now, simplify this 3-D problem to 2-D using the symmetry around the axis of rotation.

First, create the geometry. The axisymmetric section consists of two small rectangular regions (the
core and coil) located within a large rectangular region (air).

R1 =[3,4,0.0,1,1,0.0,0,0,2,2]";

R2 = [3,4,0,0.03,0.03,0,1.025,1.025,1.125,1.125]1";
R3 = [3,4,0.05,0.07,0.07,0.05,0.90,0.90,1.10,1.10]"
ns = char('R1','R2','R3");

sf = 'R1+R2+R3';

gdm = [R1, R2, R3];
g = decsg(gdm,sf,ns');

Plot the geometry with the face labels.

pdegplot(g, 'FacelLabels', 'on')

3-141

3 Solving PDEs

3-142

F1

1271

0.8

Zoom in to see the face labels on the core and coil.

figure
pdegplot(g, 'FaceLabels','on")
axis([0 0.1 0.8 1.2])

Magnetic Flux Density in Electromagnet

1.2 T

117 1]

1.05(° 1

F2

0951 T

0.9]

0.85 T

0 0.05 01

Create an electromagnetic model for axisymmetric magnetostatic analysis and assign the geometry.

model2D = createpde('electromagnetic', 'magnetostatic-axisymmetric');
geometryFromEdges (model2D,qg);

Specify the vacuum permeability value in the SI system of units.
model2D.VacuumPermeability = 1.2566370614E-6;

Specify a relative permeability of 1 for all domains.
electromagneticProperties(model2D, 'RelativePermeability',1);
Now specify the large relative permeability of the core.

electromagneticProperties(model2D, 'RelativePermeability', 10000,
'Face',3);

Specify the current density in the coil. For an axisymmetric model, use the constant current value.
electromagneticSource(model2D, 'CurrentDensity',5E6, 'Face',2);

Assign zero magnetic potential on the outer edges of the air domain as the boundary condition.
electromagneticBC(model2D, 'MagneticPotential',0, 'Edge',[2 8]);

Generate a mesh.

generateMesh(model2D, 'Hmin',0.0004, 'Hgrad',2, '"Hmax"',0.008) ;

3-143

3 Solving PDEs

Solve the model.

R = solve(model2D);
Find the magnitude of the flux density.

Bmag = sqrt(R.MagneticFluxDensity.Bx.”2 + ...
R.MagneticFluxDensity.By."2);

Plot the magnitude of the flux density on the core and coil.

pdeplot (model2D, 'XYData',Bmag)
x1im([0,0.05]);
ylim([1.0,1.14])

1.12

1.1

1.08

1.06

1.04

1.02

1] 0.01 0.02 0.03 0.04 0.05

Interpolate the flux to a grid covering the portion of the geometry near the core.

0:0.01:0.05;

1.02:0.01:1.14;

X,Y] = meshgrid(x,y);

intrpBcore = R.interpolateMagneticFlux(X,Y);

X =
y =
[

Reshape intrpBcore.Bx and intrpBcore.By and plot the magnetic flux density as a vector plot.

X
y

reshape(intrpBcore.Bx,size(X));

B
B reshape(intrpBcore.By,size(Y));

quiver(X,Y,Bx,By, 'Color','r")

3-144

Magnetic Flux Density in Electromagnet

hold on
pdegplot(model2D);
x1im([0,0.07]);
ylim([1.0,1.14])

1.14

.
h Y

112}

117

B i e T

1.0871

b

1.06

—_— e e e e i e

,.
T -

1.04 1

1.021

.1 i i
0 0.02 0.04 0.06

Function Defining Current Density in Coil for 3-D Model

function f3D = windingCurrent3D(region,~)

[TH,~,~] = cart2pol(region.x,region.y,region.z);
f3D = -5E6*[sin(TH); -cos(TH); zeros(size(TH))]1;
end

References

[1] Thierry Lubin, Kévin Berger, Abderrezak Rezzoug. "Inductance and Force Calculation for
Axisymmetric Coil Systems Including an Iron Core of Finite Length." Progress In Electromagnetics
Research B, EMW Publishing 41 (2012): 377-396. https://hal.archives-ouvertes.fr/hal-00711310.

3-145

https://hal.archives-ouvertes.fr/hal-00711310

3 Solving PDEs

Linear Elasticity Equations

In this section...

“Summary of the Equations of Linear Elasticity” on page 3-146
“3D Linear Elasticity Problem” on page 3-147

“Plane Stress” on page 3-149

“Plane Strain” on page 3-150

Summary of the Equations of Linear Elasticity

The stiffness matrix of linear elastic isotropic material contains two parameters:

* E, Young's modulus (elastic modulus)

e p, Poisson’s ratio

Define the following quantities.

0 = stress
f = body force
€ = strain

u = displacement
The equilibrium equation is
—_ v ‘0= f
The linearized, small-displacement strain-displacement relationship is

€= %(Vu + vuT)

The balance of angular momentum states that stress is symmetric:
0ij = 0ji

The Voigt notation for the constitutive equation of the linear isotropic model is

o11 1-» v v 0 0 0 &
022 v 1-v v 0 0 0 |[®22
033 E D v 1-» 0 0 0 £33
o3| THFIT=20)| 0 0 0 1-20 0 0 |lexg
o1 0 0 0 0 1-20 0 gy
o1 0O 0 0 0 0 1-2pg,

The expanded form uses all the entries in o and ¢ takes symmetry into account.

3-146

Linear Elasticity Equations

o1 1-» 0 0 0 w» 0 0 o
012 « 1-20 0 0 0 0 0 0 R
013 . e 1-2v 0 0 0 0 0 0 [|é13
021 e . . e 1-2vr 0 0 0 0 0 ||€21
oyl = =) . . e 1-» 0 0 0 v ||€22 (3-1)
023 ° 1 - 21) 0 0 O 823
031 * * * * * - 1-2» 0 0 llesr
032 ' * * * ' *) 1-2v 0 €32
.]_ —-D
033 €33

In the preceding diagram, ¢ means the entry is symmetric.

3D Linear Elasticity Problem

The toolbox form for the equation is
-V-(c®Vu)=f

But the equations in the summary do not have Vu alone, it appears together with its transpose:
_1 T
€= Z(Vu + Vul)

It is a straightforward exercise to convert this equation for strain € to Vu. In column vector form,

U/ 9X
AUy/ay
dUy/ 02
duy/ ax
Vu = |duy/ay
auy/ 9z
U,/ 9x
U,/ dy
U,/ 0z

Therefore, you can write the strain-displacement equation as

3-147

3 Solving PDEs

100000000
040200000
005000200
040200000

£=[000010000|Vu=AVy
000004020
002000500
000002040
000000001

where A stands for the displayed matrix. So rewriting “Equation 3-1”, and recalling that * means an
entry is symmetric, you can write the stiffness tensor as

1-» 0 0 0 » 0 0 0 p
«+ 1-22 0 0 0 0 0 0 0
« « 1-2»2 0 0 0 0 0 0
+ « « 1-220 0 0 0 0
0=(1+v)](51—2v) . . . e 1-» 0 0 0 v [AVu
e+« « «1-26 0 0 0
. °) . °) 1-2p 0 0
. ° . . ° . . 1-2v 0
. e 1-p]
1-» 0 0 0 v 0 0 0
0 1/2-» 0 12-» 0 0 0 0 0
0 0 12-» 0 0 0 12-v» 0 0
0 1/2-»v 0 12-» 0 0 0 0 0
=(1+V)fl_21)) » 0 0 0 1-» 0 0 0 v |vu
0o 0 0 0 0 1/2-» 0 1/2-» 0
0 0 12-» 0 0 0 12-v 0 0
6o 0 0 0 0 12-» 0 1/2-» 0
» 0 0 0 » 0 0 0 1l-»

Make the definitions

3-148

Linear Elasticity Equations

E

H=20+»)

A=
EQ1 -

(I+v)(1

Ev

(1I+v)(1-2p)

V)
—-2D)

=2n+A

and the equation becomes

2042000 A 000 2
0O pOp 0 000 O
0 0p0O 0 O0mO O
0O pOp 0 000 O
o= 2 0002z2+2000 2
0 000 0 pOp O
0 0p0O 0 O0mO0O O
0 000 0 pOp O
A 000 2 0002u+A

Vu=cVu

If you are solving a 3-D linear elasticity problem by using PDEModel instead of StructuralModel,
use the elasticityC3D(E, nu) function (included in your software) to obtain the ¢ coefficient. This
function uses the linearized, small-displacement assumption for an isotropic material. For examples
that use this function, see StationaryResults.

Plane Stress

Plane stress is a condition that prevails in a flat plate in the x-y plane, loaded only in its own plane
and without z-direction restraint. For plane stress, 013 = 0,3 = 031 = 03, = 033 = 0. Assuming isotropic
conditions, the Hooke's law for plane stress gives the following strain-stress relation:

&n

1 -v
1

&9 =F_V 1

2812

0
0

011

022

0 0 2+ 2v 012

Inverting this equation, obtain the stress-strain relation:

o11 . 1’1)

02| = 5 Y
1-v»

012 00

0
0

1-v»

2

€11
€22
2812

Convert the equation for strain ¢ to Vu.

10

Vu=AVu

3-149

3 Solving PDEs

Now you can rewrite the stiffness matrix as

E Ev
0 0
1 -2 1-p?
011 0 E E 0
O12| _ 2(1+v) 2(1+v)
021 B 0 E E
0y . 2(1+v) 2(1+v) .
L0 0
1-v 1-v

Plane Strain

Plane strain is a deformation state where there are no displacements in the z-direction, and the
displacements in the x- and y-directions are functions of x and y but not z. The stress-strain relation is
only slightly different from the plane stress case, and the same set of material parameters is used.

For plane strain, €3 = €53 = €31 = €33 = £33 = 0. Assuming isotropic conditions, the stress-strain

relation can be written as follows:

2u(p+d) o _24n
20+ A 21+ A
0
Vu = HH 0
0 upu 0
2p_ g o 2p(p+2)
2u+ A 2u+ A

011 1-v v 0 €11
E v 1-» 0
(0] = &
2= T+)T -2) - 2
012 0 0 2 2€12

Convert the equation for strain ¢ to Vu.

10

Vu=AVu

0001

Now you can rewrite the stiffness matrix as

E(1 -v) 0 0 Ev
(1+v)(1-2v) (1+v)(1-2v)
011 E E
012 _ 0 IEDNED) 0
091 0 E E 0
o 2(1+v) 2(1+v)
Ev 0 0 E(1 -v)
(1+v)(1-2p) (1+v)(1-2p)

3-150

2u+A200 A
Vu = 0 pp 0
0 pp O

A 002u+2

Vu

Magnetic Field in Two-Pole Electric Motor

Magnetic Field in Two-Pole Electric Motor

Find the static magnetic field induced by the stator windings in a two-pole electric motor. Assuming
that the motor is long and the end effects are negligible, you can use a 2-D model. The geometry
consists of three regions:

* Two ferromagnetic pieces: the stator and the rotor, made of transformer steel
* The air gap between the stator and the rotor
* The armature copper coil carrying the DC current

Stator

Airgap

Rotor

The magnetic permeability of air and of copper are both close to the magnetic permeability of a
vacuum, u = Ho. The magnetic permeability of the stator and the rotor is u = 5000p,. The current
density J is 0 everywhere except in the coil, where it is 10 A/m?.

The geometry of the problem makes the magnetic vector potential A symmetric with respect to the y-

axis and antisymmetric with respect to the x-axis. Therefore, you can limit the domaintox =0, y = 0,
with the default boundary condition

n- (lVA)=0
T

on the x-axis and the boundary condition A = 0 on the y-axis. Because the field outside the motor is
negligible, you can use the boundary condition A = 0 on the exterior boundary.

First, create the geometry in the PDE Modeler app. The geometry of this electric motor is a union of

five circles and two rectangles. To draw the geometry, enter the following commands in the MATLAB
Command Window:

3-151

3 Solving PDEs

pdecirc(
pdecirc(
pdecirc(
pdecirc(
(
(
(
(

(@)

oo h~,UIOOO -

[EE

OO0 -
- OO Ulhs WN~—

w -

~ S~ 0~ ~

pdecirc
pderect
pderect
pderect

»'R1")
»'R2")

FNOOOOHR

010

-0 o

~

— k=N - - - -
[(o (o]

=

Reduce the geometry to the first quadrant by intersecting it with a square. To do this, enter
(C1+C2+C3+C4+C5+R1+R2) *SQ1 in the Set formula field.

From the PDE Modeler app, export the geometry description matrix, set formula, and name-space

matrix to the MATLAB workspace by selecting Export Geometry Description, Set Formula,
Labels... from the Draw menu.

In the MATLAB Command Window, use the decsg function to decompose the exported geometry into
minimal regions. This command creates an AnalyticGeometry object d1. Plot the geometry d1.

3-152

[d1,btl] = decsg(gd,sf,ns);
pdegplot(dl, 'EdgelLabels', 'on', 'FaceLabels', 'on")

0.9 FrE26TE2 e

E161E 12,67 F6 H“‘x\
0.8 ME30+ 20 e

0.e20" B41F1 a “--HR E;z(

0.6 [E33pmqq N \

E&13 ' \
sl F9E5 N\ \

0.5 [E36-- ~ E28

EXRN4 gy ™~ a \ \

0.4 [E39

0.E23 Ea N N \

0.2 FE25—FE1

0.E24 ooy \

[1}

0 =
0

[
[
B
=
o
=
fae

Remove unnecessary edges using the csgdel function. Specify the edges to delete as a vector of

edge IDs. Plot the resulting geometry.

[d2,bt2] = csgdel(dl,btl,[1 3 8 25 7 2 12 26 30 33 4 9 34 10 31]);

pdegplot(d2, 'EdgelLabels', 'on', 'FaceLabels', 'on")

Magnetic Field in Two-Pole Electric Motor

1 —— , . ,
ED
091 F2 ™~ 1
E10 Ny
081 rEt8 N 1
0.EH 1 T
3 F4., - Q\
. \
0.6 E1g] _ \, :
E12 , N
0.5 FE24—ry b E47 \ 1
- E20.] { \
E13 \ \
0.4 FE24-— . \ \]
S N ﬁ,ll
0.E 14 B \ -
N .
\ \
0.2 | E22 \
F1 kY b 1
| F3 ' |
0.E15 \ '|
| |
0 = oo W
0 0.2 0.4 0.6 0.8 1

Create an electromagnetic model for magnetostatic analysis.
emagmodel = createpde('electromagnetic', 'magnetostatic');
Include the geometry in the model.

geometryFromEdges (emagmodel,d2);

Specify the vacuum permeability value in the SI system of units.

emagmodel.VacuumPermeability = 1.2566370614E-6;

Specify the relative permeability of the air gap and copper coil, which correspond to the faces 3 and 4
of the geometry.

electromagneticProperties(emagmodel, 'RelativePermeability’',1,
'"Face',[3 41);

Specify the relative permeability of the stator and the rotor, which correspond to the faces 1 and 2 of
the geometry.

electromagneticProperties(emagmodel, 'RelativePermeability', 5000,
"Face',[1 2]);

Specify the current density in the coil.
electromagneticSource(emagmodel, 'CurrentDensity',10, 'Face',4);

Apply the zero magnetic potential condition to all boundaries, except the edges along the x-axis. The
edges along the x-axis retain the default boundary condition.

3-153

3 Solving PDEs

electromagneticBC(emagmodel, 'MagneticPotential',®,...
'"Edge',[16 9 10 11 12 13 14 15]);

Generate the mesh.

generateMesh(emagmodel) ;

Solve the model and plot the magnetic potential. Use the Contour parameter to display equipotential
lines.

R = solve(emagmodel);

figure

pdeplot(emagmodel, 'XYData',R.MagneticPotential, 'Contour','on")
title 'Magnetic Potential'

Magnetic Potential <107

[{=]

[=s]

-

(=2

(4]

I

(%]

4%

—

1] 0.2 0.4 0.6 0.8 1

Add the magnetic field data to the plot. Use the FaceAlpha parameter to make the quiver plot for
magnetic field more visible.

figure
pdeplot(emagmodel, 'XYData',R.MagneticPotential,
'FlowData', [R.MagneticField.Hx,
R.MagneticField.Hy],
‘Contour', 'on',
'FaceAlpha',0.5)
title 'Magnetic Potential and Field'

3-154

Magnetic Field in Two-Pole Electric Motor

09
08
07T
06
057
0475
03r
02y
01y

Magnetic Potential and Field

w107

3-155

3 Solving PDEs

Magnetic Field in Two-Pole Electric Motor: PDE Modeler App

3-156

Find the static magnetic field induced by the stator windings in a two-pole electric motor. The
example uses the PDE Modeler app. Assuming that the motor is long and end effects are negligible,
you can use a 2-D model. The geometry consists of three regions:

+ Two ferromagnetic pieces: the stator and the rotor (transformer steel)

* The air gap between the stator and the rotor

* The armature copper coil carrying the DC current

Stator

Airgap

Rotor

Magnetic permeability of the air and copper is close to the magnetic permeability of a vacuum, p, =
4m*107 H/m. In this example, use the magnetic permeability u = j1, for both the air gap and copper
coil. For the stator and the rotor, p is

Hmax

UH=pmo|l————>
1+c|val?

Hmin

where L. = 5000, tyi, = 200, and ¢ = 0.05. The current density J is 0 everywhere except in the coil,
where it is 10 A/m?2.

The geometry of the problem makes the magnetic vector potential A symmetric with respect to y and

antisymmetric with respect to x. Therefore, you can limit the domain to x = 0, y = 0 with the
Neumann boundary condition

n- (lVA)=o
T

Magnetic Field in Two-Pole Electric Motor: PDE Modeler App

pdecirc(0,0,1,'C1l")
pdecirc(0,0,0.8,'C2")
pdecirc(0,0,0.6,'C3")
pdecirc(0,0,0.5,'C4")
pdecirc(0,0,0.4,'C5")
pderect([-0.2 0.2 0.2 0.9], 'R1")
pderect([-0.1 0.1 0.2 0.9],'R2")
pderect([0 1 0 1],'SQ1")
1 T
08 N
06 .
04 N
02 .
D_ —
02 N
04 N
06 N
08 N
-1 1 1 1 1
-1.5 -1 -0.5 0 05 1

on the x-axis and the Dirichlet boundary condition A = 0 on the y-axis. Because the field outside the
motor is negligible, you can use the Dirichlet boundary condition A = 0 on the exterior boundary.

To solve this problem in the PDE Modeler app, follow these steps:
1 Set the x-axis limitsto [-1.5 1.5] and the y-axis limits to [-1 1]. To do this, select Options >
Axes Limits and set the corresponding ranges.

Set the application mode to Magnetostatics.

Create the geometry. The geometry of this electric motor is complex. The model is a union of five
circles and two rectangles. The reduction to the first quadrant is achieved by intersection with a
square. To draw the geometry, enter the following commands in the MATLAB Command Window:

4 Reduce the model to the first quadrant. To do this, enter (C1+C2+C3+C4+C5+R1+R2)*SQ1l in the
Set formula field.

3-157

15

3 Solving PDEs

5 Remove unnecessary subdomain borders. To do this, switch to the boundary mode by selecting

Boundary > Boundary Mode. Using Shift+click, select borders, and then select Boundary >
Remove Subdomain Border until the geometry consists of four subdomains: the rotor
(subdomain 1), the stator (subdomain 2), the air gap (subdomain 3), and the coil (subdomain 4).

The numbering of your subdomains can differ. If you do not see the numbers, select Boundary >
Show Subdomain Labels.

é - T
Stator .

Rotor : \

%]

X

6 Specify the boundary conditions. To do this, select the boundaries along the x-axis. Select

Boundary > Specify Boundary Conditions. In the resulting dialog box, specify a Neumann
boundary condition with g = 0 and q = 0.

All other boundaries have a Dirichlet boundary condition with h = 1 and r = 0, which is the
default boundary condition in the PDE Modeler app.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Double-click each subdomain and specify the following coefficients:

o Coil: y = 4*pi*107™(-7) H/m,J = 10 A/m?.

* Stator and rotor: y = 4*pi*10™(-7)*(5000./(1+0.05* (ux.”2+uy.”2))+200) H/m,
where ux.”2+uy.”2 equals to |[VA |2, J = 0 (no current).

* Airgap: p=4*pi*10™(-7) Hm, J = 0.
8 Initialize the mesh by selecting Mesh > Initialize Mesh.

Choose the nonlinear solver. To do this, select Solve > Parameters and check Use nonlinear

solver. Here, you also can adjust the tolerance parameter and choose to use the adaptive solver
together with the nonlinear solver.

3-158

Magnetic Field in Two-Pole Electric Motor: PDE Modeler App

10 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

11 Plot the magnetic flux density B using arrows and the equipotential lines of the magnetostatic
potential A using a contour plot. To do this, select Plot > Parameters and choose the contour
and arrows plots in the resulting dialog box. Using Options > Axes Limits, adjust the axes

limits as needed. For example, use the Auto check box.

The plot shows that the magnetic flux is parallel to the equipotential lines of the magnetostatic

potential.
4| PDE Medeler - [Untitled] =] =)
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
O Ol @ 2 99 e A A = || B nasnetostaties < x 103 viotms |
ST (C1+C2+C3+04+C5+R1+R2P S0
Contour: A Vector field: B 107
T T T T T
1r -]
8
!
08 -
7
6
06 -
5
N
N 4
04 R i
AN
AR 3
AR
02k URRL . 12
3
1 11
f
ok i

Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.

3-159

3 Solving PDEs

Scattering Problem

3-160

This example shows how to solve a simple scattering problem, where you compute the waves
reflected by a square object illuminated by incident waves that are coming from the left.

For this problem, assume an infinite horizontal membrane subjected to small vertical displacements

U. The membrane is fixed at the object boundary. The medium is homogeneous, and the phase
velocity (propagation speed) of a wave, a, is constant. The wave equation is

2
U 25U =0
ot

The solution U is the sum of the incident wave V and the reflected wave R:
U=V+R

When the illumination is harmonic in time, you can compute the field by solving a single steady
problem. Assume that the incident wave is a plane wave traveling in the -x direction:

V(x,y,t) = pl(=kx—wt) — p=ikx . g—iwt
The reflected wave can be decomposed into spatial and time components:
R(x, y,t) = r(x, y)e~ i@t

Now you can rewrite the wave equation as the Helmholtz equation for the spatial component of the
reflected wave with the wave number k = w/a:

—Ar—k’r=0

The Dirichlet boundary condition for the boundary of the object is U = 0, or in terms of the incident
and reflected waves, R = -V. For the time-harmonic solution and the incident wave traveling in the -x
direction, you can write this boundary condition as follows:

rix,y) = —e ™

The reflected wave R travels outward from the object. The condition at the outer computational
boundary must allow waves to pass without reflection. Such conditions are usually called

nonreflecting. As |Y| approaches infinity, R approximately satisfies the one-way wave equation
-
IR+ af-VR=0

This equation considers only the waves moving in the positive &-direction. Here, & is the radial
distance from the object. With the time-harmonic solution, this equation turns into the generalized
Neumann boundary condition

—_
& Vr—ikr=0

To solve the scattering problem using the programmatic workflow, first create a PDE model with a
single dependent variable.

Scattering Problem

numberOfPDE = 1;
model = createpde(numberOfPDE);

Specify the variables that define the problem:

* g: A geometry specification function. For more information, see the documentation section
“Parametrized Function for 2-D Geometry Creation” on page 2-10 and the code for scatterg.m.

k, ¢, a, T: The coefficients and inhomogeneous term.

g = @scatterg;
k = 60;

c=1;

a = -k™2;
f=0;

Convert the geometry and append it to the model.

geometryFromEdges (model,g);

Plot the geometry and display the edge labels for use in the boundary condition definition.
figure;

pdegplot(model, 'EdgeLabels', 'on');

axis equal

title 'Geometry with Edge Labels Displayed';
ylim([0,1])

Geometry with Edge Labels Displayed

0.9+ ,f T .
08r Iy 7
0.7 / \
0.6 i P
051 7
0.4 Ji
03] \ /

0.2 Eﬁ/

01 ~— - -

Apply the boundary conditions.

3-161

3 Solving PDEs

bOuter = applyBoundaryCondition(model, 'neumann', 'Edge', (5:8), ...
'g',0,'q",-601);

innerBCFunc = @(loc,state)-exp(-1i*k*loc.x);

bInner = applyBoundaryCondition(model, 'dirichlet', 'Edge',(1:4), ...
‘u',innerBCFunc);

Specify the coefficients.

specifyCoefficients(model, 'm',0,'d",0,'c',c,'a',a,'f",f);
Generate a mesh.

generateMesh(model, 'Hmax',0.02);

figure

pdemesh(model) ;
axis equal

T T T T T T T T
09r AP 7
.]
KL
AT Fa) b h‘-.‘l
RIS o
0.8 A ATATATAT S *‘;g,*h
- FATATAYAYLY, < b
' A
TR vy L ol
h‘l‘gﬁ}'ﬂ.}'ﬂf’;ﬂﬁ?ﬁ i
0.7 b SRRl 1
: T T TATAT I a E
PR 3
T, P _lfjfl) A
ATATATATATLY, & A TATy YA AT
TAAT S VAT e A AT)
SRR A D
06 r I "ﬁl""ﬂ# e vy o fhs-ﬂgag. 7]
EER RIS
] AT
] DT k]
0.5+ LT e -
: A VAV A
LT A AT
AT i Ay
i POASA
- S Y
L ¥, P g eyt VA 4
0.4 "y A LR A o)
7 ,:- 4’"‘"4#"'-% ATAFL AT AN
AT A ALY
:’:hﬂhn#:f’#‘n.lﬂ o
b, Ay AT
0.ar Ay, 7
L AFAYIATAE i
0.2 EaTATRr TN
LWk L L
¢
i i i i

0.3 04 05 06 07 08 09 1 1.1 1.2 13

Solve for the complex amplitude. The real part of vector u stores an approximation to a real value
solution of the Helmholtz equation.

result = solvepde(model);
u = result.NodalSolution;

Plot the solution.
figure

pdeplot(model, 'XYData',real(u), '‘Mesh', 'off');
colormap(jet)

3-162

Scattering Problem

xlabel 'x'
ylabel 'y
title('Real Value Solution of Helmholtz Equation')

Real Value Solution of Helmholtz Equation

.
0.9t 0.8
0.8 0.6
07 104
0.6 {02

>05F 10
0.4 [1-0.2
03r 04
0.2t 06
01y -0.8

o
0.2 0.4 0.6 0.8 1 1.2 1.4

Using the solution to the Helmholtz equation, create an animation showing the corresponding
solution to the time-dependent wave equation.

figure

m = 10;

maxu = max(abs(u));
for j = 1:m

uu = real(exp(-j*2*pi/m*sqrt(-1))*u);
pdeplot(model, 'XYData',uu, 'ColorBar', 'off', 'Mesh','off');
colormap(jet)
caxis([-maxu maxul);
axis tight
ax = gca;
ax.DataAspectRatio = [1 1 1];
axis off
M(j) = getframe;
end

3-163

3 Solving PDEs

To play the movie, use the movie (M) command.

3-164

Electrostatics and Magnetostatics

Electrostatics and Magnetostatics

Maxwell's equations describe electrodynamics as follows:

V-D=p

V-B=0
_ _ 9B
VXE-= 3F

_ oD
VxH=S2+]

The electric flux density D is related to the electric field E, D = ¢E, where ¢ is the electrical
permittivity of the material.

The magnetic flux density B is related to the magnetic field H, B = pH, where u is the magnetic
permeability of the material.

Also, here] is the electric current density, and p is the electric charge density.

For electrostatic problems, Maxwell's equations simplify to this form:

V-(cE)=p
VXxE=0

Since the electric field E is the gradient of the electric potential V, E = — VV, the first equation
yields the following PDE:

V- (eVV)=p

For electrostatic problems, Dirichlet boundary conditions specify the electric potential V on the
boundary.

For magnetostatic problems, Maxwell's equations simplify to this form:

V-B=0
UxH=]

Since V - B = 0, there exists a magnetic vector potential A, such that
B=VxA
VX&VXM=]
Using the identity
Vx(VxA)=Y(V-A) - VA
and the Coulomb gauge V - A = 0, simplify the equation for A in terms of J to the following PDE:
—V’A= —-V-VA=yp]
For magnetostatic problems, Dirichlet boundary conditions specify the magnetic potential on the

boundary.

3-165

3 Solving PDEs

Skin Effect in Copper Wire with Circular Cross Section: PDE
Modeler App

3-166

This example shows the skin effect when a wire with a circular cross section carries AC current. In a
solid conductor, such as the wire, AC current travels near the surface of a wire and avoids the area
close to the center of the wire. This effect is called the skin effect. The example uses the PDE Modeler

app.
The Helmholtz equation

-V - (%VEC) + (jwa - wze)EC =0

describes the propagation of plane electromagnetic waves in imperfect dielectrics and good
conductors (o » we). The coefficient of dielectricity is € = 8.8*%10-12 F/m. The conductivity of copper is
o = 57 * 10 S/m. The magnetic permeability of copper is close to the magnetic permeability of a
vacuum, u = 4m*10”7 H/m. The w?e-term is negligible at the line frequency (50 Hz).

Due to induction, the current density in the interior of the conductor is smaller than at the outer
surface, where it is set to Jg = 1. The Dirichlet condition for the electric field is E, = 1/0. In this case,
the analytical solution is

_ . Jolkn)
I =IsTykRy
Here,
k =/ jwuao,

R is the radius of the wire, ris the distance from the center line, and J,(x) is the first Bessel function
of zeroth order.

To solve this problem in the PDE Modeler app, follow these steps:
1 Draw a circle with a radius of 0.1. The circle represents a cross section of the conductor.

pdecirc(0,0.05,0.1)

2 Set the x-axis limitto [-0.2 0.2] and the y-axis limitto [-0.1 0.2]. To do this, select
Options > Axes Limits and set the corresponding ranges. Then select Options > Axes Equal.

3 Set the application mode to AC Power Electromagnetics.
Specify the Dirichlet boundary condition E = Jg/o = 1/o0 for the boundary of the circle. To do this:

a Switch to the boundary mode by selecting Boundary > Boundary Mode.
b Select all boundaries by using Edit > Select All

¢ Select Boundary > Specify Boundary Conditions.

d Specifyh = 1land r = 1/57E6.

5 Specify the PDE coefficients. To do this, switch to the PDE mode by selecting PDE > PDE Mode.
Then select PDE > PDE Specification or click the PDE button on the toolbar. Specify the
following values:

* Angular frequency omega = 2*pi*50

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

* Magnetic permeability mu = 4*pi*1E-7

* Conductivity sigma = 57E6

» Coefficient of dielectricity epsilon = 8.8E-12

Initialize the mesh by selecting Mesh > Initialize Mesh.

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

The solution of the AC power electromagnetics equation is complex. When plotting the solution,
you get a warning message.

4. PDE Modeler Warning — b4

Waming: Imaginary part of complex property was ignored when plotting.

Plot the current density as a 3-D plot. To do this:

Select Plot > Parameters.
Select the Color and Height(3-D plot) options.

¢ Select current density from the Property drop-down menu for both the Color and
Height(3-D plot) options.

d Select Show Mesh to observe the mesh.

Due to the skin effect, the current density at the surface of the conductor is much higher than in
the conductor's interior.

3-167

3 Solving PDEs

Color: i Height: i

005 01

9 Improve the accuracy of the solution close to the surface by using adaptive mesh refinement. To

do this:

a Select Solve > Parameters.

b In the resulting dialog box, select Adaptive mode.
¢ Set the maximum numbers of triangles to Inf.

d Set the maximum numbers of refinements to 1.

e Select the Worst triangles selection method.

10 Recompute the solution five times. Each time, the adaptive solver refines the area with the
largest errors. The number of triangles is printed at the command line.

11 Plot the current density as a 3-D plot.

3-168

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

Color: i Height: i

12 These plots show the real part of the solution, but the solution vector is the full complex solution.
Plot the imaginary part of the solution. To do this:

a Select Plot > Parameters.
Select the Color and Height(3-D plot) options.
Select user entry from the Property drop-down menu for both Color and Height(3-D
plot) options.
d Type imag(u) in the corresponding User entry fields.
Select Show Mesh to observe the mesh.

3-169

3 Solving PDEs

3-170

Color: imag(u) Height: imag{u)

—

an"""

H""""Iu"'“,ui”"" ”“j-'

"'|.i|.|

0.05 01 <107

13 Observe that the skin effect depends on the frequency of the alternating current. When you
increase or decrease the frequency, the skin "depth" increases or decreases, respectively. At high
frequencies, only a thin layer on the surface of the wire conducts the current. At very low
frequencies (approaching DC conditions), almost the entire cross section area of the wire
conducts the current.

Find the solution for the angular frequencies omega = 2*pi*1000, omega = 2*pi*50, and
omega = 1E-6. Plot the real parts of the solutions in 2-D.

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

Color: i
0.2 T T T T T

0.05

0.05

0.1 I I I I I
0.2 -0.15 -0.1 -0.05 o

Current density for omega = 2*pi*1000

0.05

0.1

0.15

0.2

3-171

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-0.1

3 Solving PDEs

0.2

0.15

0.1

0.05

-0.05

-0.1

3-172

Color: i

-0.2 -0.15 -0.1 -0.05

Current density for omega = 2*pi*50

0

0.05

0.1

0.15

0.2

09

0.8

0.7

06

0.5

04

0.3

02

01

Skin Effect in Copper Wire with Circular Cross Section: PDE Modeler App

Color: i

0.2 T T T T

0.05

-0.06 -

01 1 L L 1 L L L 1
0.2 -0.15 0.1 -0.05 0 0.056 0.1 0.15

Current density for omega = 1E-6

0.2

1.000000000000

1.000000000000

0999999999989

0999999993959

3-173

3 Solving PDEs

Current Density Between Two Metallic Conductors: PDE
Modeler App

3-174

Two circular metallic conductors are placed on a brine-soaked blotting paper which serves as a plane,
thin conductor. The physical model for this problem consists of the Laplace equation

-V:-(0VV)=0
for the electric potential V and these boundary conditions:

* V=1 on the left circular conductor
* V= -1 on the right circular conductor

* the natural Neumann boundary condition on the outer boundaries

vV _
=-=0

The conductivity is o = 1.

To solve this equation in the PDE Modeler app, follow these steps:

1 Model the geometry: draw the rectangle with corners at (-1.2,-0.6), (1.2,-0.6), (1.2,0.6), and
(-1.2,0.6), and two circles with a radius of 0.3 and centers at (-0.6,0) and (0.6,0). The rectangle
represents the blotting paper, and the circles represent the conductors.

pderect([-1.2 1.2 -0.6 0.6])
pdecirc(-0.6,0,0.3)
pdecirc(0.6,0,0.3)

Model the geometry by entering R1- (C1+C2) in the Set formula field.
Set the application mode to Conductive Media DC.

4 Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

* For the rectangle, use the Neumann boundary condition withg = 0@ and q = 0.
» For the left circle, use the Dirichlet boundary condition withh = 1and r = 1.
» For the right circle, use the Dirichlet boundary condition withh = 1land r = -1.

5 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify sigma = 1land gq = 0.

Initialize the mesh by selecting Mesh > Initialize Mesh.
Refine the mesh by selecting Mesh > Refine Mesh.
Improve the triangle quality by selecting Mesh > Jiggle Mesh.

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The
resulting potential is zero along the y-axis, which, for this problem, is a vertical line of
antisymmetry.

© 00 N O

Current Density Between Two Metallic Conductors: PDE Modeler App

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help

m} |®|®‘ > |‘5'n | PDE‘&lﬁl = |<@x|‘5{||cﬂnducﬁvemmmc <[x oeses =

Set formula:

|F‘.1—(C1 +C2) |

0.9

0.3

06

097

Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries. E

10 Plot the current density J. To do this:

a Select Plot > Parameters.

b In the resulting dialog box, select the Color, Contour, and Arrows options.

¢ Set the Arrows value to current density.

The current flows, as expected, from the conductor with a positive potential to the conductor

with a negative potential. The conductivity o is isotropic, and the equipotential lines are
orthogonal to the current lines.

3-175

3 Solving PDEs

Color: V Vector field: J

06 [

0z

0.2r

0.6

0.8

-1

3-176

-1

0.5

1.5

0.8

0.6

04

0.2

-0.2

-0.4

-0.6

-0.8

-1

Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App

Heat Transfer Between Two Squares Made of Different
Materials: PDE Modeler App

Solve the following heat transfer problem with different material parameters. This example uses the
PDE Modeler app. For the command-line solutions see “Heat Transfer Between Two Squares Made of
Different Materials” on page 5-232.

The 2-D geometry for this problem is a square with an embedded diamond (a square with 45 degrees
rotation). PDE governing this problem is a parabolic heat equation:

T
pCSE =T - (KVT) = Q+ h(Tex ~ T)

where p is the density, C is the heat capacity, k is the coefficient of heat conduction, Q is the heat
source, h is convective heat transfer coefficient, and T,,; is the external temperature.

To solve this problem in the PDE Modeler app, follow these steps:

1 Model the geometry: draw the square region with corners in (0,0), (3,0), (3,3), and (0,3) and the
diamond-shaped region with corners in (1.5,0.5), (2.5,1.5), (1.5,2.5), and (0.5,1.5).

pderect([0@ 3 0 3])
pdepoly([1.5 2.5 1.5 0.5],[0.5 1.5 2.5 1.5])

2 Set the x-axis limitto [-1.5 4.5] and y-axis limitto [-0.5 3.5]. To do this, select Options >
Axes Limits and set the corresponding ranges.

3 Set the application mode to Heat Transfer.

The temperature is kept at 0 on all the outer boundaries, so you do not have to change the
default Dirichlet boundary condition T = 0.

5 Specify the coefficients. To do this, select PDE > PDE Mode. Then click each region and select
PDE > PDE Specification or click the PDE button on the toolbar. Since you are solving the
parabolic heat equation, select the Parabolic type of PDE for both regions. For the square
region, specify the following coefficients:

* Density, pho = 2

* Heat capacity, C = 0.1

» Coefficient of heat conduction, k = 10

* Heat source,Q = 0

» Convective heat transfer coefficient, h = 0
* External temperature, Text = 0

For the diamond-shaped region, specify the following coefficients:

* Density, pho = 1

* Heat capacity, C = 0.1

* Coefficient of heat conduction, k = 2

* Heat source, Q = 4

* Convective heat transfer coefficient, h = 0
* External temperature, Text = 0

3-177

3 Solving PDEs

3-178

Initialize the mesh by selecting Mesh > Initialize Mesh. For a more accurate solution, refine
the mesh by selecting Mesh > Refine Mesh.

Set the initial value and the solution time. To do this, select Solve > Parameters.

The dynamics for this problem is very fast — the temperature reaches steady state in about 0.1
time units. To capture the interesting part of the dynamics, set time to logspace(-2,-1,10).
This gives 10 logarithmically spaced numbers between 0.01 and 0.1. Set the initial value of the
temperature u(t;) to 0.

Solve the equation by selecting Solve > Solve PDE or clicking the = button on the toolbar.

Plot the solution. By default, the app plots the temperature distribution at the last time. The best
way to visualize the dynamic behavior of the temperature is to animate the solution. To do this,
select Plot > Parameters and select the Animation and Height (3-D plot) options to animate
a 3-D plot. Also, you can select the Plot in x-y grid option to use a rectangular grid instead of
the default triangular grid. Using a rectangular grid instead of a triangular grid speeds up the
animation process significantly.

You can also plot isothermal lines using a contour plot and the heat flux vector field using arrows.

a Select Plot > Parameters.

In the resulting dialog box, deselect the Animation, and Height (3-D plot), and Plot in x-y
grid options.

¢ Change the colormap to hot by using the corresponding drop-down menu in the same dialog
box.

To obtain the first plot, select the Color and Contour options.

e For the second plot, select the Color and Arrows and set their values to temperature and
heat flux, respectively.

Heat Transfer Between Two Squares Made of Different Materials: PDE Modeler App

4| PDE Medeler - [Untitled] [=)
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
] o< B | 09 PDE A = ‘@\ 'EK LHeat Transfer hd || I SEE W I |
Set formula: SQ1+P1
Time=0.1 Color: T
3.5 T T T T T]
10.35
q b 4
103
25 B
9l | 1025
15 . 02
1k 4 0.15
0.5 = 0.1
0+ - 0.05
a5 1 1 1 1 I 0
-1 0 1 2 4

Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.

Isothermal Lines

3-179

3 Solving PDEs

4| PDE Medeler - [Untitled] [=)
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
] o< B | 09 PDE I A = ‘@\ 'EK LHeatTransfer hd || B LS W EE |
Set formula: SQ1+P1
Time=0.1 Color: T Vector field: q
3.5 T T T T T]
10.35
3+ i
103
25 b
9l i 10.25
15 . 02
1k i 0.15
05 . 0.1
0+ - 0.05
05 1 1 1 1 I 0
-1 0 1 2 4
Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries. Exit

Temperature and Heat Flux

3-180

Temperature Distribution in Heat Sink

Temperature Distribution in Heat Sink

This example shows how to create a simple 3-D heat sink geometry and analyze heat transfer on the
heat sink. The process has three steps.

1 “Create 2-D Geometry in the PDE Modeler App” on page 3-181.

2 “Extrude 2-D Geometry into 3-D Geometry of Heat Sink” on page 3-182.

3 “Perform Thermal Analysis” on page 3-185.

Create 2-D Geometry in the PDE Modeler App

Create a geometry in the PDE Modeler app. First, open the PDE Modeler app with a geometry
consisting of a rectangle and 12 circles.

pderect([0 0.01 0 0.008])
for i = 0.002:0.002:0.008
for j = 0.002:0.002:0.006
pdecirc(i,j,0.0005)
end
end

Adjust the axes limits by selecting Options > Axes Limits. Select Auto to use automatic scaling for
both axes.

3-181

3 Solving PDEs

3-182

2« 1072

R1

c3 C6

cz2 C5 ca C11

C4 7 c10

0 0.001 0002 0003 0004 0005 0006 0007 0008 0002 001

Export the geometry description matrix, set formula, and name-space matrix into the MATLAB
workspace by selecting Draw > Export Geometry Description, Set Formula, Labels. This data
lets you reconstruct the geometry in the workspace.

Extrude 2-D Geometry into 3-D Geometry of Heat Sink

In the MATLAB Command Window, use the decsg function to decompose the exported geometry into
minimal regions. Plot the result.

g = decsg(gd,sf,ns);
pdegplot(g, 'FaceLabels','on')

Temperature Distribution in Heat Sink

8 mu':"l | | | | | |

7t |
i o . N N |

° xf?‘)f (j?ﬁ) (Ff_/' G_g_,f

5 |

N ONONONONEE

3 = 4

2r (-F’@ II\:TD (F’I}'_) (F:’J\ 1

T F l

0

0 0001 0002 0003 0004 0005 0006 0007 0008 0.009 O0.01

Create a thermal model for transient analysis.

model = createpde('thermal', 'transient');

Create a 2-D geometry from decomposed geometry matrix and assign the geometry to the thermal

model.

g = geometryFromEdges(model,g);

Extrude the 2-D geometry along the z-axis by 0.0005 units.

g = extrude(g,0.0005);

Plot the extruded geometry so that you can see the face labels on the top.

figure

pdegplot(g, 'FaceLabels','on")

view([0 90])

3-183

3 Solving PDEs

%107

: & ®® 6
Ld @ e O
: CNCNCNG

D H: T r

_3' i K i i i i i
=2 0 2 e 6 8 10

%1073

Extrude the circular faces (faces with IDs from 15 to 26) along the z-axis by 0.005 more units. These
faces form the fins of the heat sink.

g = extrude(g,[15:26],0.005);
Assign the modified geometry to the thermal model and plot the geometry.

model.Geometry = g;
figure
pdegplot(g)

3-184

Temperature Distribution in Heat Sink

Perform Thermal Analysis

Assuming that the heat sink is made of copper, specify the thermal conductivity, mass density, and
specific heat.

thermalProperties(model, 'ThermalConductivity',b400,
'MassDensity', 8960,
'SpecificHeat',386);

Specify the Stefan-Boltzmann constant.

model.StefanBoltzmannConstant = 5.670367e-8;

Apply temperature boundary condition on the bottom surface of the heat sink, which consists of 13
faces.

thermalBC(model, 'Face',1:13, 'Temperature',1000);
Specify the convection and radiation parameters on all other surfaces of the heat sink.
thermalBC(model, 'Face',14:g.NumFaces,

'ConvectionCoefficient',5,

'AmbientTemperature', 300,

"Emissivity',0.8);
Set the initial temperature of all the surfaces to the ambient temperature.
thermalIC(model,300);

Generate a mesh.

generateMesh(model);

3-185

3 Solving PDEs

Solve the transient thermal problem for times between 0 and 0.0075 seconds with a time step of
0.0025 seconds.

results = solve(model,0:0.0025:0.0075);
Plot the temperature distribution for each time step.

for i = 1l:length(results.SolutionTimes)

figure

pdeplot3D(model, 'ColorMapData’', results.Temperature(:,1i))

title({['Time = ' num2str(results.SolutionTimes(i)) 's']})
end

Time = 0s

1000

800

800

700

600

™~

400

300

3-186

Temperature Distribution in Heat Sink

Time = 0.0025s

1000

800

1 800

700

600

r~

400

3-187

3 Solving PDEs

Time = 0.005s

1000

800

800

700

600

™~

400

3-188

Temperature Distribution in Heat Sink

Time = 0.0075s

1000

900

800

700

600

™~

400

3-189

3 Solving PDEs

Nonlinear Heat Transfer in Thin Plate

3-190

This example shows how to perform a heat transfer analysis of a thin plate.

The plate is square and the temperature is fixed along the bottom edge. No heat is transferred from
the other three edges (i.e. they are insulated). Heat is transferred from both the top and bottom faces
of the plate by convection and radiation. Because radiation is included, the problem is nonlinear. One
of the purposes of this example is to show how to handle nonlinearities in PDE problems.

Both a steady state and a transient analysis are performed. In a steady state analysis we are
interested in the final temperature at different points in the plate after it has reached an equilibrium
state. In a transient analysis we are interested in the temperature in the plate as a function of time.
One question that can be answered by this transient analysis is how long does it take for the plate to
reach an equilibrium temperature.

Heat Transfer Equations for the Plate

The plate has planar dimensions one meter by one meter and is 1 cm thick. Because the plate is
relatively thin compared with the planar dimensions, the temperature can be assumed constant in the
thickness direction; the resulting problem is 2D.

Convection and radiation heat transfer are assumed to take place between the two faces of the plate
and a specified ambient temperature.

The amount of heat transferred from each plate face per unit area due to convection is defined as
Qc=h (T -Tp

where T, is the ambient temperature, T is the temperature at a particular x and y location on the
plate surface, and h, is a specified convection coefficient.

The amount of heat transferred from each plate face per unit area due to radiation is defined as
Q- = eo(T* - Ty)

where € is the emissivity of the face and o is the Stefan-Boltzmann constant. Because the heat
transferred due to radiation is proportional to the fourth power of the surface temperature, the
problem is nonlinear.

The PDE describing the temperature in this thin plate is

POt T — Kt V2T +2Q, +2Qr = 0

where p is the material density, C, is the specific heat, t, is the plate thickness, and the factors of two
account for the heat transfer from both plate faces.

It is convenient to rewrite this equation in the form expected by PDE Toolbox

POyt — K, VPT + 20T + 260T* = 20T, + 20T

Problem Setup

The plate is composed of copper which has the following properties:

Nonlinear Heat Transfer in Thin Plate

k = 400; % thermal conductivity of copper, W/(m-K)

rho = 8960; % density of copper, kg/m"3

specificHeat = 386; % specific heat of copper, J/(kg-K)

thick = .01; % plate thickness in meters

stefanBoltz = 5.670373e-8; % Stefan-Boltzmann constant, W/(m*2-K*4)
hCoeff = 1; % Convection coefficient, W/(m"2-K)

% The ambient temperature is assumed to be 300 degrees-Kelvin.

ta = 300;

emiss = .5; % emissivity of the plate surface

Create the PDE model with a single dependent variable.

numberOfPDE = 1;
model = createpde(numberOfPDE);

For a square, the geometry and mesh are easily defined as shown below.

width = 1;
height = 1;

Define the square by giving the 4 x-locations followed by the 4 y-locations of the corners.

gdm = [3 4 0 width width 0 @ 0 height height]';
g = decsg(gdm, 'S1', ('S1')');

Convert the DECSG geometry into a geometry object on doing so it is appended to the PDEModel
geometryFromEdges (model,g);

Plot the geometry and display the edge labels for use in the boundary condition definition.
figure;

pdegplot(model, 'EdgelLabels’', 'on');

axis([-.1 1.1 -.11.11);
title 'Geometry With Edge Labels Displayed';

3-191

3 Solving PDEs

3-192

Geometry With Edge Labels Displayed

17 E3

087

06T

E4 E2

0.4r

027

Specify the coefficients. The expressions for the coefficients required by PDE Toolbox can easily be
identified by comparing the equation above with the scalar parabolic equation in the PDE Toolbox
documentation.

c = thick*k;

Because of the radiation boundary condition, the "a" coefficient is a function of the temperature, u. It
is defined as a MATLAB expression so it can be evaluated for different values of u during the analysis.

@(~,state) 2*hCoeff + 2*emiss*stefanBoltz*state.u.”3;
2*hCoeff*ta + 2*emiss*stefanBoltz*ta™4;

= thick*rho*specificHeat;

pecifyCoefficients(model, 'm',0,'d"',0,'c',c,'a",a,'f',f);

n O —+Hh o

The bottom edge of the plate is set to 1000 degrees-Kelvin.

Apply the boundary conditions. Three of the plate edges are insulated. Because a Neumann boundary
condition equal zero is the default in the finite element formulation, the boundary conditions on these
edges do not need to be set explicitly. A Dirichlet condition is set on all nodes on the bottom edge,
edge 1,

applyBoundaryCondition(model, ‘dirichlet', "Edge"',1, 'u',1000);
Specify the initial guess.
setInitialConditions(model,0);

Create the triangular mesh on the square with approximately ten elements in each direction.

Nonlinear Heat Transfer in Thin Plate

hmax = .1; % element size

msh = generateMesh(model, 'Hmax', hmax);
figure;

pdeplot(model);

axis equal

title 'Plate With Triangular Element Mesh'
xlabel 'X-coordinate, meters'

ylabel 'Y-coordinate, meters'

Plate With Triangular Element Mesh

0.8r

0.7

0.6

051

Y-coordinate, meters

0 0.2 0.4 0.6 0.8
X-coordinate, meters

Steady State Solution

Because the a and f coefficients are functions of temperature (due to the radiation boundary
conditions), solvepde automatically picks the nonlinear solver to obtain the solution.

R = solvepde(model);

u R.NodalSolution;

figure;

pdeplot(model, 'XYData',u, 'Contour','on', 'ColorMap', 'jet");
title 'Temperature In The Plate, Steady State Solution'
xlabel 'X-coordinate, meters'

ylabel 'Y-coordinate, meters'

axis equal

3-193

3 Solving PDEs

Temperature In The Plate, Steady State Solution

17 1000
0.9+ 450
0s | a00

1 850
) 0.7 r
Qi
< 1 800
= 067
o 1750
W05
= 1 700
S 04t
$ 1 650
- I
0.3 600
0.2} 550
1. o — 500
i

0 0.2 0.4 0.6 0.8
X-coordinate, meters

=

p = msh.Nodes;

plotAlongY(p,u,0);

title 'Temperature As a Function of the Y-Coordinate'
xlabel 'Y-coordinate, meters'

ylabel 'Temperature, degrees-Kelvin'

3-194

Nonlinear Heat Transfer in Thin Plate

Temperatu

re As a Function of the Y-Coordinate

1000 | . . : : : :
900
80O [\

700

600

Temperature, degrees-Kelvin

500 T

4':”} i i i i i i i
0.1 0.2 0.3 0.4 0.5 0.6

Y-coordinate, meters

fprintf(['Temperature at the top edge of the plate ='
' %5.1f degrees-K\n'],u(4));

Temperature at the top edge of the plate 449.8 degrees-K
Transient Solution
Include the d coefficient.

specifyCoefficients(model, 'm',0,'d"',d,'c',c,'a',a,'f',f);

endTime = 5000;
tlist = 0:50:endTime;
numNodes = size(p,2);

Set the initial temperature of all nodes to ambient, 300 K.

u0(1l:numNodes) = 300;

Set the initial temperature on the bottom edge E1 to the value of the constant BC, 1000 K.

setInitialConditions(model, 1000, 'Edge',1);
Set the following solver options.

model.SolverOptions.RelativeTolerance
model.SolverOptions.AbsoluteTolerance

Solve the problem by using solvepde. The solver automatically picks the parabolic solver to obtain

the solution.

3-195

3 Solving PDEs

R = solvepde(model, tlist);
u = R.NodalSolution;

figure;

plot(tlist,u(3, :));

grid on

title ['Temperature Along the Top Edge of '
'the Plate as a Function of Time']

xlabel 'Time,

seconds'

ylabel 'Temperature, degrees-Kelvin'

figure;

pdeplot(model, 'XYData',u(:,end), 'Contour','on', 'ColorMap', 'jet');
title(sprintf(['Temperature In The Plate,'

'Transient Solution(%d seconds)\n'],tlist(1,end)));

xlabel 'X-coordinate, meters'
ylabel 'Y-coordinate, meters'

axis equal;

fprintf(['\nTemperature at the top edge(t = %5.1f secs) =
'%5.1f degrees-K\n'],tlist(1l,end),u(4,end));

450

Temperature, degrees-Kelvin
o
=

=
2
=

cn
]

3-196

[Temperature Along the Top Edge of *
the Plate as a Function of Time]

=

o

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time, seconds

Nonlinear Heat Transfer in Thin Plate

Temperature In The Plate, Transient Solution(5000 seconds)

1

0.9

0.8

0.7

0.6

0.5

0.4

Y-coordinate, meters

0.3

0.2

0.1

=

0.4 0.6
X-coordinate, meters

1000

950

500

=

Temperature at the top edge(t = 5000.0 secs) = 441.8 degrees-K

Summary

The plots of temperature in the plate from the steady state and transient solution at the ending time
are very close. That is, after around 5000 seconds, the transient solution has reached the steady state
values. The temperatures from the two solutions at the top edge of the plate agree to within one

percent.

3-197

3 Solving PDEs

Poisson's Equation on Unit Disk: PDE Modeler App

This example shows how to solve the Poisson's equation on a unit disk and evaluate the numeric
solution error.

This example uses the PDE Modeler app. For a programmatic workflow, see “Poisson's Equation on
Unit Disk” on page 3-204. Because the app and the programmatic workflow use different meshers,
they yield slightly different results.

The problem formulation is -Au = 1 in Q, u = 0 on dQ, where Q is the unit disk. The exact solution is

1—x%—y?
u(xly)zTy

To solve this problem in the PDE Modeler app, follow these steps:

Open the PDE Modeler app by using the pdeModeler command.
Display grid lines by selecting Options > Grid.
Align new shapes to the grid lines by selecting Options > Snap.

A W N R

Draw a circle with the radius 1 and the center at (0,0). To do this, first click the @ button.
Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape you
draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle, double-
click it. In the resulting dialog box, specify the exact center location and radius of the circle.

Check that the application mode is set to Generic Scalar.

a0l
Specify the boundary conditions. To do this, switch to boundary mode by clicking the
button or selecting Boundary > Boundary Mode. Select all boundaries by selecting Edit >
Select All. Then select Boundary > Specify Boundary Conditions and specify the Dirichlet
boundary condition u = 0. This boundary condition is the default (h = 1, r = 0), so you do not
need to change it.

7 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specifyc = 1,a = 0,and f = 1.

8 Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size to 0.1.

9
/—\‘ button.

Initialize the mesh by selecting Mesh > Initialize Mesh or clicking the

3-198

Poisson's Equation on Unit Disk: PDE Modeler App

|4 PDE Modeler - [Untitled] - O

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help

D‘ ‘©|®| ‘53 ‘ ﬂﬂ‘ PDE‘ &‘ &| = ‘@n‘@\“ Generic Scalar w X -05 Y: 0.8

Set formula: c1

;
08 il
06 il
04 1
02 il

o S |

02 ‘Vv |

A
04l M“"rgm |2 -
ORES
RSO
Vg Sav A TATS _
R
08F V) ‘ﬁ"‘“ 1
RSN
1 ' v' |
15 1 Bl 0 0.5 1 15

Exit

10 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The
toolbox assembles the PDE problem, solves it, and plots the solution.

3-199

3 Solving PDEs

[4] PDE Modeler - [Untitled] - O
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
O @O @ |0 rel AL = |\ [senerescanr NEE v: 03
Set formula: ‘C']
I
by
Color: u
1
08 1
0.6 [N 0z
0.4 - N
02 . 0.15
D - -
0.2 N 01
04 1
0.6 — 0.05
0.8 N
-1 0
-1.5 -1 0.5 0 0.5 1 1.5
Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.

11 Compare the numerical solution to the exact solution:

a Select Plot > Parameters.
b In the resulting dialog box, select user entry from the Color drop-down menu.

Plot the absolute error in the solution by typing the MATLAB expression u- (1-x."2-
y.”2)/4 in the User entry field.

3-200

Poisson's Equation on Unit Disk: PDE Modeler App

[4] PDE Modeler - [Untitled] - O
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
O @O @ |0 rel AL = |\ [senerescanr NEE v 08
Set formula: ‘C']
2,2
Color: u-(1-x."-y.“}/4
1
08 1 2
0.6 [7
1
0.4 - N
02 1 a
u - -
-
0.2 7
0.4 ., -2
06 1
-3
0.8 N
4
-1
1.5 15 ot
Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.
12

Refine the mesh by selecting Mesh > Refine Mesh or clicking the \él button.

3-201

3 Solving PDEs

|4 PDE Modeler - [Untitled]

File Edit Options Draw

PDE

Mesh Solve Plot Window Help

15

L

] ‘ ‘ (- ®| B ‘ a0 PDE‘ &‘ &| = ‘ @.‘ @\ Generic Scalar
Set formula: c1
1 | =
T AAVAVLYAY, Vo, T
RS e TAVAVAVAY, Py Nuried
A VAT Vv, y VA
O R RRORIRES
08 ATty e e S S —
B AT rATA A T O S v arawa
B A e AT AT e Ay
Vi DS) v g AT g SANATE S g RV i AV vy YN
L 0 S P VA v VAVANAN S e e) S o 7 _
0.6 A A A R R I IO OO0
TR AVa Y ST i, W T Ay
R B O AR A A A S R OO T a0
o D PSSR
A A A A O R A R R R R]
L o O AN e v -
0.4 ara 5 A
£ i ;
- "
SR 7 vy, IS YAV, AR
02l AT A L S .
- R RS AN S OO A AOANY VA v SR
R o e S S K PO P A A A A A S A R R L
R A et S A A OO A A OO AN R VALK,
0 O T Sy Ay g AVAYa v 8 TATAYAVAY e e v s
Yaviv, AV A AV AV i A T VAT o S TR e e
O S T A N ATA P AV, A VAVAAs b AV oy viv s o
0F e R iw ET S A A VAV sV A AV, uTaw VAN, ey NS e A]
T B VAW ATAVA .y o AVAVAVA Y i raTA%y AP A
A R A AN A A RIS R
AR Y v L A S TAVAV o VAV A v e e S AT ATA Yl
T iy A TNV vy AVAVAY v VAV Vrarg i O L PVATAT Tt
T A AV sy AVAVAVAY, e AVAYA Sy SLVAA T
02f B AVt AT A e O AV AYAYAV A waTu v AvaT L raA A g 5
A A A A R AP OO AA A IO A P SZe
K AN AR A A A A e On
SRR R R A RO A OO AR AT
e o S S AT S b O A e
- = S < N A e e -
-0.4 ATAVAVAVAVAVANE, o i it o g WANAVANAY S TANAVLT Vi oy LT AN AT FATAWA Y, v, ¥ Vi & LA
R RO RN DOCAaR RN
S A S R A A A A AR K
FAVAYAT iy g‘ll =v..tgvﬂu"'€'¢¥,ﬁg.ﬁdhr v i‘“‘:ﬁl’{" ‘F';a"“""‘lir‘#ﬂ'
S PO A S S AR RS D A AT
06 A A N S o o N A o A S A A m
K o A P oA e e AT LA A S R A A |
R S S
U AT Aarar AT o g S S TAVA VAV e i i
o EYAY vy 1
POOORE A RS OAS
"‘r‘*ﬁuﬁ-::‘.‘:muv%g'ﬂ <P
< AN S
P | | e AYAVAYAYAY) L
15 -1 0.5 0 0.5 1 15
Exit

Info:

Refined mesh consists of 2105 nodes and 4088 triangles.

13

3-202

Compare the numerical solution to the exact solution for the refined mesh. Plot the absolute

error.

Poisson's Equation on Unit Disk: PDE Modeler App

[4] PDE Modeler - [Untitled] - O e
File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
O @O @ |0 rel AL = |\ [senerescanr NEE v 08

Set formula:

‘C']

Color: u-(1 -x.z-y.z}M

08

0.2

0.2

04

06

-1

0.8

-1
-1.5

1.5 =10

Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.

14 Export the mesh data and the solution to the MATLAB workspace by selecting Mesh > Export
Mesh and Solve > Export Solution, respectively.

3-203

3 Solving PDEs

Poisson's Equation on Unit Disk

3-204

This example shows how to numerically solve a Poisson's equation, compare the numerical solution
with the exact solution, and refine the mesh until the solutions are close.

The Poisson equation on a unit disk with zero Dirichlet boundary condition can be written as —Au = 1
in Q, u = 0 on 6Q, where Q is the unit disk. The exact solution is

2 12
u(x,y)=1><_y_

For most PDEs, the exact solution is not known. However, the Poisson's equation on a unit disk has a
known, exact solution that you can use to see how the error decreases as you refine the mesh.

Problem Definition

Create the PDE model and include the geometry.

model = createpde();
geometryFromEdges (model,@circleg);

Plot the geometry and display the edge labels for use in the boundary condition definition.

figure
pdegplot(model, 'EdgelLabels', 'on');
axis equal

0.8 | e ™~
06t
o471/ YT

0.2 f

Poisson's Equation on Unit Disk

Specify zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model, 'dirichlet', ...

'Edge',1l:model.Geometry.NumEdges, ...

‘u',0);

Specify the coefficients.

specifyCoefficients(model, 'm',0,'d',0,'c',1,'a"',0,'f",1);

Solution and Error with a Coarse Mesh

Create a mesh with target maximum element size 0.1.

hmax = 0.1;
generateMesh(model, 'Hmax ', hmax) ;
figure

pdemesh(model) ;

axis equal

! TAVAVAYAYA
0.8 #E#I#I £
ORISR
ol SOOI
L RGOS
0.4 K IKIAAN]
N NNSSAAARIY
| VA VA
ol
021
041
0.6
08

Solve the PDE and plot the solution.

results = solvepde(model);

u = results.NodalSolution;
pdeplot(model, 'XYData',u)
title('Numerical Solution');
xLlabel('x")

ylabel('y")

3-205

3 Solving PDEs

3-206

Numerical Solution

0.2

015

01

0.05

-1 -0.5 1] 0.5 1
X

Compare this result with the exact analytical solution and plot the error.

p = model.Mesh.Nodes;

exact = (1 - p(1,:).72 - p(2,:).72)/4;
pdeplot(model, 'XYData',u - exact')
title('Error');

xlabel('x")

ylabel('y")

Poisson's Equation on Unit Disk

Error %1078

-0.5

=1

-1 0.5 1] 0.5 1
X

Solutions and Errors with Refined Meshes

Solve the equation while refining the mesh in each iteration and comparing the result with the exact
solution. Each refinement halves the Hmax value. Refine the mesh until the infinity norm of the error

vector is less than 5 - 107,

hmax = 0.1;
error = [];
err = 1;

while err > 5e-7 % run until error <= 5e-7
generateMesh(model, 'Hmax',hmax); % refine mesh
results = solvepde(model);
u = results.NodalSolution;
p = model.Mesh.Nodes;
exact = (1 - p(1,:).72 - p(2,:).72)/4;
err = norm(u - exact',inf); % compare with exact solution
error = [error err]; % keep history of err
hmax = hmax/2;
end

Plot the infinity norm of the error vector for each iteration. The value of the error decreases in each
iteration.

plot(error,'rx', 'MarkerSize',12);
ax = gca;

ax.XTick = 1l:numel(error);
title('Error History');

3-207

3 Solving PDEs

xlabel('Iteration');
ylabel('Norm of Error');

w1078 Error History
3.5 .
3 -
2587
S
o 2f
[P
]
£
515
=
1k
0.5 X
D i
1 2
Iteration

Plot the final mesh and its corresponding solution.
figure

pdemesh(model) ;
axis equal

3-208

Poisson's Equation on Unit Disk

0.2

figure

pdeplot(model, 'XYData',u)
title('Numerical Solution');
xlabel('x")

ylabel('y")

3-209

3 Solving PDEs

3-210

Numerical Solution

0.2

015

01

0.05

-1 -0.5 1] 0.5 1
X

Compare the result with the exact analytical solution and plot the error.

p = model.Mesh.Nodes;

exact = (1 - p(1,:).72 - p(2,:).72)/4;
pdeplot(model, 'XYData',u - exact')
title('Error');

xlabel('x")

ylabel('y")

Poisson's Equation on Unit Disk

Error %1078

10

3-211

3 Solving PDEs

Scattering Problem: PDE Modeler App

3-212

This example shows how to solve a simple scattering problem, where you compute the waves
reflected by a square object illuminated by incident waves that are coming from the left. This example
uses the PDE Modeler app. For the programmatic workflow, see “Scattering Problem” on page 3-160.

For this problem, assume an infinite horizontal membrane subjected to small vertical displacements
U. The membrane is fixed at the object boundary. The medium is homogeneous, and the phase
velocity (propagation speed) of a wave, a, is constant. The wave equation is

2
U _aau=0
at

The solution U is the sum of the incident wave V and the reflected wave R:
U=V+R

When the illumination is harmonic in time, you can compute the field by solving a single steady
problem. Assume that the incident wave is a plane wave traveling in the -x direction:

V(x, y,t) = pl(=kx —wt) — p=ikxp—iwt
The reflected wave can be decomposed into spatial and time components:
R(x,y,t) = r(x, y)e i@t

Now you can rewrite the wave equation as the Helmholtz equation for the spatial component of the
reflected wave with the wave number k = w/a:

-Ar-kr=0

The Dirichlet boundary condition for the boundary of the object is U = 0, or in terms of the incident
and reflected waves, R = -V. For the time-harmonic solution and the incident wave traveling in the -x
direction, you can write this boundary condition as follows:

rixy) = — e

The reflected wave R travels outward from the object. The condition at the outer computational
boundary must allow waves to pass without reflection. Such conditions are usually called

nonreflecting. As |?| approaches infinity, R approximately satisfies the one-way wave equation

R, 7 B
W-HXE VR=0

This equation considers only the waves moving in the positive &-direction. Here, & is the radial

distance from the object. With the time-harmonic solution, this equation turns into the generalized
Neumann boundary condition

-
& - Vr=ikr
To solve the scattering problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.

Scattering Problem: PDE Modeler App

10

11

12

13

Set the x-axis limit to [0.1 1.5] and the y-axis limit to [0 1]. To do this, select Options >
Axes Limits and set the corresponding ranges.

Display grid lines. To do this:

a Select Options > Grid Spacing and clear the Auto checkboxes.

b Enter X-axis linear spacing as 0.1:0.05:1.5 and Y-axis linear spacing as 0:0.05:1.
¢ Select Options > Grid.

Align new shapes to the grid lines by selecting Options > Snap.

Draw a square with sides of length 0.1 and a centerin [0.8 0.5]. To do this, first click the

button. Then right-click the origin and drag to draw a square. Right-clicking constrains the
shape you draw so that it is a square rather than a rectangle. If the square is not a perfect
square, double-click it. In the resulting dialog box, specify the exact location of the bottom left
corner and the side length.

Rotate the square by 45 degrees. To do this, select Draw > Rotate... and enter 45 in the
resulting dialog box. The rotated square represents the illuminated object.

Draw a circle with a radius of 0.45 and a centerin [0.8 0.5]. To do this, first click the &
button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape
you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle,
double-click it. In the resulting dialog box, specify the exact center location and radius of the
circle.

Model the geometry by entering C1-SQ1 in the Set formula field.
Check that the application mode is set to Generic Scalar.

Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.

* For the perimeter of the circle, the boundary condition is the Neumann boundary condition
with q = -1ik, where the wave number k = 60 corresponds to a wavelength of about 0.1
units. Enterg = Oand q = -60*i.

* For the perimeter of the square, the boundary condition is the Dirichlet boundary condition:

r=-v(xy) = — gtka - x

In this problem, because the reflected wave travels in the -x direction, the boundary condition
isr=-e Enterh = land r = -exp(-i*60%*x).

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. The Helmholtz equation is a wave equation, but in Partial Differential Equation
Toolbox you can treat it as an elliptic equation with a = -k2. Specifyc = 1,a = -3600, and f
= 0.

Initialize the mesh by selecting Mesh > Initialize Mesh.

For sufficient accuracy, you need about 10 finite elements per wavelength. The outer boundary
must be located a few object diameters away from the object itself. Refine the mesh by selecting
Mesh > Refine Mesh. Refine the mesh two more times to achieve the required resolution.

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

The solution is complex. When plotting the solution, you get a warning message.

3-213

3 Solving PDEs

4| PDE Modeler Warning — >

Waming: Imaginary part of complex property was ignored when plotting.

14 Plot the reflected waves. Change the colormap to jet by selecting Plot > Parameters and then
selecting jet from the Colormap drop-down menu.

Color: u

095 7

09 7

085

08—

075

07—

065

06—

0.55

0.5

0.45

0.4~

035

0.3

0.251
0.2 - _
0151 .
01 .

005 .

| | | | | | | | | | | | | | | | | | | 1 | | 1 | | 1 |
01 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1 1.05 1.1 115 1.2 1.25 1.3 1.35 1.4 145 15

15 Animate the solution for the time-dependent wave equation. To do this:

a Export the mesh data and the solution to the MATLAB workspace by selecting Mesh >
Export Mesh and Solve > Export Solution, respectively.

b Enter the following commands in the MATLAB Command Window.

figure
maxu = max(abs(u));
m = 10;
for j = 1:m,
uu = real(exp(-j*2*pi/10*sqrt(-1))*u);

pdeplot(p,e,t, 'XYData',uu, 'ColorBar', 'off"', 'Mesh', 'off');
colormap(jet)

3-214

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

Scattering Problem: PDE Modeler App

caxis([-maxu maxu]);
axis tight
ax = gca;
ax.DataAspectRatio = [1 1 1];
axis off
M(:,j) = getframe;
end
movie(M);

3-215

3 Solving PDEs

Minimal Surface Problem

3-216

This example shows how to solve the minimal surface equation

1

V1 + |[Vul?

on the unit disk Q = {(x, y) |x* + y* = 1}, with u(x, y) = x* on the boundary Q. An elliptic equation in
the toolbox form is

-V Vu|=0

-V -(cVu)+au=f.
Therefore, for the minimal surface problem, the coefficients are as follows:

1

€= 1+ (vu?

Because the coefficient c is a function of the solution u, the minimal surface problem is a nonlinear
elliptic problem.

a=0, f=0.

To solve the minimal surface problem using the programmatic workflow, first create a PDE model
with a single dependent variable.

model = createpde;

Create the geometry and include it in the model. The circleg function represents this geometry.
geometryFromEdges (model,@circleg);

Plot the geometry with the edge labels.

pdegplot(model, 'EdgelLabels', 'on');

axis equal
title 'Geometry with Edge Labels';

Minimal Surface Problem

Geometry with Edge Labels

o an

- .

047f /f T

0.2 f

Specify the coefficients.

a 0;
f 0;
cCoef = @(region,state) 1./sqrt(l+state.ux.”2 + state.uy.”2);
specifyCoefficients(model, 'm',0,'d"',0,'c',cCoef,'a',a,'f"',f);

Specify the boundary conditions using the function u(x, y) = x2.

bcMatrix = @(region,~)region.x.”2;

applyBoundaryCondition(model, 'dirichlet’,...
"Edge’',1l:model.Geometry.NumEdges, ...
'u',bcMatrix);

Generate and plot a mesh.

generateMesh(model, 'Hmax',0.1);
figure;

pdemesh(model) ;

axis equal

3-217

3 Solving PDEs

0.8r

061

0.4

0.2

0.2r

041

0.6

08

Solve the problem by using the solvepde function. Because the problem is nonlinear, solvepde
invokes a nonlinear solver. Observe the solver progress by setting the
SolverOptions.ReportStatistics property of the model to 'on".

model.SolverOptions.ReportStatistics = 'on';

result = solvepde(model);

Iteration Residual Step size Jacobian: Full
0 1.8540e-02
1 2.8715e-04 1.0000000
2 1.2146e-06 1.0000000

u = result.NodalSolution;

Plot the solution.

figure;

pdeplot(model, 'XYData',u, 'ZData',u);
xlabel 'x'
ylabel 'y

zlabel 'u(x,y)"
title 'Minimal Surface'

3-218

Minimal Surface Problem

Minimal Surface

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

01

3-219

3 Solving PDEs

Minimal Surface Problem: PDE Modeler App

This example shows how to solve the minimal surface equation

1

V1 + [Vul?

on the unit disk Q = {(x,y) | x* + y* = 1}, with u = x* on the boundary JQ.

-V Vu|l=0

This example uses the PDE Modeler app. For the programmatic workflow, see “Minimal Surface
Problem” on page 3-216.

An elliptic equation in the toolbox form is
-V-(cVu)+au=f
Therefore, for the minimal surface problem the coefficients are as follows:

c=;,a=0,f=0

1+|Vu|2

Because the coefficient c is a function of the solution u, the minimal surface problem is a nonlinear
elliptic problem.

To solve the minimal surface problem in the PDE Modeler app, follow these steps:
1 Model the surface as a unit circle.

pdecirc([0 0 1])
Check that the application mode is set to Generic Scalar.
3 Specify the boundary conditions. To do this:

a0}
Switch to boundary mode by clicking the button or selecting Boundary > Boundary
Mode.

b Select all boundaries by selecting Edit > Select All.
¢ Select Boundary > Specify Boundary Conditions.
d Specify the Dirichlet boundary condition u = x2. To do this, specifyh = 1, r = x."2.

4 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Specify ¢ = 1./sqrt(1l+ux.”2+uy.”2),a = 0,and f = 0.

Initialize the mesh by selecting Mesh > Initialize Mesh.
Refine the mesh by selecting Mesh > Refine Mesh.

Choose the nonlinear solver. To do this, select Solve > Parameters and check Use nonlinear
solver. Set the tolerance parameter to 0.001.

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar.

Plot the solution in 3-D. To do this, select PlotParameters. In the resulting dialog box, select
Height (3-D plot).

3-220

Minimal Surface Problem: PDE Modeler App

Color: u Height: u

0.9

0.8

oy

06

0.5

04

0.3

0.2

01

3-221

3 Solving PDEs

Poisson's Equation with Point Source and Adaptive Mesh
Refinement

3-222

This example shows how to solve a Poisson's equation with a delta-function point source on the unit
disk using the adaptmesh function.

Specifically, solve the Poisson's equation
—-Au =6(x,y)

on the unit disk with zero Dirichlet boundary conditions. The exact solution expressed in polar
coordinates is

u(r, 0) = loglgr)

’

which is singular at the origin.

By using adaptive mesh refinement, Partial Equation Toolbox™ can accurately find the solution
everywhere away from the origin.

The following variables define the problem:

* ¢, a: The coefficients of the PDE.

« f: A function that captures a point source at the origin. It returns 1/area for the triangle
containing the origin and 0 for other triangles.

C 1;
0;

@circlef;

a
f
Create a PDE Model with a single dependent variable.

numberOfPDE = 1;
model = createpde(numberOfPDE);

Create a geometry and include it in the model.

g = @circleg;
geometryFromEdges (model,g);

Plot the geometry and display the edge labels.

figure;

pdegplot(model, 'EdgelLabels', 'on');

axis equal

title 'Geometry With Edge Labels Displayed';

Poisson's Equation with Point Source and Adaptive Mesh Refinement

Geometry With Edge Labels Displayed

0471

0.2 |f

/.—"

-

-

e

e

i . —

Specify the zero solution at all four outer edges of the circle.

applyBoundaryCondition(model, 'dirichlet"', 'Edge', (1:4),'u',0);

adaptmesh solves elliptic PDEs using the adaptive mesh generation. The tripick parameter lets
you specify a function that returns which triangles will be refined in the next iteration. circlepick
returns triangles with computed error estimates greater a given tolerance. The tolerance is provided
to circlepick using the 'par' parameter.

[u,p,e,t] = adaptmesh(g,model,c,a,f, 'tripick"',
‘circlepick',

'maxt', 2000,
'par',le-3);

Number of triangles: 258

Number of triangles: 515

Number of triangles: 747

Number of triangles: 1003

Number of triangles: 1243

Number of triangles: 1481

Number of triangles: 1705

Number of triangles: 1943

Number of triangles: 2155

Maximum number of triangles obtained.

Plot the finest mesh.

3-223

3 Solving PDEs

3-224

figure;
pdemesh(p,e,t);
axis equal

.1
0ar
067
0.4r
0.2r
D -
0.2r
AT Ry
L T
0.4 AR
WATA LAY
06k nwgg{{
NN
0.8r
_1 1 — v 1
-1 0.5 0 0.5 1

Plot the error values.

p(l,:)";

p(2,:)";

sqrt(x.”2+y."2);

uu = -log(r)/2/pi;

figure;
pdeplot(p,e,t, 'XYData',u-uu, 'ZData',u-uu, 'Mesh', 'off");

X
y
-

Poisson's Equation with Point Source and Adaptive Mesh Refinement

0.06

0.1 0.04

0.05 4 0.02

-0.02

-0.04

-0.08

Plot the FEM solution on the finest mesh.

figure;
pdeplot(p,e,t, 'XYData',u, 'ZData',u, 'Mesh','off');

3-225

3 Solving PDEs

3-226

0.8

0.7

0.6

0.5

0.4

0.3

0.2

01

Heat Transfer in Block with Cavity: PDE Modeler App

Heat Transfer in Block with Cavity: PDE Modeler App

This example shows how to solve a heat equation that describes the diffusion of heat in a body. This
example uses the PDE Modeler app. For programmatic workflow, see “Heat Transfer in Block with
Cavity” on page 3-231.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100
degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at
a constant rate, for example -10 W/m?. All the other boundaries are insulated. The temperature in the
block at the starting time t, = 0 is 0 degrees. The goal is to model the heat distribution during the
first five seconds.

The PDE governing this problem is a parabolic heat equation. Partial Differential Equation Toolbox
solves the generic parabolic PDE of the form

au

dE—V-(CVu)+au=f

The heat equation has the form:

au _
da—t—Au—O

To solve this problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.

pdeModeler

2 Model the geometry: draw a rectangle with corners (-0.5,-0.8), (0.5,-0.8), (0.5,0.8), and (-0.5,0.8)
and a rectangle with corners (-0.05,-0.4), (0.05,-0.4), (0.05,0.4), and (-0.05,0.4). Draw the first
rectangle by using the pderect function.

pderect([-0.5 0.5 -0.8 0.8])

3 Display grid lines with extra ticks at -0.05 and 0.05. To do this, select Options > Grid
Spacing, clear the Auto checkbox, and enter X-axis extra ticks at -0.05 and 0.05. Then select
Options > Grid.

3-227

3 Solving PDEs

3-228

10

11

12

4| Grid Spacing E'@

K-axis linear spacing: Auto

-1:0.2:1

X-axis extra ticks:

-0.05 0.05

“-axis linear spacing: V| Auto
-1:0.2:1

Y-axis extra ticks:

| Apphy | | Done |

Set the x-axis limitto [-0.6 0.6] and y-axis limitto [-1 1]. To do this, select Options > Axes
Limits and set the corresponding ranges.

Select Options > Snap to align any new shape to the grid lines. Then draw the rectangle with
corners (-0.05,-0.4), (0.05,-0.4), (0.05,0.4), and (-0.05,0.4)

Model the geometry by entering R1-R2 in the Set formula field.
Check that the application mode is set to Generic Scalar.

Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Then select Boundary > Specify Boundary Conditions and specify the
Neumann boundary condition.

* For convenience, first specify the insulating Neumann boundary condition du/on = 0 for all
boundaries. To do this, select all boundaries by using Edit > Select All and specify g = 0, g
= 0.

* Specify the Dirichlet boundary condition u = 100 for the left side of the block. To do this,
specifyh = 1, r = 100.

* Specify the Neumann boundary condition du/on = -10 for the right side of the block. To do
this, specifyg = -10,q = 0.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Heat equation is a parabolic equation, so select the Parabolic type of PDE. Specify ¢
=1la=0f=0andd = 1.

Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >
Refine Mesh.

Set the initial value to 0, the solution time to 5 seconds, and compute the solution every 0.5
seconds. To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to
0:0.5:5, and u(t,) to 0.

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The app
solves the heat equation at 11 different times from 0 to 5 seconds and displays the heat
distribution at the end of the time span.

Heat Transfer in Block with Cavity: PDE Modeler App

13 Plot isothermal lines using a contour plot and the heat flux vector field using arrows and change
the colormap to hot. To do this:
Select Plot > Parameters.

In the resulting dialog box, select the Color, Contour, and Arrows options. Select -
c*grad(u) from Arrows drop-down menu.

¢ Change the colormap to hot by using the corresponding drop-down menu in the same dialog
box.

4| PDE Modeler - [Untitled] [E=R|ECH ==

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
O B O @ 2|09 eel A & = |]S | cenerc scalar L] x os v: 04 |

Set formula:

R1-R2

Time=5 Color: u Vector field: -c*grad(u)
T T T — 100

-

08

06

0.2

NN

[=]
T
I

_1 1 1 1 | 1
-0.5 -005 0 0.05 0.5

Info: Select a new plot, or change mode to atter PDE, mesh, or boundaries.

14 Use an animated plot to visualize the dynamic behavior of the temperature. For this, select Plot
> Parameters and then select the Animation option.

15 The temperature in the block rises very quickly. To improve the animation and focus on the first
second, change the list of times to the MATLAB expression logspace(-2,0.5,20). To do this,
select Solve > Parameters. In the Solve Parameters dialog box, set time to
logspace(-2,0.5,20).

3-229

3 Solving PDEs

16 You can explore the solution by varying the parameters of the model and plotting the results. For
example, change the heat capacity coefficient d and the heat flow at the right boundary to see
how these parameters affect the heat distribution.

3-230

Heat Transfer in Block with Cavity

Heat Transfer in Block with Cavity

This example shows how to solve for the heat distribution in a block with cavity.

Consider a block containing a rectangular crack or cavity. The left side of the block is heated to 100
degrees centigrade. At the right side of the block, heat flows from the block to the surrounding air at

a constant rate, for example —10W/m?2. All the other boundaries are insulated. The temperature in
the block at the starting time ty = 0 is 0 degrees. The goal is to model the heat distribution during the

first five seconds.
Create Thermal Analysis Model

The first step in solving a heat transfer problem is to create a thermal analysis model. This is a
container that holds the geometry, thermal material properties, internal heat sources, temperature on
the boundaries, heat fluxes through the boundaries, mesh, and initial conditions.

thermalmodel = createpde('thermal', 'transient');

Import Geometry

Add the block geometry to the thermal model by using the geometryFromEdges function. The
geometry description file for this problem is called crackg.m.

geometryFromEdges (thermalmodel,@crackg);
Plot the geometry, displaying edge labels.
pdegplot(thermalmodel, 'EdgelLabels', 'on")

ylim([-1,1])
axis equal

3-231

3 Solving PDEs

3-232

1 :
0.8 ET
06]
047 ES]
0.2r 1

(EB EB E3 B1
027]
04 Ed 1
06} 1
-0.8 EZ

-1 :

-0.5 0 0.5

Specify Thermal Properties of Material

Specify the thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodel, 'ThermalConductivity',1,...
'MassDensity',1, ...
'SpecificHeat',1);

Apply Boundary Conditions

Specify the temperature on the left edge as 100, and constant heat flow to the exterior through the
right edge as -10. The toolbox uses the default insulating boundary condition for all other
boundaries.

thermalBC(thermalmodel, 'Edge',6, 'Temperature',100);
thermalBC(thermalmodel, 'Edge',1, 'HeatFlux',-10);

Set Initial Conditions

Set an initial value of 0 for the temperature.
thermalIC(thermalmodel,0);

Generate Mesh

Create and plot a mesh.

generateMesh(thermalmodel);
figure

Heat Transfer in Block with Cavity

pdemesh(thermalmodel)
title('Mesh with Quadratic Triangular Elements')

Mesh with Quadratic Triangular Elements

0.8 T

0.6

Specify Solution Times

Set solution times to be 0 to 5 seconds in steps of 1/2.
tlist = 0:0.5:5;

Calculate Solution

Use the solve function to calculate the solution.
thermalresults = solve(thermalmodel,tlist)

thermalresults =
TransientThermalResults with properties:

Temperature: [1320x11 double]

SolutionTimes: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4 4.5000 5]

XGradients: [1320x11 double]
YGradients: [1320x11 double]
ZGradients: []

Mesh: [1x1 FEMesh]

Evaluate Heat Flux

Compute the heat flux density.

0.4

0.6

0.8

3-233

3 Solving PDEs

[gx,qy] = evaluateHeatFlux(thermalresults);
Plot Temperature Distribution and Heat Flux

Plot the solution at the final time step, t = 5.0 seconds, with isothermal lines using a contour plot, and
plot the heat flux vector field using arrows.

pdeplot(thermalmodel, 'XYData',thermalresults.Temperature(:,end),
'"Contour','on', ...
"FlowData', [gx(:,end),qy(:,end)],
'ColorMap', 'hot"')

0.8r — 100

0.2r

a0

85

3-234

Heat Transfer Problem with Temperature-Dependent Properties

Heat Transfer Problem with Temperature-Dependent
Properties

This example shows how to solve the heat equation with a temperature-dependent thermal
conductivity. The example shows an idealized thermal analysis of a rectangular block with a
rectangular cavity in the center.

The partial differential equation for transient conduction heat transfer is:
aT _
pCpW - V- (kVT)=f
where T is the temperature, p is the material density, C,, is the specific heat, and k is the thermal
conductivity. f is the heat generated inside the body which is zero in this example.
Steady-State Solution: Constant Thermal Conductivity

Create a steady-state thermal model.

thermalmodelS = createpde('thermal', 'steadystate');

Create a 2-D geometry by drawing one rectangle the size of the block and a second rectangle the size

of the slot.

rit=[34-.5.5.5-.5 -.8-.8.8.8];

r2 =1[34-.05 .05 .05 -.05 -.4 -.4 .4 .4];
gdm = [rl; r2]';

Subtract the second rectangle from the first to create the block with a slot.

g = decsg(gdm, 'R1-R2',['R1'; 'R2']');

Convert the decsg format into a geometry object. Include the geometry in the model.
geometryFromEdges (thermalmodelS,g);

Plot the geometry with edge labels displayed. The edge labels will be used below in the function for
defining boundary conditions.

figure

pdegplot(thermalmodelS, 'EdgelLabels', 'on');
axis([-.9 .9 -.9 .9]);

title 'Block Geometry With Edge Labels Displayed'

3-235

3 Solving PDEs

3-236

Block Geometry With Edge Labels Displayed

08| E2 1
06| 1
0.4 E# i
D27} 1

0r E6 EB H3 E1 1
027]
047 ES]
06T]
08T E7]

08 06 04 02 0 02 04 06 08

Set the temperature on the left edge to 100 degrees. On the right edge, there is a prescribed heat
flux out of the block. The top and bottom edges and the edges inside the cavity are all insulated, that
is, no heat is transferred across these edges.

thermalBC(thermalmodelS, 'Edge',6, 'Temperature',100);
thermalBC(thermalmodelS, 'Edge', 1, '"HeatFlux',-10);

Specify the thermal conductivity of the material. First, consider the constant thermal conductivity, for
example, equal one. Later, consider a case where the thermal conductivity is a function of
temperature.

thermalProperties(thermalmodelS, 'ThermalConductivity',1);

Create a mesh with elements no larger than 0.2.

generateMesh(thermalmodelS, 'Hmax',0.2);

figure

pdeplot(thermalmodelS);

axis equal

title 'Block With Finite Element Mesh Displayed'

Heat Transfer Problem with Temperature-Dependent Properties

Block With Finite Element Mesh Displayed

0.8 T

04T T

0.2r 7

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Calculate the steady-state solution.

R = solve(thermalmodelS);

T R.Temperature;

figure
pdeplot(thermalmodelS, 'XYData',T, 'Contour','on', 'ColorMap', 'hot"');
axis equal

title 'Temperature, Steady State Solution'

3-237

3 Solving PDEs

Temperature, Steady State Solution

0.8 — 100
0.6
0.4 [
195
0.2
D =
02r ap
041
06}
85

_DB S E—

0.8

Transient Solution: Constant Thermal Conductivity

Create a transient thermal model and include the geometry.
thermalmodelT = createpde('thermal', 'transient');

ri [34-5.5.5-.5 -.8-.8.8.8];

r2 [34-.05 .05 .05 -.05 -.4 -.4 .4 .4];
gdm = [rl; r2]°';

g = decsg(gdm, 'R1-R2',['R1'; 'R2'1]"');
geometryFromEdges (thermalmodelT,g);

Specify thermal conductivity, mass density, and specific heat of the material.

thermalProperties(thermalmodelT, 'ThermalConductivity',1,...
'MassDensity',1,...
'SpecificHeat',1);

Define boundary conditions. In the transient cases, the temperature on the left edge is zero at time=0
and ramps to 100 degrees over .5 seconds. You can find the helper function
transientBCHeatedBlock under matlab/R20XXx/examples/pde/main.

thermalBC(thermalmodelT, 'Edge',6, 'Temperature',@transientBCHeatedBlock);

On the right edge, there is a prescribed heat flux out of the block.

thermalBC(thermalmodelT, 'Edge', 1, 'HeatFlux', -10);

3-238

Heat Transfer Problem with Temperature-Dependent Properties

The top and bottom edges as well as the edges inside the cavity are all insulated, that is no heat is
transferred across these edges.

Create a mesh with elements no larger than 0.2.

msh = generateMesh(thermalmodelT, 'Hmax',0.2);
figure

pdeplot (thermalmodelT);

axis equal

title 'Block With Finite Element Mesh Displayed'

08 Block With Finite Element Mesh Displayed

041 7

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Calculate the transient solution. Perform a transient analysis from zero to five seconds. The toolbox
saves the solution every .1 seconds so that plots of the results as functions of time can be created.

tlist = 0:.1:5;
thermalIC(thermalmodelT,0);

R = solve(thermalmodelT, tlist);
T = R.Temperature;

Two plots are useful in understanding the results from this transient analysis. The first is a plot of the
temperature at the final time. The second is a plot of the temperature at a specific point in the block,
in this case near the center of the right edge, as a function of time. To identify a node near the center
of the right edge, it is convenient to define this short utility function.

getClosestNode = @(p,x,y) min((p(1,:) - x).”2 + (p(2,:) - y)."2);

Call this function to get a node near the center of the right edge.

3-239

3 Solving PDEs

[~,nid] = getClosestNode(msh.Nodes, .5, 0);

The two plots are shown side-by-side in the figure below. The temperature distribution at this time is
very similar to that obtained from the steady-state solution above. At the right edge, for times less
than about one-half second, the temperature is less than zero. This is because heat is leaving the
block faster than it is arriving from the left edge. At times greater than about three seconds, the
temperature has essentially reached steady-state.

h = figure;

h.Position = [1 1 2 1].*h.Position;

subplot(1,2,1);

axis equal

pdeplot(thermalmodelT, 'XYData',T(:,end), 'Contour','on', ..
'"ColorMap', 'hot');

axis equal

title 'Temperature, Final Time, Transient Solution'

subplot(1,2,2);

axis equal

plot(tlist, T(nid,:));

grid on

title 'Temperature at Right Edge as a Function of Time';

xlabel 'Time, seconds'

ylabel 'Temperature, degrees-Celsius'

Temperature, Final Time, Transient Solution Temperature at Right Edge as a Function of Time

=]

.

(=]

o

s
Temperature, degrees-Celsius

[=2]

o

08 100 90
80 —
06 =
70 /
04f . /
95 60 /
/
L /
0.2 50 /
F 40 fll
-)
In’
30
0.2 g0 /
20 /
04}
10 /
06}
0
85 ./
o8 ; ! ! ‘ ‘
06 04 H2 0 02 04 08

0 1 2 3 4 5
Time, seconds

Steady State Solution: Temperature-Dependent Thermal Conductivity

It is not uncommon for material properties to be functions of the dependent variables. For example,
assume that the thermal conductivity is a simple linear function of temperature:

k = @(~,state) 0.3+0.003*state.u;

In this case, the variable u is the temperature. For this example, assume that the density and specific
heat are not functions of temperature.

thermalProperties(thermalmodelS, 'ThermalConductivity',k);

Calculate the steady-state solution. Compared with the constant-conductivity case, the temperature
on the right-hand edge is lower. This is due to the lower conductivity in regions with lower
temperature.

3-240

Heat Transfer Problem with Temperature-Dependent Properties

R = solve(thermalmodelS);

T = R.Temperature;

figure
pdeplot(thermalmodelS, 'XYData',T, 'Contour','on', 'ColorMap', "hot');
axis equal

title 'Temperature, Steady State Solution'

Temperature, Steady State Solution

08r — 100

De6r
185

04r
190

02r

ot
B5

0.2
B0

04r
06T 75

_DE S S

0.8

Transient Solution: Temperature-Dependent Thermal Conductivity

Now perform a transient analysis with the temperature-dependent conductivity.

thermalProperties(thermalmodelT, 'ThermalConductivity', k, ...
'MassDensity',1,...
'SpecificHeat',1);

Use the same timespan tlist = 0:.1:5 as for the linear case.

thermalIC(thermalmodelT,0);
R = solve(thermalmodelT, tlist);
T = R.Temperature;

Plot the temperature at the final time step and the temperature at the right edge as a function of
time. The plot of temperature at the final time step is only slightly different from the comparable plot
from the linear analysis: temperature at the right edge is slightly lower than the linear case. The plot
of temperature as a function of time is considerably different from the linear case. Because of the
lower conductivity at lower temperatures, the heat takes longer to reach the right edge of the block.
In the linear case, the temperature is essentially constant at around three seconds but for this
nonlinear case, the temperature curve is just beginning to flatten at five seconds.

3-241

3 Solving PDEs

3-242

h = figure;

h.Position = [1 1 2 1].*h.Position;

subplot(1,2,1);

axis equal

pdeplot(thermalmodelT, 'XYData',T(:,end), 'Contour','on', ...
'ColorMap', 'hot');

axis equal

title 'Temperature, Final Time, Transient Solution'

subplot(1,2,2);

axis equal

plot(tlist(l:size(T,2)), T(nid,:));

grid on

title 'Temperature at Right Edge as a Function of Time (Nonlinear)';

xlabel 'Time, seconds'

ylabel 'Temperature, degrees-Celsius'

Temperature, Final Time, Transient Solution Temperature at Right Edge as a Function of Time (Nonlinear)
70 T T : : —

—

o 60) -

=]

04} 50

40
02

30

(=]

20
021

047

Temperature, degrees-Celsius

06f 10

70

08—

=20

0 1 2 3 4 5
Time, seconds

Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

Heat Conduction in Multidomain Geometry with Nonuniform
Heat Flux

This example shows how to perform a 3-D transient heat conduction analysis of a hollow sphere made
of three different layers of material.

The sphere is subject to a nonuniform external heat flux.

The physical properties and geometry of this problem are described in Singh, Jain, and Rizwan-uddin
(see Reference), which also has an analytical solution for this problem. The inner face of the sphere
has a temperature of zero at all times. The outer hemisphere with positive y value has a nonuniform
heat flux defined by

Qouter = 92(17 - 9)2¢2(U - ¢7)2
0=s0=snm0=s¢=m.

0 and ¢ are azimuthal and elevation angles of points in the sphere. Initially, the temperature at all
points in the sphere is zero.

Create a thermal model for transient thermal analysis.

thermalmodel = createpde('thermal', 'transient');

Create a multilayered sphere using the multisphere function. Assign the resulting geometry to the
thermal model. The sphere has three layers of material with a hollow inner core.

gm = multisphere([1,2,4,6], 'Void',[true,false,false,falsel]);
thermalmodel.Geometry = gm;

Plot the geometry and show the cell labels and face labels. Use a FaceAlpha of 0.25 so that labels of
the interior layers are visible.

figure('Position',[10,10,800,4001);

subplot(1,2,1)

pdegplot(thermalmodel, 'FaceAlpha',0.25, 'CellLabel’, 'on")
title('Geometry with Cell Labels')

subplot(1,2,2)

pdegplot(thermalmodel, 'FaceAlpha',0.25, 'FacelLabel', 'on")
title('Geometry with Face Labels')

3-243

3 Solving PDEs

Geometry with Cell Labels Geometry with Face Labels

F4

.
C§§1 F3 F2

Generate a mesh for the geometry. Choose a mesh size that is coarse enough to speed the solution,
but fine enough to represent the geometry reasonably accurately.

generateMesh(thermalmodel, 'Hmax"',1);

Specify the thermal conductivity, mass density, and specific heat for each layer of the sphere. The

material properties are dimensionless values, not given by realistic material properties.

thermalProperties(thermalmodel, 'Cell’,1, 'ThermalConductivity',1,
'MassDensity',1,
'SpecificHeat',1);

thermalProperties(thermalmodel, 'Cell',2, 'ThermalConductivity',2,
'MassDensity',1, .
'SpecificHeat',0.5);

thermalProperties(thermalmodel, 'Cell’,3, 'ThermalConductivity',4,
'MassDensity',1, ...
'SpecificHeat',4/9);

Specify boundary conditions. The innermost face has a temperature of zero at all times.

thermalBC(thermalmodel, 'Face', 1, 'Temperature',0);

The outer surface of the sphere has an external heat flux. Use the functional form of thermal
boundary conditions to define the heat flux.

function Qflux = externalHeatFlux(region,~)
[phi,theta,~] = cart2sph(region.x,region.y,region.z);
theta = pi/2 - theta; % transform to 0 <= theta <= pi

ids = phi > 0;

3-244

Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

Qflux = zeros(size(region.x));

Qflux(ids) = theta(ids).”2.*(pi - theta(ids)).”2.*phi(ids).”2.*(pi -
phi(ids))."2;

end

Plot the flux on the surface.

[phi,theta,r] = meshgrid(linspace(0,2*pi),linspace(-pi/2,pi/2),6);
[x,y,z] = sph2cart(phi,theta,r);

region.x = Xx;

region.y = vy;

region.z = z;

flux = externalHeatFlux(region,[1);
figure

surf(x,y,z,flux, 'LineStyle', 'none")
axis equal

view(130,10)

colorbar

xlabel 'x'

ylabel 'y

zlabel 'z’

title('External Flux')

External Flux —

25

20

15

10

Include this boundary condition in the model.

3-245

3 Solving PDEs

3-246

thermalBC(thermalmodel, 'Face',4, ...
'HeatFlux',@externalHeatFlux,
'Vectorized', 'on');

Define the initial temperature to be zero at all points.

thermalIC(thermalmodel,0);

Define a time-step vector and solve the transient thermal problem.

tlist = [0,2,5:5:50];
R = solve(thermalmodel, tlist);

To plot contours at several times, with the contour levels being the same for all plots, determine the
range of temperatures in the solution. The minimum temperature is zero because it is the boundary
condition on the inner face of the sphere.

Tmin = 0;
Find the maximum temperature from the final time-step solution.
Tmax = max(R.Temperature(:,end));
Plot contours in the range Tmin to Tmax at the times in tlist.
h = figure;
for 1 = 1l:numel(tlist)
pdeplot3D(thermalmodel, 'ColorMapData',R.Temperature(:,i))
caxis([Tmin,Tmax])
view(130,10)
title(['Temperature at Time ' num2str(tlist(i))]);
M(1i) = getframe;

end

Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

Temperature at Time 50

180

160

140

1100

&0

40

20

To see a movie of the contours when running this example on your computer, execute the following
line:

movie(M,2)

Visualize the temperature contours on the cross-section. First, define a rectangular grid of points on
the y — z plane where x = 0.

[YG,ZG] = meshgrid(linspace(-6,6,100),linspace(-6,6,100));
XG = zeros(size(YG));

Interpolate the temperature at the grid points. Perform interpolation for several time steps to observe
the evolution of the temperature contours.

tIndex = [2,3,5,7,9,11];

varNames = {'Time index', 'Time step'};

index step = table(tIndex.',tlist(tIndex).', 'VariableNames', varNames);
disp(index_ step);

Time index Time step

15
25
35
45

R O~NUTWN

3-247

3 Solving PDEs

TG = interpolateTemperature(R,XG,YG, ZG, tIndex);

Define the geometric spherical layers on the cross-section.

t = linspace(0,2*pi);

ylayerl = cos(t); zlayerl = sin(t);

ylayer2 = 2*cos(t); zlayer2 = 2*¥sin(t);
ylayer3 = 4*cos(t); zlayer3 = 4*sin(t);
ylayerd = 6*cos(t); zlayerd = 6*sin(t);

Plot the contours in the range Tmin to Tmax for the time steps corresponding to the time indices
tIndex.

figure('Position',[10,10,1000,550]);

for i = 1l:numel(tIndex)
subplot(2,3,1)
contour(YG, ZG, reshape(TG(:,1i),size(YG)), 'ShowText', 'on")
colorbar
title(['Temperature at Time ' num2str(tlist(tIndex(i)))]);
hold on
caxis([Tmin, Tmax])
axis equal
% Plot boundaries of spherical layers for reference.
plot(ylayerl,zlayerl, 'k', 'LineWidth',1.5)
plot(ylayer2,zlayer2, 'k', 'LineWidth',1.5)
plot(ylayer3,zlayer3, 'k', 'LineWidth',1.5)
plot(ylayer4,zlayer4, 'k', 'LineWidth',1.5)

end

Temperature at Time 2 Temperature at Time 5 Temperature at Time 15

150

100

150

100

3-248

Heat Conduction in Multidomain Geometry with Nonuniform Heat Flux

Reference

[1] Singh, Suneet, P. K. Jain, and Rizwan-uddin. "Analytical Solution for Three-Dimensional, Unsteady
Heat Conduction in a Multilayer Sphere." ASME. J. Heat Transfer. 138(10), 2016, pp.
101301-101301-11.

3-249

3 Solving PDEs

Inhomogeneous Heat Equation on Square Domain

3-250

This example shows how to solve the heat equation with a source term.
The basic heat equation with a unit source term is

au B
W—Au—l

This equation is solved on a square domain with a discontinuous initial condition and zero
temperatures on the boundaries.

Create a transient thermal model.
thermalmodel = createpde('thermal', 'transient');

Create a square geometry centered at x = @ andy = 0 with sides of length 2. Include a circle of
radius 0.4 concentric with the square.

R1 = [3;4;-1;1;1;-1;-1;-1;1;1];

Cl =1[1;0;0;0.4];

Cl = [C1l;zeros(length(R1l) - length(Cl),1)];
gd = [R1,C1];

sf = 'R1+C1"';

ns = char('R1','C1")";

g = decsg(gd,sf,ns);

Append the geometry to the model.

geometryFromEdges (thermalmodel,g);

Specify thermal properties of the material.

thermalProperties(thermalmodel, 'ThermalConductivity',1,...
'MassDensity',1,...
'SpecificHeat',1);

Specify internal heat source.

internalHeatSource(thermalmodel,1);

Plot the geometry and display the edge labels for use in the boundary condition definition.

figure

pdegplot(thermalmodel, 'EdgelLabels', 'on', 'FacelLabels', 'on")

axis([-1.1 1.1 -1.1 1.11);

axis equal
title 'Geometry With Edge and Subdomain Labels'

Inhomogeneous Heat Equation on Square Domain

Geometry With Edge and Subdomain Labels

1 EZ

0.8]

0.4 L 1

0.2} fﬁ | \E{(\ 1

Set zero temperatures on all four outer edges of the square.

thermalBC(thermalmodel, 'Edge',1:4, 'Temperature',0);

The discontinuous initial value is 1 inside the circle and zero outside. Specify zero initial temperature
everywhere.

thermalIC(thermalmodel,0);

Specify non-zero initial temperature inside the circle (Face 2).
thermalIC(thermalmodel, 1, 'Face',2);

Generate and plot a mesh.

msh = generateMesh(thermalmodel);

figure;

pdemesh(thermalmodel) ;
axis equal

3-251

3 Solving PDEs

3-252

0.4

0.2

Find the solution at 20 points in time between 0 and 0.1.

nframes = 20;
tlist = linspace(0,0.1,nframes);

thermalmodel.SolverOptions.ReportStatistics ='on';
result = solve(thermalmodel, tlist);

99 successful steps

0 failed attempts

200 function evaluations

1 partial derivatives

20 LU decompositions

199 solutions of linear systems

T = result.Temperature;

Plot the solution.

figure
Tmax = max(max(T));
Tmin = min(min(T));

for j = l:nframes
pdeplot(thermalmodel, 'XYData',T(:,j), 'ZData',T(
caxis([Tmin Tmax]);
axis([-11 -11 0 1]);
Mv(j) = getframe;
end

0.5

,3));

Inhomogeneous Heat Equation on Square Domain

0.9

1~ 0.8
0.8 4 o7
0.6 - 0.6

To play the animation, use the movie(Mv, 1) command.

3-253

3 Solving PDEs

Heat Distribution in Circular Cylindrical Rod

3-254

This example shows how to simplify a 3-D axisymmetric thermal problem to a 2-D problem using the
symmetry around the axis of rotation of the body.

This example analyzes heat transfer in a rod with a circular cross section. There is a heat source at
the bottom of the rod and a fixed temperature at the top. The outer surface of the rod exchanges heat
with the environment because of convection. In addition, the rod itself generates heat because of
radioactive decay. The goal is to find the temperature in the rod as a function of time.

The model geometry, material properties, and boundary conditions must all be symmetric about the
axis of rotation. The toolbox assumes that the axis of rotation is the vertical axis passing through r =
0.

Steady-State Solution

First, compute the steady-state solution. If the final time in the transient analysis is sufficiently large,
the transient solution at the final time must be close to the steady state solution. By comparing these
two results, you can check the accuracy of the transient analysis.

Create a steady-state thermal model for solving an axisymmetric problem.

thermalModelS = createpde('thermal', 'steadystate-axisymmetric');

The 2-D model is a rectangular strip whose x-dimension extends from the axis of symmetry to the
outer surface and y-dimension extends over the actual length of the rod (from -1.5 m to 1.5 m).
Create the geometry by specifying the coordinates of its four corners.

g = decsg([3 400 .2 .2 -1.51.51.5 -1.51");
Include the geometry in the model.
geometryFromEdges (thermalModelS,g);

Plot the geometry with the edge labels.

figure

pdegplot(thermalModelS, 'EdgelLabels', 'on"')
axis equal

Heat Distribution in Circular Cylindrical Rod

1.5 (E2
4
051 1
= =)
05F 1
AF T
-1.5 B
0 0.2

The rod is composed of a material with these thermal properties.

k = 40; % Thermal conductivity, W/(m*C)
rho = 7800; % Density, kg/m”"3
cp = 500; % Specific heat, W*s/(kg*C)

q = 20000; % Heat source, W/m"3

For a steady-state analysis, specify the thermal conductivity of the material.
thermalProperties(thermalModelS, 'ThermalConductivity', k) ;

Specify the internal heat source.

internalHeatSource(thermalModelS,q);

Define the boundary conditions. There is no heat transferred in the direction normal to the axis of
symmetry (edge 1). You do not need to change the default boundary condition for this edge. Edge 2 is
kept at a constant temperature T = 100 °C.

thermalBC(thermalModelS, 'Edge',2, 'Temperature',100);

Specify the convection boundary condition on the outer boundary (edge 3). The surrounding
temperature at the outer boundary is 100 °C, and the heat transfer coefficient is 50 W/(m -° C).

thermalBC(thermalModelS, 'Edge’,3, ...
"ConvectionCoefficient',50,...
"AmbientTemperature',100);

3-255

3 Solving PDEs

3-256

The heat flux at the bottom of the rod (edge 4) is 5000 W/m?.

thermalBC(thermalModelS, 'Edge', 4, 'HeatFlux',5000);
Generate the mesh.

msh = generateMesh(thermalModelS);
figure

pdeplot(thermalModelS)

axis equal

1.5 T T T T

0.5

-1.56 -1 0.5 0 0.5

Solve the model and plot the result.

result = solve(thermalModelS);

T = result.Temperature;

figure
pdeplot(thermalModelS, 'XYData',T, 'Contour', 'on")
axis equal

title 'Steady-State Temperature'

Heat Distribution in Circular Cylindrical Rod

Steady-State Temperature

151
180
1k 170
160

05}
150
or 140
130

05
120

Ar
110
_1 -5 i i i i i i . 1GD

0.5 0 05 15

Transient Solution

Create a transient thermal model for solving an axisymmetric problem.

thermalModelT = createpde('thermal', 'transient-axisymmetric');

Use the same geometry and mesh as for the steady-state analysis.

g = decsg([3 400 .2 .2 -1.51.51.5 -1.51");
geometryFromEdges (thermalModelT,qg);

thermalModelT.Mesh = msh;
Specify the thermal conductivity, mass density, and specific heat of the material.
thermalProperties(thermalModelT, 'ThermalConductivity', k, ...
'MassDensity',rho,...
'SpecificHeat',cp);
Specify the internal heat source and boundary conditions.
internalHeatSource(thermalModelT,q);
thermalBC(thermalModelT, 'Edge', 2, 'Temperature',100);
thermalBC(thermalModelT, 'Edge’,3, ...
"ConvectionCoefficient',50,...

"AmbientTemperature',100);
thermalBC(thermalModelT, 'Edge', 4, 'HeatFlux',b5000);

3-257

3 Solving PDEs

Specify that the Initial temperature in the rod is 0 °C.
thermalIC(thermalModelT,0);

Compute the transient solution for solution times from t = 0 to t = 50000 seconds.

tfinal = 50000;
tlist = 0:100:tfinal;
result = solve(thermalModelT,tlist);

Plot the temperature distribution at t = 50000 seconds.
T = result.Temperature;

figure
pdeplot(thermalModelT, 'XYData',T(:,end), 'Contour','on")
axis equal
title(sprintf(['Transient Temperature' ...
' at Final Time (%g seconds)'],tfinal))

Transient Temperature at Final Time (50000 seconds)

15¢ =
180
G L 170
160
05
150
or 140
130
05
120
At
110
_1.5 i i i i i i 1GD

-1.56 -1 0.5 0 0.5 1 1.5

Find the temperature at the bottom surface of the rod: first, at the center axis and then on the outer
surface.

Tcenter = interpolateTemperature(result,[0.0;-1.5],1:numel(tlist));
Touter = interpolateTemperature(result,[0.2;-1.5],1:numel(tlist));

Plot the temperature at the left end of the rod as a function of time. The outer surface of the rod is
exposed to the environment with a constant temperature of 100 °C. When the surface temperature of

3-258

Heat Distribution in Circular Cylindrical Rod

the rod is less than 100 °C, the environment heats the rod. The outer surface is slightly warmer than
the inner axis. When the surface temperature is greater than 100 °C, the environment cools the rod.
The outer surface becomes cooler than the interior of the rod.

figure

plot(tlist,Tcenter)

hold on

plot(tlist,Touter,'--")

title 'Temperature at the Bottom as a Function of Time'
xlabel 'Time, s'

ylabel 'Temperature, C'

grid on

legend('Center Axis', 'Outer Surface', 'Location', 'SouthEast')

Temperature at the Bottom as a Function of Time
ZDD T T T T T T T T T

180 | — .

160

Temperature, C
-y e, -,
=] =2} o] [=
] _ = = =

-9
=

Center Axis -
— — —Quter Surface

D i i i i i i i i i
0 0.5 1 1.5 2 2.5 3 3.5 L 4.5 5

Time, s x10°

20 F,

3-259

3 Solving PDEs

Thermal Analysis of Disc Brake

3-260

This example analyses the temperature distribution of a disc brake. Disc brakes absorb the
translational mechanical energy through friction and transform it into the thermal energy, which then
dissipates. The transient thermal analysis of a disc brake is critical because the friction and braking
performance decreases at high temperatures. Therefore, disc brakes must not exceed a given
temperature limit during operation.

This example simulates the disc behavior in two steps:

* Perform a highly detailed simulation of the brake pad moving around the disc. Because the
computational cost is high, this part of the example only simulates one half revolution (25 ms).

* Simulate full braking when the car goes from 100 km/h to 0 km/h in 2.75 seconds, and then
remains stopped for 2.25 more seconds in order to allow the heat in the disc to dissipate.

The example uses a vehicle model in Simscape Driveline™ to obtain the time dependency of the
dissipated power.

Point Heat Source Moving Around the Disc

Simulate a circular brake pad moving around the disc. This detailed simulation over a short timescale
models the heat source as a point moving around the disc.

First, create a thermal transient model.

model = createpde('thermal', 'transient');
Import the disc geometry.
importGeometry(model, 'brake disc.stl');
Plot the geometry with the face labels.

figure

pdegplot(model, 'FacelLabels', 'on');
view([-5 -47])

Thermal Analysis of Disc Brake

0.1 0.1 g2 0.25 3

Generate a fine mesh with a small target maximum element edge length. The resulting mesh has
more than 130000 nodes (degrees of freedom).

generateMesh(model, 'Hmax',0.005);
Plot the mesh.
figure

pdemesh(model)
view([0,90])

3-261

3 Solving PDEs

3-262

Specify the thermal properties of the material.
thermalProperties(model, 'ThermalConductivity',100,
‘MassDensity', 8000,
'SpecificHeat',500);
Specify the boundary conditions. All the faces are exposed to air, so there will be free convection.
thermalBC(model, 'Face',l:model.Geometry.NumFaces,

'ConvectionCoefficient', 10,
'AmbientTemperature',30);

Model the moving heat source by using a function handle that defines the thermal load as a function
of space and time. For the definition of the movingHeatSource function, see the Heat Source
Functions section at the bottom of this page.

thermalBC(model, 'Face', 11, 'HeatFlux',@movingHeatSource);
thermalBC(model, 'Face',4, 'HeatFlux',@movingHeatSource);

Specify the initial temperature.
thermalIC(model,30);
Solve the model for the time steps from 0 to 25 ms.

tlist = linspace(0,0.025,100); % Half revolution
R1 = solve(model, tlist);

Thermal Analysis of Disc Brake

Plot the temperature distribution at 25 ms.

figure('units', 'normalized', 'outerposition',[0 0 1 1])
pdeplot3D(model, 'ColorMapData',R1l.Temperature(:,end))

The animation function visualizes the solution for all time steps. To play the animation, use this
command:

animation(model,R1)

Because the heat diffusion time is much longer than the period of a revolution, you can simplify the
heat source for the long simulation.

Static Ring Heat Source

Now find the disc temperatures for a longer period of time. Because the heat does not have time to
diffuse during a revolution, it is reasonable to approximate the heat source with a static heat source
in the shape of the path of the brake pad.

Compute the heat flow applied to the disc as a function of time. To do this, use a Simscape Driveline™
model of a four-wheeled, 2000 kg vehicle that brakes from 100 km/h to 0 km/h in approximately 2.75
S.

driveline model = 'DrivelineVehicle isothermal’;
open_system(driveline model);

3-263

3 Solving PDEs

3-264

fx)=0 o]

>

1
|

©
> 1re o]

/R~
I |w (-l:rT
@J @J
©| |
4NR%$
QNF%ﬁv
-]

=] J
=
M = 2000; % kg
VO = 27.8; % m/s, which is around 100 km/h
P = 277; % bar

simOut = sim(driveline model);

heatFlow = simOut.simlog.Heat Flow Rate Sensor.Q.series.values;
tout = simOut.tout;

Obtain the time-dependent heat flow by using the results from the Simscape Driveline model.

drvln = struct();
drvln.tout = tout;
drvln.heatFlow = heatFlow;

Generate a mesh.

generateMesh(model);

Specify the boundary condition as a function handle. For the definition of the ringHeatSource
function, see the Heat Source Functions section at the bottom of this page.

thermalBC(model, 'Face', 11,
'"HeatFlux',@(r,s)ringHeatSource(r,s,drvln));

thermalBC(model, 'Face',4,
'"HeatFlux',@(r,s)ringHeatSource(r,s,drvln));

Thermal Analysis of Disc Brake

Solve the model for times from 0 to 5 seconds.

tlist = linspace(0,5,250);
R2 = solve(model, tlist);

Plot the temperature distribution at the final time step t = 5 seconds.

figure('units', 'normalized’, 'outerposition',[0 0 1 1])
pdeplot3D(model, 'ColorMapData',R2.Temperature(:,end))

44

42

N

The animation function visualizes the solution for all time steps. To play the animation, use the
following command:

animation(model,R2)

Find the maximum temperature of the disc. The maximum temperature is low enough to ensure that
the braking pad performs as expected.

Tmax

max (max (R2.Temperature))

Tmax 52.2895

Heat Source Functions for Moving and Static Heat Sources
function F = movingHeatSource(region,state)

% Parameters ---------

3-265

3 Solving PDEs

3-266

R = 0.115; % Distance from center of disc to center of braking pad
r = 0.025; % Radius of braking pad

xc = 0.15; % x-coordinate of center of disc

yc = 0.15; % y-coordinate of center of disc

T =0.05; % Period of 1 revolution of disc
power = 35000; % Braking power in watts

Tambient = 30; % Ambient temperature (for convection)
h = 10; % Convection heat transfer coefficient in W/m”"2*K

theta = 2*pi/T*state.time;

Xs = XC + R*cos(theta);

ys = yc + R¥sin(theta);

X = region.x;

y = region.y;

F = h*(Tambient - state.u); % Convection

if isnan(state.time)
F = nan(1,numel(x));
end
idx = (x - x5).72 + (y - ys)."2 <= r*2;
F(1,idx) = 0.5*power/(pi*r.”2); % 0.5 because there are 2 faces

end

function F

ringHeatSource(region,state,driveline)

% Parameters ---------

R = 0.115; % Distance from center of disc to center of braking pad
r = 0.025; % Radius of braking pad

xc = 0.15; % x-coordinate of center of disc

yc = 0.15; % y-coordinate of center of disc

% Braking power in watts

power = interpl(driveline.tout,driveline.heatFlow,state.time);
Tambient = 30; % Ambient temperature (for convection)

h = 10; % Convection heat transfer coefficient in W/m”"2*K

Tf = 2.5; % Time in seconds

X = region.x;
y = region.y;
F = h*(Tambient - state.u); % Convection

if isnan(state.time)
F = nan(1,numel(x));

Thermal Analysis of Disc Brake

end
if state.time < Tf
rad = sqrt((x - xc).”2 + (y - yc)."2);
idx = rad >= R-r & rad <= R+r;
area = pi*((R+r)”2 - (R-r)"2);
F(1,idx) = 0.5*power/area; % 0.5 because there are 2 faces

end

end

3-267

3 Solving PDEs

Heat Distribution in Circular Cylindrical Rod: PDE Modeler App

3-268

Solve a 3-D parabolic PDE problem by reducing the problem to 2-D using coordinate transformation.
This example uses the PDE Modeler app. For the command-line solution, see “Heat Distribution in
Circular Cylindrical Rod” on page 3-254.

Consider a cylindrical radioactive rod. Heat is continuously added at the left end of the rod, while the
right end is kept at a constant temperature. At the outer boundary, heat is exchanged with the
surroundings by transfer. At the same time, heat is uniformly produced in the whole rod due to
radioactive processes. Assuming that the initial temperature is zero leads to the following equation:

au a
pCW -V - (kVu)=gq
Here, p, C, and k are the density, thermal capacity, and thermal conductivity of the material, u is the
temperature, and q is the heat generated in the rod.

Since the problem is axisymmetric, it is convenient to write this equation in a cylindrical coordinate
system.

O3t~ warlkrar) - 2alkas) - 2 57) = @

Herer, 0, and z are the three coordinate variables of the cylindrical system. Because the problem is
axisymmetric, au/ a6 = 0.

This is a cylindrical problem, and Partial Differential Equation Toolbox requires equations to be in
Cartesian coordinates. To transform the equation to the Cartesian coordinates, first multiply both
sides of the equation by r:
ou 9 (,.0uy 9 (, .ou\ _
prCTe = arkrgr) — gz (rgz) = ar

Then define ras y and z as x:

0
pyCSE =V - (kyVu) = qy

For this example, use these parameters:

+ Density, p = 7800 kg/m3

* Thermal capacity, C = 500 W-s/kg-°C

¢ Thermal conductivity, k = 40 W/m2C

+ Radioactive heat source, ¢ = 20000 W/m3

* Temperature at the right end, T right = 100 2C

* Heat flux at the left end, HF left = 5000 W/m?

* Surrounding temperature at the outer boundary, T outer = 100 °C
» Heat transfer coefficient, h_outer = 50 W/m?-2C

To solve this problem in the PDE Modeler app, follow these steps:

1 Model the rod as a rectangle with corners in (-1.5,0), (1.5,0), (1.5,0.2), and (-1.5,0.2). Here, the x-
axis represents the z direction, and the y-axis represents the r direction.

Heat Distribution in Circular Cylindrical Rod: PDE Modeler App

pderect([-1.5,1.5,0,0.2])

Specify the boundary conditions. To do this, double-click the boundaries to open the Boundary
Condition dialog box. The PDE Modeler app requires boundary conditions in a particular form.

Thus, Neumann boundary conditions must be in the form n - (cVu) + qu = g, and Dirichlet
boundary conditions must be in the form hu = r. Also, because both sides of the equation are
multiplied by r = y, multiply coefficients for the boundary conditions by y.

* For the left end, use the Neumann condition 1 - (kVu) = HF left = 5000. Specify g =
5000*y and g = 0.

* For the right end, use the Dirichlet condition u = T right = 100. Specifyh = 1and r = 100.
* For the outer boundary, use the Neumann condition

n- (kVu) = h_outer(T outer —u) = 50(100 — u). Specify g = 50*y*100 and q = 50*y.
* The cylinder axis r = 0 is not a boundary in the original problem, but in the 2-D treatment it

has become one. Use the artificial Neumann boundary condition for the axis, n- (kVu) = 0.
Specifyg = Oandq = 0.

Specify the coefficients by selecting PDE > PDE Specification or click the PDE button on the
toolbar. Heat equation is a parabolic equation, so select the Parabolic type of PDE. Because both
sides of the equation are multiplied by r = y, multiply the coefficients by y and enter the
following values: ¢ = 40*y,a = 0, f = 20000*y,andd = 7800*500*y.

Initialize the mesh by selecting Mesh > Initialize Mesh.

Set the initial value to 0, the solution time to 20000 seconds, and compute the solution every 100
seconds. To do this, select Solve > Parameters. In the Solve Parameters dialog box, set time to
0:100:20000, and u(t,) to 0.

Solve the equation by selecting Solve > Solve PDE or clicking the = button on the toolbar.

Plot the solution, using the color and contour plot. To do this, select Plot > Parameters and
choose the color and contour plots in the resulting dialog box.

3-269

3 Solving PDEs

4| PDE Medeler - [Untitled] =N =R

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help

|:|| [+ Ol ®| E | li}y; | PDE| //_‘\lﬁl - |%| ®\| Generic Scalar 7“ 1283 ¥ 08873 ‘
Set formula:

R1

Time=20000 Color:u
T

1 T T T T
170
08r 1
160
06 B
04 N 150
0.2 !
, 1L
02 : 120
L4 1
120
L6 1
110
L8 1
4 I I I I I 100
-1.5 -1 -0.5 [} 0.5 1 15

Info: Select a new plot, or change mode to alter PDE, mesh, or boundarigs.

You can explore the solution by varying the parameters of the model and plotting the results. For
example, you can:

* Show the solution when u does not depend on time, that is, the steady state solution. To do this,
open the PDE Specification dialog box, and change the PDE type to Elliptic. The resulting steady
state solution is in close agreement with the transient solution at 20000 seconds.

* Show the steady state solution without cooling on the outer boundary: the heat transfer coefficient
is zero. To do this, set the Neumann boundary condition at the outer boundary (the top side of the
rectangle) tog = 0 and q = 0. The resulting plot shows that the temperature rises to more than
2500 on the left end of the rod.

3-270

Wave Equation on Square Domain

Wave Equation on Square Domain

This example shows how to solve the wave equation using the solvepde function.

The standard second-order wave equation is

To express this in toolbox form, note that the solvepde function solves problems of the form

m— —V-(cVu)+au=f.
at

So the standard wave equation has coefficients m=1,c=1,a =0, and f = 0.

3 -0 0O
[L | ||
koKl

Solve the problem on a square domain. The squareg function describes this geometry. Create a
model object and include the geometry. Plot the geometry and view the edge labels.

numberOfPDE = 1;

model = createpde(numberOfPDE);
geometryFromEdges (model,@squareqg) ;
pdegplot(model, 'EdgelLabels', 'on');
ylim([-1.1 1.1]1);

axis equal

title 'Geometry With Edge Labels Displayed';
xlabel x

ylabel y

3-271

3 Solving PDEs

3-272

Geometry With Edge Labels Displayed

1 E1

0.8]

04r T

> (B4 B2

Specify PDE coefficients.
specifyCoefficients(model, 'm',m,'d',0,'c',c,'a',a,'f', f);

Set zero Dirichlet boundary conditions on the left (edge 4) and right (edge 2) and zero Neumann
boundary conditions on the top (edge 1) and bottom (edge 3).

applyBoundaryCondition(model, 'dirichlet"', 'Edge',[2,4],'u',0);
applyBoundaryCondition(model, 'neumann', 'Edge', ([1 31),'g"',0);
Create and view a finite element mesh for the problem.

generateMesh(model);
figure
pdemesh(model) ;
ylim([-1.1 1.11);
axis equal

xlabel x

ylabel y

Wave Equation on Square Domain

T AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
I PV AYAVAVAVAVAVAVAVAVAVAVAVAVAVAN M %
0.8 S Y AVAVAVAVAVAVAVAVAVAVAVAVAY e
s \AVAVAVAVAVAVAVAVAVAVAY I 25 P
06 r s OV AVAYAVAVAVAVAVAVAVAY b
O O TAVAVAVAVAVAVA gy X
S B %5 %5 Y AVAVAVAVAVAN Zavg g 0
O O AAAY i
02} <KPKIKISBEOC KKK
SISKIKIKISK KKK
KKK N DK
~ op KORRIIRIERONOEIERIRIRE
 EREREREDOORAIKIRIERS
0 O AVAVAVAVA) 00 U
ost PRKISOOOONK KRR
| s O AVAYAVAVAVAVAVAYANA, by SO
o6h s AVAVAVAVAVAVAVAVAVAY. Wb P
' RO O VaVAVAVAVAVAVAVAVAVAYA 20
sl R VAVAVAVAVAVAVAVAVAVAVAVAVAVA S
| AR
b

Set the following initial conditions:
’ u(x,0) = arctan(cos(%)).

* Ju

A = BSin(Hx)exp(sin(%)).

ud = @(location) atan(cos(pi/2*location.x));
utd® = @(location) 3*sin(pi*location.x).*exp(sin(pi/2*location.y));
setInitialConditions(model,u@,ut0);

This choice avoids putting energy into the higher vibration modes and permits a reasonable time step
size.

Specify the solution times as 31 equally-spaced points in time from 0 to 5.

n = 31;
tlist = linspace(0,5,n);

Set the SolverOptions.ReportStatistics of modelto 'on'.

model.SolverOptions.ReportStatistics ='on';
result = solvepde(model, tlist);

459 successful steps

38 failed attempts
993 function evaluations

3-273

3 Solving PDEs

1 partial derivatives
114 LU decompositions
992 solutions of linear systems

u = result.NodalSolution;

Create an animation to visualize the solution for all time steps. Keep a fixed vertical scale by first
calculating the maximum and minimum values of u over all times, and scale all plots to use those 2-
axis limits.

figure
umax = max(max(u));
umin = min(min(u));

for i = 1:n
pdeplot(model, 'XYData',u(:,i), 'ZData',u(:,1i),
'ZStyle', 'continuous', 'Mesh','off');
axis([-1 1 -1 1 umin umax]);
caxis([umin umax]);

xlabel x

ylabel y

zlabel u

M(i) = getframe;

end

2.5
2
1.5
1
0.5

3
0
0.5
-1
-1.5
-2

To play the animation, use the movie (M) command

3-274

Wave Equation on Square Domain: PDE Modeler App

Wave Equation on Square Domain: PDE Modeler App

This example shows how to solve a wave equation for transverse vibrations of a membrane on a
square. The membrane is fixed at the left and right sides, and is free at the upper and lower sides.
This example uses the PDE Modeler app. For a programmatic workflow, see “Wave Equation on
Square Domain” on page 3-271.

A wave equation is a hyperbolic PDE:

2
IU_pAu=0

ot?
To solve this problem in the PDE Modeler app, follow these steps:

1 Open the PDE Modeler app by using the pdeModeler command.
2 Display grid lines by selecting Options > Grid.

3 Align new shapes to the grid lines by selecting Options > Snap.
4

Draw a square with the corners at (-1,-1), (-1,1), (1,1), and (1,-1). To do this, first click the D
button. Then click one of the corners using the right mouse button and drag to draw a square.
The right mouse button constrains the shape you draw to be a square rather than a rectangle.

You also can use the pderect function:

pderect([-1 1 -1 1])
Check that the application mode is set to Generic Scalar.

a0
Specify the boundary conditions. To do this, switch to boundary mode by clicking the
button or selecting Boundary > Boundary Mode. Select the left and right boundaries. Then
select Boundary > Specify Boundary Conditions and specify the Dirichlet boundary condition
u = 0. This boundary condition is the default one (h = 1, r = 0), so you do not need to change
it.

For the bottom and top boundaries, set the Neumann boundary condition du/on = 0. To do this,
setg = 0,q = 0.

7 Specify the coefficients by selecting PDEPDE Specification or clicking the PDE button on the
toolbar. Select the Hyperbolic type of PDE, and specifyc = 1,a = 0, f = 0,andd = 1.

8 Initialize the mesh by selecting Mesh > Initialize Mesh. Refine the mesh by selecting Mesh >
Refine Mesh.

9 Set the solution times. To do this, select Solve > Parameters. Create linearly spaced time vector
from 0 to 5 seconds by setting the solution time to linspace(0,5,31).

10 [n the same dialog box, specify initial conditions for the wave equation. For a well-behaved
solution, the initial values must match the boundary conditions. If the initial time is t = 0, then
the following initial values that satisfy the boundary conditions: atan(cos(pi/2*x)) for u(0)
and 3*sin(pi*x).*exp(sin(pi/2*y)) for ou/at,

The inverse tangent function and exponential function introduce more modes into the solution.

3-275

3 Solving PDEs

"4 Solve Parameters EI@

Time:

linzpace(d,531)

uith):

atan{cos(pif2*x)}

u't0):

I*=in(pi*=}. *exp(sin(pi2*y)}
Relative tolerance:

.M

Abszolute tolerance:

0.0

0K | | Cancel

11 Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. The app
solves the heat equation at times from 0 to 5 seconds and displays the result at the end of the
time span.

12 Visualize the solution as a 3-D static and animated plots. To do this:

Select Plot > Parameters.
In the resulting dialog box, select the Color and Height (3-D plot) options.

¢ To visualize the dynamic behavior of the wave, select Animation in the same dialog box. If
the animation progress is too slow, select the Plot in x-y grid option. An x-y grid can speed
up the animation process significantly.

3-276

Wave Equation on Square Domain: PDE Modeler App

Time=5 Color: u Height: u

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.8

-0.8

3-277

3 Solving PDEs

Eigenvalues and Eigenmodes of L-Shaped Membrane

This example shows how to calculate eigenvalues and eigenvectors. The eigenvalue problem is
—Au = Au. This example computes all eigenmodes with eigenvalues smaller than 100.

Create a model and include this geometry. The geometry of the L-shaped membrane is described in
the file Lshapeg.

model = createpde();
geometryFromEdges (model,@lshapeg);

Set zero Dirichlet boundary conditions on all edges.

applyBoundaryCondition(model, 'dirichlet’,
'"Edge',1l:model.Geometry.NumEdges,
‘u',0);

Specify the coefficients for the problem: d = 1 and ¢ = 1. All other coefficients are equal to zero.
specifyCoefficients(model, 'm',0,'d',1,'c',1,'a"',0,'f",0);

Set the interval [0 100] as the region for the eigenvalues in the solution.

r=1[0 100];

Create a mesh and solve the problem.

generateMesh(model, 'Hmax',0.05);
results = solvepdeeig(model,r);

Basis= 10, Time=
Basis= 11, Time=
Basis= 12, Time=
Basis= 13, Time=
Basis= 14, Time=
Basis= 15, Time=
Basis= 16, Time=
Basis= 17, Time=
Basis= 18, Time=
Basis= 19, Time=
Basis= 20, Time=
Basis= 21, Time=
Basis= 22, Time=
Basis= 23, Time=
Basis= 24, Time=
Basis= 25, Time=
Basis= 26, Time=
Basis= 27, Time=
Basis= 28, Time=
Basis= 29, Time=
Basis= 30, Time=
Basis= 31, Time=

.56, New conv eig=
.62, New conv eig=
.66, New conv eig=
.78, New conv eig=
.78, New conv eig=
.84, New conv eig=
.84, New conv eig=
.84, New conv eig=
.91, New conv eig=
.91, New conv eig=
.98, New conv eig=
.98, New conv eig=
.09, New conv eig=
.09, New conv eig=
.17, New conv eig=
.41, New conv eig=
.48, New conv eig=
.53, New conv eig=
.53, New conv eig=
.53, New conv eig=
.72, New conv eig=
.72, New conv eig=

=
ONNOOOUUP,RWWRRFRFPRPPRPOOOOOOOO

NNHRRHRRRPHRERRPHRRERFRPHEPRPHERFEPOOODOODOOODOOOO®

Basis= 32, Time= .77, New conv eig= 10
Basis= 33, Time= .77, New conv eig= 11
Basis= 34, Time= .86, New conv eig= 11
Basis= 35, Time= .97, New conv eig= 14
Basis= 36, Time= .06, New conv eig= 14
Basis= 37, Time= .06, New conv eig= 14

3-278

Eigenvalues and Eigenmodes of L-Shaped Membrane

Basis= 38, Time=
Basis= 39, Time=
Basis= 40, Time=
Basis= 41, Time=
Basis= 42, Time=
Basis= 43, Time=
Basis= 44, Time=
Basis= 45, Time=
Basis= 46, Time=
Basis= 47, Time=
Basis= 48, Time=
Basis= 49, Time=
Basis= 50, Time=
Basis= 51, Time=
Basis= 52, Time=
Basis= 53, Time=
Basis= 54, Time=
End of sweep: Basis= 54, Time=
Basis= 31, Time=
Basis= 32, Time=
Basis= 33, Time=
End of sweep: Basis= 33, Time=

.12, New conv
.31, New conv
.31, New conv
.45, New conv
.45, New conv
.47, New conv
.47, New conv
.48, New conv
.48, New conv
.50, New conv
.50, New conv
.56, New conv
.66, New conv
.66, New conv
.80, New conv
.80, New conv
.05, New conv
.05, New conv
.25, New conv
.25, New conv
.27, New conv
.27, New conv

WWWWWWNNNNNNNNNNNNNNNN

There are 19 eigenvalues smaller than 100.
length(results.Eigenvalues)

ans = 19

Plot the first eigenmode and compare it to the MATLAB's membrane function.

u = results.Eigenvectors;
pdeplot(model, 'XYData',u(:,1),'ZData"',u(:,1));

eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=
eig=

14
14
14
15
15
15
16
16
16
16
17
18
18
18
18
18
21
21

0

0

0

0

3-279

3 Solving PDEs

3-280

0.03 - 0.025
0.025 J
0.0z
0.02-
0.015 4
0.015
0.01 -
0.005 J wor
0
1
0.005
0

figure
membrane(1,20,9,9)

Eigenvalues and Eigenmodes of L-Shaped Membrane

e

7y,
gy Ay
SIS
£ A
et ¢t

Eigenvectors can be multiplied by any scalar and remain eigenvectors. This explains the difference in
scale that you see.

membrane can produce the first 12 eigenfunctions for the L-shaped membrane. Compare the 12th
eigenmodes.

figure
pdeplot(model, 'XYData',u(:,12), " 'ZData',u(:,12));

3-281

3 Solving PDEs

3-282

figure
membrane(12,20,9,9)

0.03

.02

0.01

-0.01

-0.02

-0.03

-0.04

Eigenvalues and Eigenmodes of L-Shaped Membrane

3-283

3 Solving PDEs

Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE
Modeler App

3-284

This example shows how to compute all eigenmodes with eigenvalues smaller than 100 for the
eigenmode PDE problem

-Au = Au

on the geometry of the L-shaped membrane. The boundary condition is the Dirichlet condition u = 0.
This example uses the PDE Modeler app. For a programmatic workflow, see “Eigenvalues and
Eigenmodes of L-Shaped Membrane” on page 3-278.

To solve this problem in the PDE Modeler app, follow these steps:

1

Draw a polygon with the corners (0,0), (-1,0), (-1,-1), (1,-1), (1,1), and (0,1) by using the
pdepoly function.

pdepoly(lo,-1,-1,1,1,0],[0,0,-1,-1,1,1])
Check that the application mode is set to Generic Scalar.

Use the default Dirichlet boundary condition u = 0 for all boundaries. To verify it, switch to
boundary mode by selecting Boundary > Boundary Mode. Use Edit > Select all to select all
boundaries. Select Boundary > Specify Boundary Conditions and verify that the boundary
condition is the Dirichlet condition withh = 1, r = 0.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. This is an eigenvalue problem, so select the Eigenmodes type of PDE. The general
eigenvalue PDE is described by —V - (cVu) + au = Adu. Thus, for this problem, use the default
coefficientsc = 1,a = 0,andd = 1.

Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size value to 0.05.

Initialize the mesh by selecting Mesh > Initialize Mesh.

Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, use
the default eigenvalue range [0 100].

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. By
default, the app plots the first eigenfunction.

Eigenvalues and Eigenmodes of L-Shaped Membrane: PDE Modeler App

File

Edit Options Draw Boundary PDE

Mesh Solve Plot Window Help

O @

O|®| B |39|PDE|&|4@| = |'@|®\||Generic5cmﬂr

,]" X 1.309

Y: 0.9074 |

Set formula:

‘P1

Lambda(1)=9.6805 Color: u

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

-0.045

Info:

19 eigenvalues found. Use Plot Selection dialog box to select higher eigenmodes.

[e |

9 Plot other eigenfunctions by selecting Plot > Parameters and then selecting the corresponding
eigenvalue from the drop-down list at the bottom of the dialog box. For example, plot the fifth
eigenfunction in the specified range.

3-285

3 Solving PDEs

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help

|:|| Ea Q|@| = |3Q|PDE|&|&| = |@|(E‘.l\||eene”c5,:ahir ,]" X 05872 Y. 09211 |

Set formula:

E |

Lambda(12)=71.7178 Color: u
T

1
0.8 0.04
0.6
0.02
0.4
0.2 0
0
02 -0.02
04
-0.04
086
08 -0.06

Info: PDE solution plotted.

3-286

L-Shaped Membrane with Rounded Corner: PDE Modeler App

L-Shaped Membrane with Rounded Corner: PDE Modeler App

This example shows how to compute all eigenvalues smaller than 100 and their corresponding
eigenvectors. Consider the eigenvalue problem

-Au = Au

on an L-shaped membrane with a rounded inner corner. The boundary condition is the Dirichlet
condition u = 0.

To solve this problem in the PDE Modeler app, follow these steps:

1

10

11

Draw an L-shaped membrane as a polygon with the corners (0,0), (-1,0), (-1,-1), (1,-1), (1,1), and
(0,1) by using the pdepoly function.

pdepoly ([0 -1 -1 11 0],[06 0 -1 -11 1])

Draw a circle and a square as follows.

pdecirc(-0.5,0.5,0.5,'C1")

pderect([-0.5 0 0.5 0],'SQ1")

Model the geometry with the rounded corner by entering P1+5Q1-C1 in the Set formula field.
Check that the application mode is set to Generic Scalar.

Remove unnecessary subdomain borders by selecting Boundary > Remove All Subdomain
Borders.

Use the default Dirichlet boundary condition u = 0 for all boundaries. To check the boundary
condition, switch to boundary mode by selecting Boundary > Boundary Mode. Use Edit >
Select all to select all boundaries. Select Boundary > Specify Boundary Conditions and

verify that the boundary condition is the Dirichlet condition withh = 1, r = 0.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. This is an eigenvalue problem, so select the Eigenmodes as the type of PDE. The

general eigenvalue PDE is described by —V - (cVu) + au = Adu. Thus, for this problem, use the
default coefficients c = 1,a = 0,andd = 1.

Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size value to 0.05.

Initialize the mesh by selecting Mesh > Initialize Mesh.

Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box, use
the default eigenvalue range [0 100].

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. By
default, the app plots the first eigenfunction as a color plot.

3-287

3 Solving PDEs

Lambda(1)=8.4159 Color: u

0.8

06

0.2

0.4

06

08

-1
-1.5 -1

12 Plot the same eigenfunction as a contour plot. To do this:

-0.5

0

a Select Plot > Parameters.

b Clear the Color option and select the Contour option.

3-288

0.045

0.04

0.035

0.03

0.025

0.0z

0.015

0.01

0.005

L-Shaped Membrane with Rounded Corner: PDE Modeler App

Lambda(1)=8.4159 Contour: u
T T T

0.6

0.4

0.2

0.6

0.8

-1

1.8

0.045

0.04

0.035

0.03

0.025

n.0z

0.015

0.01

0.005

3-289

3 Solving PDEs

Eigenvalues and Eigenmodes of Square

This example shows how to compute the eigenvalues and eigenmodes of a square domain.

The eigenvalue PDE problem is —Au = Au. This example finds the eigenvalues smaller than 10 and
the corresponding eigenmodes.

Create a model. Import and plot the geometry. The geometry description file for this problem is called
squareg.m.

model = createpde();
geometryFromEdges (model,@squareg) ;

pdegplot(model, 'EdgelLabels', 'on')
ylim([-1.5,1.5])
axis equal

1.5

0.5 T

Specify the Dirichlet boundary condition u = 0 for the left boundary.
applyBoundaryCondition(model, 'dirichlet', 'Edge',4,'u',0);

Specify the zero Neumann boundary condition for the upper and lower boundary.
applyBoundaryCondition(model, 'neumann', 'Edge',[1,3]1,'9',0,'q',0);

Specify the generalized Neumann condition g—z - %u = (for the right boundary.

3-290

Eigenvalues and Eigenmodes of Square

applyBoundaryCondition(model, '‘neumann', 'Edge',2,'qg"',0,'q"',-3/4);

The eigenvalue PDE coefficients for this problem are ¢ = 1, a = 0, and d = 1. You can enter the
eigenvalue range r as the vector [-Inf 10].

specifyCoefficients(model, 'm',0,'d',1,'c',1,'a"',0,'f",0);
r = [-Inf,10];

Create a mesh and solve the problem.

generateMesh(model, 'Hmax',0.05);
results = solvepdeeig(model,r);

Basis= 10, Time=
Basis= 11, Time=
Basis= 12, Time=
Basis= 13, Time=
Basis= 14, Time=
Basis= 15, Time=
Basis= 16, Time=
Basis= 17, Time=
Basis= 18, Time=
Basis= 19, Time=
Basis= 20, Time=
Basis= 21, Time=
Basis= 22, Time=
Basis= 23, Time=
Basis= 24, Time=
End of sweep: Basis= 24, Time=
Basis= 13, Time=
Basis= 14, Time=
Basis= 15, Time=
Basis= 16, Time=
Basis= 17, Time=
Basis= 18, Time=
Basis= 19, Time=
Basis= 20, Time=
Basis= 21, Time=
Basis= 22, Time=
Basis= 23, Time=
End of sweep: Basis= 23, Time=
Basis= 13, Time=
End of sweep: Basis= 13, Time=
Basis= 14, Time=
Basis= 15, Time=
Basis= 16, Time=
Basis= 17, Time=
Basis= 18, Time=
Basis= 19, Time=
Basis= 20, Time=
Basis= 21, Time=
Basis= 22, Time=
Basis= 23, Time=
End of sweep: Basis= 23, Time=
Basis= 14, Time=
End of sweep: Basis= 14, Time=
Basis= 15, Time=
Basis= 16, Time=

.33, New conv eig=
.36, New conv eig=
.38, New conv eig=
.38, New conv eig=
.44, New conv eig=
.47, New conv eig=
.53, New conv eig=
.61, New conv eig=
.66, New conv eig=
.69, New conv eig=
.81, New conv eig=
.92, New conv eig=
.97, New conv eig=
.08, New conv eig=
.09, New conv eig=
.27, New conv eig=
.50, New conv eig=
.62, New conv eig=
.62, New conv eig=
.62, New conv eig=
.77, New conv eig=
.86, New conv eig=
.95, New conv eig=
.95, New conv eig=
.03, New conv eig=
.03, New conv eig=
.09, New conv eig=
.27, New conv eig=
.62, New conv eig=
.69, New conv eig=
.00, New conv eig=
.14, New conv eig=
.19, New conv eig=
.31, New conv eig=
.39, New conv eig=
.59, New conv eig=
.59, New conv eig=
.66, New conv eig=
.77, New conv eig=
.86, New conv eig=
.86, New conv eig=
.11, New conv eig=
.16, New conv eig=
.39, New conv eig=
.39, New conv eig=

VUUURARARRDNDRARALERERDRNDPWWWWWWNNNNNNNNNNNRRHRHRRERRRRRRRRRP
PO HOHOOOPOOOCOOOHHRONHOOOOOOOOOWORNWWNNNRRHERREROO®

3-291

3 Solving PDEs

3-292

Basis= 17, Time= 5.50, New conv eig=
End of sweep: Basis= 17, Time= 5.50, New conv eig=

There are six eigenvalues smaller than 10 for this problem.

1 results.Eigenvalues

1 = 5x1

-0.4146
2.0528
4.8019
7.2693
9.4550

Plot the first and last eigenfunctions in the specified range.

u = results.Eigenvectors;
pdeplot(model, 'XYData',u(:,1));

pdeplot(model, 'XYData',u(:,length(1l)));

0
0

-0.002

-0.004

-0.006

-0.008

-0.01

-0.012

-0.014

-0.018

-0.018

-0.02

Eigenvalues and Eigenmodes of Square

0.03

0.02

0.01

=

-0.01

-0.02

-0.03

This problem is separable, meaning

u(x, y) = fx)g(y).

The functions fand g are eigenfunctions in the x and y directions, respectively. In the x direction, the
first eigenmode is a slowly increasing exponential function. The higher modes include sinusoids. In
the y direction, the first eigenmode is a straight line (constant), the second is half a cosine, the third
is a full cosine, the fourth is one and a half full cosines, etc. These eigenmodes in the y direction are
associated with the eigenvalues

o 1 4 o
4747 4

It is possible to trace the preceding eigenvalues in the eigenvalues of the solution. Looking at a plot
of the first eigenmode, you can see that it is made up of the first eigenmodes in the x and y directions.
The second eigenmode is made up of the first eigenmode in the x direction and the second eigenmode
in the y direction.

Look at the difference between the first and the second eigenvalue compared to m2/4:
1(2) - U(1) - pit2/4
ans = 1.6751e-07

Likewise, the fifth eigenmode is made up of the first eigenmode in the x direction and the third
eigenmode in the y direction. As expected, 1(5)-1(1) is approximately equal to m*:

3-293

3 Solving PDEs

1(5) - (1) - pi~2
ans = 6.2135e-06

You can explore higher modes by increasing the search range to include eigenvalues greater than 10.

3-294

Eigenvalues and Eigenmodes of Square: PDE Modeler App

Eigenvalues and Eigenmodes of Square: PDE Modeler App

This example shows how to compute the eigenvalues and eigenmodes of a square with the corners
(-1,-1), (-1,1), (1,1), and (1,-1). This example uses the PDE Modeler app. For programmatic workflow,
see “Figenvalues and Eigenmodes of Square” on page 3-290.

The eigenvalue PDE problem is —Au = Au. Find the eigenvalues smaller than 10 and the
corresponding eigenmodes.

To solve this problem in the PDE Modeler app, follow these steps:

1

Draw a square with the corners (-1,-1), (-1,1), (1,1), and (1,-1) by using the pderect function.

pderect([-1 1 -1 1])

Check that the application mode is set to Generic Scalar.

Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Double-click the boundary to specify the boundary condition.

* Specify the Dirichlet condition u = 0 for the left boundary. To do this, specifyh = 1, r = 0.

Specify the Neumann condition g—z = (for the upper and lower boundary. To do this, specify g
=0,q = 0.
Specify the generalized Neumann condition g—z - %u = (for the right boundary. To do this,

specifyg = 0,q = -3/4.

Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. This is a eigenvalue problem, so select the Eigenmodes type of PDE. The general
eigenvalue PDE is described by —V - (cVu) + au = Adu. Thus, for this problem, the coefficients
arec = 1l,a = 0,andd = 1.

Specify the maximum edge size for the mesh by selecting Mesh > Parameters. Set the
maximum edge size value to 0.05.

Initialize the mesh by selecting Mesh > Initialize Mesh.

Specify the eigenvalue range by selecting Solve > Parameters. In the resulting dialog box,
enter the eigenvalue range as the MATLAB vector [-Inf 10].

Solve the PDE by selecting Solve > Solve PDE or clicking the = button on the toolbar. By
default, the app plots the first eigenfunction.

3-295

3 Solving PDEs

-1.5 -1 -0.5 0

0.5

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
Ol |] O|@| 2 | o0 | PDElﬂl ﬁl = |@|®\||Generic5calar e
Set formula: ‘501 ‘
; Lambda(1)=-0.41461 Color: u 0
0.8 7
-0.005
0.6 .
-0.01
0.4 4
02 1 0015
n -
-0.02
02 7
04 E -0.025
086 7
-0.03
08 .
-0.035

1.5

Info:

5 eigenvalues found. Use Plot Selection dialog box to select higher eigenmodes.

3-296

9 Plot other eigenfunctions by selecting Plot > Parameters and then selecting the corresponding
eigenvalue from the drop-down list at the bottom of the dialog box. For example, plot the last
eigenfunction in the specified range.

Eigenvalues and Eigenmodes of Square: PDE Modeler App

File Edit Options Draw Boundary PDE Mesh Solve Plot Window Help
|:||] O|@| 2 |39|PDE|Q|4@| = |@|®\||Generic5calar v]" b8 i e L
Set formula: ‘501 ‘
Lambda(5)=9.47 Color: u
1 0.05
0.8 1 0.04
0.6 7 0.03
0.4 7 0.0z
02 7 0.01
or - 0
02 . -0.01
D4 B -0.02
D6 B -0.03
08 . -0.04
-1 -0.05
-1.5 -1 -0.5 0 0.5 1.5
Info: 5 eigenvalues found. Use Plot Selection dialog box to select higher eigenmodes.

10 Export the eigenfunctions and eigenvalues to the MATLAB workspace by using the Solve >
Export Solution.

3-297

3 Solving PDEs

Vibration of Circular Membrane

3-298

This example shows how to calculate the vibration modes of a circular membrane.

The calculation of vibration modes requires the solution of the eigenvalue partial differential
equation. This example compares the solution obtained by using the solvepdeeig solver from
Partial Differential Toolbox™ and the eigs solver from MATLAB®. Eigenvalues calculated by
solvepdeeig and eigs are practically identical, but in some cases one solver is more convenient
than the other. For example, eigs is more convenient when calculating a specified number of
eigenvalues in the vicinity of a particular target value. While solvepdeeig requires that a lower and
upper bound surrounding this target, eigs requires only the target eigenvalue and the desired
number of eigenvalues.

Create a PDE model.
model = createpde;

Create the circle geometry and include it in the model.

radius = 2;
g = decsg([1 0 O radius]','C1',('C1")");

geometryFromEdges (model,g);

Plot the geometry with the edge labels.
figure

pdegplot(model, 'EdgelLabels', 'on')

axis equal
title 'Geometry with Edge Labels'

Vibration of Circular Membrane

Geometry with Edge Label

- T,

- .

05

Specify the coefficients.

c = le2;

a=0;

f=0;

d = 10;

specifyCoefficients(model, 'm',0,'d',d,'c',c,'a',a,'f',f);

Specify that the solution is zero at all four outer edges of the circle.
bOuter = applyBoundaryCondition(model, 'dirichlet"', 'Edge',(1:4),'u',0);
Generate a mesh.

generateMesh(model, 'Hmax',0.2);

Use assembleFEMatrices to calculate the global finite element mass and stiffness matrices with
boundary conditions imposed using the nullspace approach.

FEMatrices = assembleFEMatrices(model, 'nullspace');
K = FEMatrices.Kc;
B = FEMatrices.B;
M = FEMatrices.M;

Solve the eigenvalue problem by using the eigs function.

3-299

3 Solving PDEs

sigma = le2;
numberEigenvalues = 5;
[eigenvectorsEigs,eigenvaluesEigs] = eigs(K,M,numberEigenvalues,sigma);

Reshape the diagonal eigenvaluesEigs matrix into a vector.
eigenvaluesEigs = diag(eigenvaluesEigs);

Find the largest eigenvalue and its index in the eigenvalues vector.
[maxEigenvaluesEigs,maxIndex] = max(eigenvaluesEigs);
Add the constraint values to get the full eigenvector.

eigenvectorskEigs = B*eigenvectorsEigs;

Now, solve the same eigenvalue problem using solvepdeeig. Set the range for solvepdeeig to be
slightly larger than the range from eigs.

r = [min(eigenvaluesEigs)*0.99 max(eigenvaluesEigs)*1.01];
result = solvepdeeig(model,r);

Basis= 10, Time=
Basis= 13, Time=
Basis= 16, Time=
Basis= 19, Time=
Basis= 22, Time=
Basis= 25, Time=
Basis= 28, Time=
End of sweep: Basis= 28, Time=
Basis= 15, Time=
End of sweep: Basis= 15, Time=

.03, New conv eig=
.06, New conv eig=
.08, New conv eig=
.12, New conv eig=
.17, New conv eig=
.20, New conv eig=
.20, New conv eig=
.20, New conv eig=
.22, New conv eig=
.22, New conv eig=

locNoNoNoNoNoNoNoNoNO]
OCOUTUTWWNNNO

eigenvectorsPde = result.Eigenvectors;
eigenvaluesPde = result.Eigenvalues;

Compare the solutions.

eigenValueDiff = sort(eigenvaluesPde) - sort(eigenvaluesEigs);
fprintf(['Max difference in eigenvalues'
" from solvepdeeig and eigs: %e\n'],
norm(eigenValueDiff,inf));

Max difference in eigenvalues from solvepdeeig and eigs: 1.989520e-13

Both functions calculate the same eigenvalues. For any eigenvalue, you can multiply the eigenvector
by an arbitrary scalar. The eigs and solvepdeeig functions might choose a different arbitrary
scalar for normalizing their eigenvectors.

h = figure;

h.Position = [1 1 2 1].*h.Position;

subplot(1,2,1)

axis equal

pdeplot(model, 'XYData',eigenvectorsEigs(:,maxIndex), 'Contour','on")

title(sprintf('eigs eigenvector, eigenvalue: %12.4e',
eigenvaluesEigs(maxIndex)))

x")

y")

1,2

’

xlabel ("'
ylabel(

subplot(,2)

3-300

Vibration of Circular Membrane

axis equal

pdeplot(model, 'XYData',eigenvectorsPde(:,end), 'Contour','on")

title(sprintf('solvepdeeig eigenvector, eigenvalue: %12.4e',
eigenvaluesPde(end)))

xlabel('x")
ylabel('y")
eigs eigenvector, eigenvalue: 1.2307e+02 solvepdeeig eigenvector, eigenvalue: 1.2307e+02
27 2
0.06 0.06
157 1.5
1t 0.04 ’ 0.04
05 0.02 05 0.02
= 0 0 = 0 0
0.5 -0.02 0.5 -0.02
A -0.04 - -0.04
1.5 -1.5
-0.06 -0.08
2 -2
X X

3-301

3 Solving PDEs

Solution and Gradient Plots with pdeplot and pdeplot3D

3-302

2-D Solution and Gradient Plots

To visualize a 2-D scalar PDE solution, you can use the pdeplot function. This function lets you plot
the solution without explicitly interpolating the solution. For example, solve the scalar elliptic
problem —Vu = 1 on the L-shaped membrane with zero Dirichlet boundary conditions and plot the
solution.

Create the PDE model, 2-D geometry, and mesh. Specify boundary conditions and coefficients. Solve
the PDE problem.

model = createpde;

geometryFromEdges (model,@lshapeg);

applyBoundaryCondition(model, 'dirichlet"’,
"Edge',1l:model.Geometry.NumEdges,

‘u',0);
c=1;
a=0;
f=1;

specifyCoefficients(model, 'm',0,'d",0,'c',c,'a',a,'f",f);
generateMesh(model) ;

results = solvepde(model);

Use pdeplot to plot the solution.

u = results.NodalSolution;

pdeplot(model, 'XYData',u, 'ZData',u, 'Mesh','on")

xlabel('x")
ylabel('y")

Solution and Gradient Plots with pdeplot and pdeplot3D

0.15 <

01
0.1 4
0.08
0.05
0.086
0 .l 0.04
1

0.02

To get a smoother solution surface, specify the maximum size of the mesh triangles by using the Hmax
argument. Then solve the PDE problem using this new mesh, and plot the solution again.

generateMesh(model, 'Hmax',0.05);
results = solvepde(model);
u = results.NodalSolution;

pdeplot (model, 'XYData',u, 'ZData',u, '"Mesh', 'on")

xlabel('x")
ylabel('y"')

3-303

3 Solving PDEs

014

0154 0.12

0.1
0.1 4

0.08

0.05
0.06

0.04

0.02

Access the gradient of the solution at the nodal locations.

results.XGradients;
results.YGradients;

ux
uy

Plot the gradient as a quiver plot.

pdeplot(model, 'FlowData', [ux,uy])

3-304

Solution and Gradient Plots with pdeplot and pdeplot3D

r R R T T
- N L] i l I] ¥ -
0.8 = = x 1 N
0.6 [- -~ - A
0471 —_—— = - o =
0.2 — - - - - =
0r i I 1 l I e - - o a— a—

b Ny

ro- A i 1 | 1 b i | BT - T T = =
L2 - - * \ i 1 \ 1\ 3 W ~ " e e e e
- = - E Y kY 5 \ Y Y - - = — -
D4 = - - - - s e
—D'E'_ — - - 1 ¥ N N, % - . - —
L. - - F r ¥]]] 1] 1 [] L L , . - —
N S A ! ro rr o L . T
L - 5t ! ! r ot [S AN A N AR R TR R S
I e ¢ v ¢t ¢ + t ¢t t t t t t t ¢ ¢ y .

3-D Surface and Gradient Plots
Obtain a surface plot of a solution with 3-D geometry and N > 1.

First, import a tetrahedral geometry to a model with N = 2 equations and view its faces.

model = createpde(2);

importGeometry(model, 'Tetrahedron.stl');
pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)
view(-40,24)

3-305

3 Solving PDEs

Create a problem with zero Dirichlet boundary conditions on face 4.
applyBoundaryCondition(model, 'dirichlet', 'Face',4,'u',[0,0]);

Create coefficients for the problem, where f = [1;10] and c is a symmetric matrix in 6N form.
[1;10];

0:

[2;0;4;1;3;8;1;0;2;1;2;4];
pecifyCoefficients(model, 'm',0,'d"',0,'c',c,'a',a," 'f',f);

w0 Y —H

Create a mesh for the solution.
generateMesh(model, 'Hmax',20);
Solve the problem.

results = solvepde(model);
u = results.NodalSolution;

Plot the two components of the solution.
pdeplot3D(model, 'ColorMapData',u(:,1))

view(-175,4)
title('u(l)"')

3-306

Solution and Gradient Plots with pdeplot and pdeplot3D

u(1)

400

350

1300

%]

figure

pdeplot3D(model, 'ColorMapData',u(:,2))
view(-175,4)

title('u(2)")

3-307

3 Solving PDEs

3-308

u(2)

14000

12000

1 10000

1 8000

1 6000

“ 4000

2000

Compute the flux of the solution and plot the results for both components.

[cgradx,cgrady,cgradz] = evaluateCGradient(results);
figure
pdeplot3D(model, 'FlowData', [cgradx(:,1) cgrady(:,1) cgradz(:,1)])

Solution and Gradient Plots with pdeplot and pdeplot3D

-

figure
pdeplot3D(model, 'FlowData', [cgradx(:,2) cgrady(:,2) cgradz(:,2)])

3-309

3 Solving PDEs

A
..... m:,- o
- . e
e i
A

L e

e

I~

3-310

2-D Solution and Gradient Plots with MATLAB® Functions

2-D Solution and Gradient Plots with MATLAB® Functions

You can interpolate the solution and, if needed, its gradient in separate steps, and then plot the
results by using MATLAB® functions, such as surf, mesh, quiver, and so on. For example, solve the
same scalar elliptic problem —Au = 1 on the L-shaped membrane with zero Dirichlet boundary
conditions. Interpolate the solution and its gradient, and then plot the results.

Create the PDE model, 2-D geometry, and mesh. Specify boundary conditions and coefficients. Solve
the PDE problem.

model = createpde;

geometryFromEdges (model,@lshapeg);

applyBoundaryCondition(model, 'dirichlet",
"Edge',1l:model.Geometry.NumEdges,

‘u',0);
c=1;
a=0;
f=1;

specifyCoefficients(model, 'm',0,'d',0,'c',c,'a',a,'f',f);
generateMesh(model, 'Hmax',0.05);
results = solvepde(model);

Interpolate the solution and its gradients to a dense grid from -1 to 1 in each direction.

v = linspace(-1,1,101);

[X,Y] = meshgrid(v);

querypoints = [X(:),Y(:)]";

uintrp = interpolateSolution(results,querypoints);

Plot the resulting solution on a mesh.

uintrp = reshape(uintrp,size(X));
mesh(X,Y,uintrp)

xlabel('x")

ylabel('y")

3-311

3 Solving PDEs

0.15
0.1
i i
ﬂﬂ “h ‘“mm mih" i
*‘ o Rﬁnﬂ‘ﬂl il Im mh i
u‘.'t'-{ﬂ 111111'%\ il ll'm i i
v \\1‘3 “‘xu s huﬂ‘mnm ummm}u}{m
| 1 mu‘t"y‘ 1{\11&1;\1\1; il 1“}‘.‘”".'#%”-'.' 0
v ‘n'lll 'I'|-]"|'1'||'I|IIl -l||,.l'|l||'|'|.'lllI ',I', -|'| '|Il1||1||'|" NS ;
0 'l,l .|1.|1|1;'|;'.1'!}'.Im. L o
L 0
y el)

Interpolate gradients of the solution to the grid from -1 to 1 in each direction. Plot the result using
quiver.

[gradx,grady] = evaluateGradient(results,querypoints);
figure

quiver(X(:),Y(:),gradx,grady)

xlabel('x")

ylabel('y"')

Zoom in to see more details. For example, restrict the range to [-0.2,0.2] in each direction.

axis([-0.2 0.2 -0.2 0.2])

3-312

2-D Solution and Gradient Plots with MATLAB® Functions

D2 T T T T T T T
0151 L
0.1 F e e
0.05 T
- D- | Sy T T -]
b E b N N
! "l. ‘\ S e e
N L T T T T T T T N T
A R T T T R T
O A T T T T T N N S T T T
L2 I o T A S O
O T T A T T T T e T T T
015k 1 1] 11 ! ! i1 L S N N T T T T
% 1 & k % % Y A" A" b i A" LY . 9 B \ Y “
¥ 1 11 ! % % Y A A1 A u A b ™ A R b = -
0.2 ' | : : . L L
02 015 01 -0.05 0 0.05 0.1 0.15 0.2
®

Plot the solution and the gradients on the same range.

figure

hl = meshc(X,Y,uintrp);

set(hl, 'FaceColor','g", 'EdgeColor','b")
xlabel('x")

ylabel('y"')

alpha(0.5)

hold on

Z = -0.05*ones(size(X));
gradz = zeros(size(gradx));

h2 = quiver3(X(:),Y(:),Z(:),gradx,grady,gradz);
set(h2, 'Color','r")
axis([-0.2,0.2,-0.2,0.2])

3-313

3 Solving PDEs

0.1 -]

0.05

Slice of the solution plot along the line x = y.

figure
mesh(X,Y,uintrp)
xlabel('x")
ylabel('y"')
alpha(0.25)

hold on

= linspace(0,0.15,101);
= meshgrid(z);
urf(X,X,Z2")

view([-20 -45 15])
colormap winter

3-314

2-D Solution and Gradient Plots with MATLAB® Functions

0.15

0.1 4

0.05 -

Plot the interpolated solution along the line.

figure
Xq = V;
yq = v;

it
il
i

T l|'|I||I|||| M
.......mm".i'.v.‘.‘\m il

S I
Ik

[l
uiu'n'n'n'u

uintrp = interpolateSolution(results,xq,yq);

plot3(xqg,yq,uintrp)
grid on

xlabel('x")
ylabel('y")

Interpolate gradients of the solution along the same line and add them to the solution plot.

[gradx,grady] = evaluateGradient(results,xq,yq);

gradx =
grady =
hold on
quiver(xq,yq,gradx,grady)
view([-20 -45 75])

reshape(gradx,size(xq));
reshape(grady,size(yq));

3-315

3 Solving PDEs

3-316

3-D Solution and Gradient Plots with MATLAB® Functions

3-D Solution and Gradient Plots with MATLAB® Functions

Types of 3-D Solution Plots Available in MATLAB

In addition to surface and gradient plots available with the PDE plotting functions, you can use
MATLAB graphics capabilities to create more types of plots for your 3-D model.

* Plot on a 2-D slice — To examine the solution on the interior of the geometry, define a 2-D grid that
intersects the geometry, and interpolate the solution onto the grid. For examples, see “2-D Slices
Through 3-D Geometry” on page 3-317 and “Contour Slices Through 3-D Solution” on page 3-320.
While these two examples show planar grid slices, you can also slice on a curved grid.

» Streamline or quiver plots — Plot the gradient of the solution as streamlines or a quiver. See
“Plots of Gradients and Streamlines” on page 3-324.

* You can use any MATLAB plotting command to create 3-D plots. See “Techniques for Visualizing
Scalar Volume Data” and “Visualizing Vector Volume Data”.

2-D Slices Through 3-D Geometry

This example shows how to obtain plots from 2-D slices through a 3-D geometry.

The problem is
au 3
E —Au = f

on a 3-D slab with dimensions 10-by-10-by-1, where u = 0 at time t = 0, boundary conditions are
Dirichlet, and

fx,y,2) =1+ y+ 1022
Set Up and Solve the PDE

Define a function for the nonlinear f coefficient in the syntax as given in “f Coefficient for
specifyCoefficients” on page 2-74.

function bcMatrix = myfffun(region,state)
bcMatrix = 1+10*region.z.”2+region.y;

Import the geometry and examine the face labels.

model = createpde;
g = importGeometry(model, 'PlatelOx10x1l.stl');
pdegplot(g, 'FaceLabels', 'on', 'FaceAlpha',0.5)

3-317

3 Solving PDEs

The faces are numbered 1 through 6.

Create the coefficients and boundary conditions.

c=1;

a=0;

d=1;

f = @myfffun;

specifyCoefficients(model, 'm',0,'d',d,'c',c,'a',a,'f',f);

applyBoundaryCondition(model, 'dirichlet', 'face',1:6,'u',0);
Set a zero initial condition.

setInitialConditions(model,0);

Create a mesh with sides no longer than 0.3.

generateMesh(model, 'Hmax',0.3);

Set times from 0 through 0.2 and solve the PDE.

tlist = 0:0.02:0.2;
results = solvepde(model,tlist);

3-318

3-D Solution and Gradient Plots with MATLAB® Functions

Plot Slices Through the Solution

Create a grid of (x,y, z) points, where x = 5, y ranges from 0 through 10, and z ranges from 0
through 1. Interpolate the solution to these grid points and all times.

vy 0:0.5:10;

zz 0:0.25:1;

[YY,ZZ] = meshgrid(yy,zz);

XX = 5*ones(size(YY));

uintrp = interpolateSolution(results,XX,YY,ZZ,1:length(tlist));

The solution matrix uintrp has 11 columns, one for each time in tlist. Take the interpolated
solution for the second column, which corresponds to time 0.02.

usol = uintrp(:,2);

The elements of usol come from interpolating the solution to the XX, YY, and ZZ matrices, which are
each 5-by-21, corresponding to z-by -y variables. Reshape usol to the same 5-by-21 size, and make
a surface plot of the solution. Also make surface plots corresponding to times 0.06, 0.10, and 0.20.

figure

usol = reshape(usol,size(XX));
subplot(2,2,1)

surf(usol)

title('t = 0.02")
zlim([0,1.5])

x1im([1,21])

ylim([1,5])

usol = uintrp(:,4);

usol = reshape(usol,size(XX));

subplot(2,2,2)
surf(usol)

title('t = 0.06")
zlim([0,1.5])

x1im([1,21])

ylim([1,5])

usol = uintrp(:,6);

usol = reshape(usol,size(XX));

subplot(2,2,3)
surf(usol)
title('t = 0.
zlim([0,1.5])
x1im([1,21])
ylim([1,5])

10")

usol uintrp(:,11);

usol reshape(usol,size(XX));
subplot(2,2,4)

surf(usol)
title('t = 0.
zlim([0,1.5])
x1im([1,21])
ylim([1,5])

20")

3-319

3 Solving PDEs

3-320

t=0.02 t=0.06

t=0.10 t=020

Contour Slices Through 3-D Solution

This example shows how to create contour slices in various directions through a solution in 3-D
geometry.

Set Up and Solve the PDE

The problem is to solve Poisson's equation with zero Dirichlet boundary conditions for a complicated
geometry. Poisson's equation is

-V-Vu=f.
Partial Differential Equation Toolbox™ solves equations in the form
-V-Vicu)+au=f.

So you can represent the problem by setting ¢ = 1 and a = 0. Arbitrarily set f = 10.

=
~-

C

= o©
o -~-

a
f
The first step in solving any 3-D PDE problem is to create a PDE Model. This is a container that holds

the number of equations, geometry, mesh, and boundary conditions for your PDE. Create the model,
then import the 'ForearmLink.stl' file and view the geometry.

3-D Solution and Gradient Plots with MATLAB® Functions

N=1;

model = createpde(N);
importGeometry(model, 'ForearmLink.stl');
pdegplot(model, 'FaceAlpha',0.5)
view(-42,24)

60 -

40 -]

20 -

Specify PDE Coefficients

Include the PDE coefficients in model.

specifyCoefficients(model, 'm',0,'d',0,'c',c,'a',a,'f"',f);

Create zero Dirichlet boundary conditions on all faces.

applyBoundaryCondition(model, 'dirichlet’,
"Face',l:model.Geometry.NumFaces,
‘u',0);

Create a mesh and solve the PDE.

generateMesh(model);
result = solvepde(model);

Plot the Solution as Contour Slices

Because the boundary conditions are u = 0 on all faces, the solution u is nonzero only in the interior.
To examine the interior, take a rectangular grid that covers the geometry with a spacing of one unit in
each coordinate direction.

3-321

3 Solving PDEs

[X,Y,Z] = meshgrid(0:135,0:35,0:61);

For plotting and analysis, create a PDEResults object from the solution. Interpolate the result at
every grid point.

v
v

interpolateSolution(result,X,Y,Z);
reshape(V,size(X));

Plot contour slices for various values of z.

figure

colormap jet
contourslice(X,Y,Z,V,[1,[1,0:5:60)
xlabel('x")

ylabel('y"')

zlabel('z")

colorbar

view(-11,14)

axis equal

&00

700

600

1 500

1400

1 300

200

100

Plot contour slices for various values of y.

figure

colormap jet
contourslice(X,Y,Z,V,[]1,1:6:31,[])
xLlabel('x")

ylabel('y")

zlabel('z")

3-322

3-D Solution and Gradient Plots with MATLAB® Functions

colorbar
view(-62,34)
axis equal

&00

700

4 600

i
o
[
=

1400
120
1 300

200

100

Save Memory by Evaluating As Needed

For large problems you can run out of memory when creating a fine 3-D grid. Furthermore, it can be
time-consuming to evaluate the solution on a full grid. To save memory and time, evaluate only at the
points you plot. You can also use this technique to interpolate to tilted grids, or to other surfaces.

For example, interpolate the solution to a grid on the tilted plane 0 = x = 135, 0 = y < 35, and
z = x/10 + y/2. Plot both contours and colored surface data. Use a fine grid, with spacing 0.2.

[X,Y] = meshgrid(0:0.2:135,0:0.2:35);

Z = X/10 + Y/2;
V = interpolateSolution(result,X,Y,Z);
V = reshape(V,size(X));

figure

subplot(2,1,1)

contour(X,Y,V);

axis equal

title('Contour Plot on Tilted Plane')
xlabel('x")

ylabel('y")

colorbar

subplot(2,1,2)

surf(X,Y,V, 'LineStyle', 'none');

3-323

3 Solving PDEs

axis equal

view(0,90)
title('Colored Plot on Tilted Plane')
xlabel('x")
ylabel('y")
colorbar
Contour Plot on Tilted Plane
a0r q:j___—_ K — :— _r\:-:_ — _::t:-‘:ll 4 600
20}) ' ‘ { [l 400
= -‘\N ._-II||| {j
101 4 1 200
\\C:E:E:;jj
U i i i I — i i i)
0 20 40 6o 8o 100 120
X
Colored Plot on Tilted Plane
a00
400
200
0
20 40 &0 B0 100 120
X

Plots of Gradients and Streamlines

This example shows how to calculate the approximate gradients of a solution, and how to use those
gradients in a quiver plot or streamline plot.

The problem is the calculation of the mean exit time of a Brownian particle from a region that
contains absorbing (escape) boundaries and reflecting boundaries. For more information, see Narrow
escape problem. The PDE is Poisson's equation with constant coefficients. The geometry is a simple
rectangular solid. The solution u(x, y, z) represents the mean time it takes a particle starting at
position (x, y, z) to exit the region.

Import and View the Geometry
model = createpde;
importGeometry(model, 'Block.stl');

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)
view(-42,24)

3-324

https://en.wikipedia.org/wiki/Narrow_escape_problem
https://en.wikipedia.org/wiki/Narrow_escape_problem

3-D Solution and Gradient Plots with MATLAB® Functions

40 F6
F1
20 4 =
0 - <
7 100
=20 - 80
60
- 40
20 20
0 0
=20 =20

Set Boundary Conditions

Set faces 1, 2, and 5 to be the places where the particle can escape. On these faces, the solution
u = 0. Keep the default reflecting boundary conditions on faces 3, 4, and 6.

applyBoundaryCondition(model, 'dirichlet', 'Face',[1,2,5],'u',0);
Create PDE Coefficients
The PDE is
-Au= —-V-Vu=2
In Partial Differential Equation Toolbox™ syntax,
-V (cVu)+au=f

This equation translates to coefficients c = 1,a = 0, and f = 2. Enter the coefficients.

c=1;
a=0;
f=2;

specifyCoefficients(model, 'm',0,'d"',0,'c',c','a",a,'f"',f);
Create Mesh and Solve PDE

Initialize the mesh.

3-325

3 Solving PDEs

generateMesh(model);

Solve the PDE.

results = solvepde(model);

Examine the Solution in a Contour Slice Plot

Create a grid and interpolate the solution to the grid.

[X,Y,Z] = meshgrid(0:135,0:35,0:61);
\" interpolateSolution(results,X,Y,Z);
\" reshape(V,size(X));

Create a contour slice plot for five fixed values of the y-coordinate.

figure
colormap jet
contourslice(X,Y,Z,V,[1,0:4:16,[1)
xlabel('x")
ylabel('y")
zlabel('z")
x1im([0,100])
ylim([0,20])
zlim([0,50])
axis equal
view(-50,22)

colorbar
300
280
50 - 1200
40 -
1150
30 -
]
100
20 100
0
20 0

3-326

3-D Solution and Gradient Plots with MATLAB® Functions

The particle has the largest mean exit time near the point (x, y,z) = (100, 0, 0).

Use Gradients for Quiver and Streamline Plots

Examine the solution in more detail by evaluating the gradient of the solution. Use a rather coarse
mesh so that you can see the details on the quiver and streamline plots.

[X,Y,Z] = meshgrid(1:9:99,1:3:20,1:6:50);
[gradx,grady,gradz] = evaluateGradient(results,X,Y,Z);

Plot the gradient vectors. First reshape the approximate gradients to the shape of the mesh.

gradx = reshape(gradx,size(X));
grady = reshape(grady,size(Y));
gradz = reshape(gradz,size(Z));
figure

quiver3(X,Y,Z,gradx,grady,gradz)
axis equal

xlabel 'x'
ylabel 'y'
zlabel 'z’

title('Quiver Plot of Estimated Gradient of Solution')

Quiver Plot of Estimated Gradient of Solution

40 .
30 J
0. -

10\'

Plot the streamlines of the approximate gradient. Start the streamlines from a sparser set of initial
points.

3-327

3 Solving PDEs

hold on

[sx,sy,sz] = meshgrid([1,46],1:6:20,1:12:50);
streamline(X,Y,Z,gradx,grady,gradz,sx,sy,sz)
title('Quiver Plot with Streamlines')

hold off

Quiver Plot with Streamlines

b

The streamlines show that small values of y and z give larger mean exit times. They also show that
the x-coordinate has a significant effect on u when x is small, but when x is greater than 40, the
larger values have little effect on u. Similarly, when z is less than 20, its values have little effect on u.

3-328

Dimensions of Solutions, Gradients, and Fluxes

Dimensions of Solutions, Gradients, and Fluxes

solvepde returns a StationaryResults or TimeDependentResults object whose properties
contain the solution and its gradient at the mesh nodes. You can interpolate the solution and its
gradient to other points in the geometry by using interpolateSolution and evaluateGradient.
You also can compute flux of the solution at the mesh nodes and at arbitrary points by using
evaluateCGradient.

Note solvepde does not compute components of flux of a PDE solution. To compute flux of the
solution at the mesh nodes, use evaluateCGradient.

solvepdeeig returns an EigenResults ohject whose properties contain the solution eigenvectors
calculated at the mesh nodes. You can interpolate the solution to other points by using
interpolateSolution.

The dimensions of the solution, its gradient, and flux of the solution depend on:
* The number of geometric evaluation points.

* For results returned by solvepde or solvepdeeig, this is the number of mesh nodes.

* For results returned by interpolateSolution,evaluateGradient, and
evaluateCGradient this is the number of query points.

* The number of equations.
* For results returned by solvepde or solvepdeeig, this is the number of equations in the
system.

* For results returned by interpolateSolution,evaluateGradient, and
evaluateCGradient, this is the number of query equation indices.

* The number of times for a time-dependent problem or number of modes for an eigenvalue
problem.
* For results returned by solvepde, this is the number of solution times (specified as an input to
solvepde).
* For results returned by solvepdeeig, this is the number of eigenvalues.

* For results returned by interpolateSolution, evaluateGradient, and
evaluateCGradient, this is the number of query times for time-dependent problems or query
modes for eigenvalue problems.

3-329

3 Solving PDEs

Stationary
Scalar Problem
v |.|1
E _2
u
E Unp
Stationary System
1 2 M
$ Ly Ll i I
2 1 2 M
T || Y2 || Y2 uz
g= : :
-§ z
1 2 M
Z | |Ynp |[|YNp Unp

Equation Number

Time-Dependent or Eigenvalue
Scalar Problem

Equation Number

Suppose you have a problem in which:

* Np is the number of nodes in the mesh.
* Nt is the number of times for a time-dependent problem or number of modes for an eigenvalue

problem.

* N is the number of equations in the system.

3-330

g | [uw)||ult) uy (tye)
9
E uy(ty) | [uz(ty) U (tye)
bl L
=z | [unpt)] |unp(tz) Unp(tnt)
Time or Mode Indices
Time-Dependent or Eigenvalue
System
uj (te) | | uf (tyy) up! (ty
uy(tne) | | uZttne) |~ [u2 o)
ul (ty) | uf(ty) o' (tH [ull (o)
us(ty) | [ud(ty) ut,)
' - 5
NMECUIEEL u) i . &
= L
||)| | uity) uy () NP2 &
C
2| [uhp)| Juiiptt)] - |unp(e) N

Dimensions of Solutions, Gradients, and Fluxes

Suppose you also compute the solution, its gradient, or flux of the solution at other points ("query
points") in the geometry by using interpolateSolution, evaluateGradient, or
evaluateCGradient, respectively. Here:

* Nqgp is the number of query points.

* Nqgt is the number of query times for a time-dependent problem or number of query modes for an
eigenvalue problem.

* Nq is the number of query equations indices.

The tables show how to index into the solution returned by solvepde or solvepdeeig, where:

* 1P contains the indices of nodes.

* iT contains the indices of times for a time-dependent problem or mode numbers for an eigenvalue
problem.

* 1N contains the indices of equations.

The tables also show the dimensions of solutions, gradients, and flux of the solution at nodal locations
(returned by solvepde,solvepdeeig, and evaluateCGradient) and the dimensions of
interpolated solutions and gradients (returned by interpolateSolution, evaluateGradient,
and evaluateCGradient).

Stationary

Access solution and components of

Size of NodalSolution,

Size of solution,

PDE problem |gradient XGradients, components of
YGradients, gradient, and
ZGradients, and components of flux at
components of flux at |query points
nodal points
Scalar result.NodalSolution(iP) Np-by-1 Ngp-by-1
result.XGradients(iP)
result.YGradients(iP)
result.zZGradients(iP)
System, N > 1 |result.NodalSolution(iP,iN) Np-by-N Ngp-by-N
result.XGradients(iP, iN)

result.YGradients(iP, iN)

result.ZGradients(iP, iN)

3-331

3 Solving PDEs

Scalar

result.

result

result.

result.

NodalSolution(iP,iT)

.XGradients(iP,iT)

YGradients (iP,iT)

ZGradients(iP,iT)

Np-by-Nt

Ngp-by-Nqt

System, N > 1

result.

result

result.

result.

NodalSolution(iP,iN,iT)

.XGradients(iP,iN,iT)

YGradients (iP,iN,iT)
ZGradients(iP, iN, iT)

Np-by-N-by-Nt

Ngp-by-Ng-by-Nqgt

Scalar

result.

Eigenvectors(iP,iT)

Np-by-Nt

Ngp-by-Nqt

System, N > 1

result.

Eigenvectors(iP,iN,iT)

Np-by-N-by-Nt

Ngp-by-Ng-by-Nqgt

See Also

solvepde | solvepdeeig | interpolateSolution | evaluateGradient | StationaryResults
| TimeDependentResults | EigenResults

3-332

PDE Modeler App

You open the PDE Modeler app by entering pdeModeler at the command line. The main components

of the PDE Modeler app are the menus, the dialog boxes, and the toolbar.

“Open the PDE Modeler App” on page 4-2

“2-D Geometry Creation in PDE Modeler App” on page 4-3

“Specify Boundary Conditions in the PDE Modeler App” on page 4-12
“Specify Coefficients in PDE Modeler App” on page 4-14

“Specify Mesh Parameters in the PDE Modeler App” on page 4-24
“Adjust Solve Parameters in the PDE Modeler App” on page 4-26
“Plot the Solution in the PDE Modeler App” on page 4-31

4 pPDE Modeler App

Open the PDE Modeler App

4-2

You can open the PDE Modeler app using the Apps tab or typing the commands in the MATLAB
Command Window.

Use the Apps Tab

1 On the MATLAB Toolstrip, click the Apps tab.
2 On the Apps tab, click the down arrow at the end of the Apps section.
3 Under Math, Statistics and Optimization, click the PDE button.

Use Commands

* To open a blank PDE Modeler app window, type pdeModeler in the MATLAB Command Window.

* To open the PDE Modeler app with a circle already drawn in it, type pdecirc in the MATLAB
Command Window.

* To open the PDE Modeler app with an ellipse already drawn in it, type pdeellip in the MATLAB
Command Window.

* To open the PDE Modeler app with a rectangle already drawn in it, type pderect in the MATLAB
Command Window.

* To open the PDE Modeler app with a polygon already drawn in it, type pdepoly in the MATLAB
Command Window.

You can use a sequence of drawing commands to create several basic shapes. For example, the
following commands create a circle, a rectangle, an ellipse, and a polygon:

pderect([-1.5,0,-1,0])

pdecirc(0,0,1)

pdepoly([-1,0, ,1, -11,[0,0,1,1,-1,-11)
pdeellip(0,0,1,0.3, p1)

2-D Geometry Creation in PDE Modeler App

2-D Geometry Creation in PDE Modeler App

Create Basic Shapes

The PDE Modeler app lets you draw four basic shapes: a circle, an ellipse, a rectangle, and a polygon.
To draw a basic shape, use the Draw menu or one of the following buttons on the toolbar. To cut,
clear, copy, and paste the solid objects, use the Edit menu.

|:| Draw a rectangle/square starting at a corner.

Using the left mouse button, drag to create a rectangle. Using the right mouse button (or Ctrl
+click), drag to create a square.

Draw a rectangle/square starting at the center.

Using the left mouse button, drag to create a rectangle. Using the right mouse button (or Ctrl
+click), drag to create a square.

Using the left mouse button, drag to create an ellipse. Using the right mouse button (or Ctrl
+click), drag to create a circle.

' Draw an ellipse/circle starting at the perimeter.
) Draw an ellipse/circle starting at the center.

Using the left mouse button, drag to create an ellipse. Using the right mouse button (or Ctrl
+click), drag to create a circle.

‘E‘ Draw a polygon.

Using the left mouse button, drag to create polygon edges. You can close the polygon by
pressing the right mouse button. Clicking at the starting vertex also closes the polygon.

Alternatively, you can create a basic shape by typing one of the following commands in the MATLAB
Command Window:

* pdecirc draws a circle.

* pdeellip draws an ellipse.

* pderect draws a rectangle.

* pdepoly draws a polygon.

These commands open the PDE Modeler app with the requested shape already drawn in it. If the app

is already open, these commands add the requested shape to the app window without deleting any
existing shapes.

You can use a sequence of drawing commands to create several basic shapes. For example, these
commands create a circle, a rectangle, an ellipse, and a polygon:

pderect([-1.5,0,-1,0])

pdecirc(0,0,1)

pdepoly([-1,0,0 ,1,1,-1],[0,0,1,1,—1,-1])
pdeellip(0,0,1,0.3,pi)

4-3

4 pPDE Modeler App

4-4

Select Several Shapes

To select a single shape, click it using the left mouse button.

To select several shapes and to deselect shapes, use Shift+click (or click using the middle mouse
button). Clicking outside of all shapes, deselects all shapes.

To select all the intersecting shapes, click the intersection of these shapes.
To select all shapes, use the Select All option from the Edit menu.

Rotate Shapes

To rotate a shape:

Select the shapes.
Select Rotate from the Draw menu.

In the resulting Rotate dialog box, enter the rotation angle in degrees. To rotate
counterclockwise, use positive values of rotation angles. To rotate clockwise, use negative values.

| Rotate E @

Rotation (degrees):

o "

0

| Use center-of-mass

oK Cancel

By default, the rotation center is the center-of-mass of the selected shapes. To use a different
rotation center, clear the Use center-of-mass option and enter a rotation center (xc,yc) as a 1-
by-2 vector, for example, [-0.4 0.3].

Create Complex Geometries

You can specify complex geometries by overlapping basic shapes. This approach is called
Constructive Solid Geometry (CSG). The PDE Modeler app lets you combine basic shapes by using
their unique names.

The app assigns a unique name to each shape. The names depend on the type of the shape:

For circles, the default names are C1, C2, C3, and so on.

For ellipses, the default names are E1, E2, E3, and so on.

For polygons, the default names are P1, P2, P3, and so on.
For rectangles, the default names are R1, R2, R3, and so on.
For squares, the default names are SQ1, 5Q2, SQ3, and so on.

To change the name and parameters of a shape, first switch to the draw mode and then double-click
the shape. (Select Draw Mode from the Draw menu to switch to the draw mode.) The resulting

2-D Geometry Creation in PDE Modeler App

dialog box lets you change the name and parameters of the selected shape. The name cannot contain
spaces.

e

4] Ohbject Dialog E'@

Object type: Circle
¥-center: -0.75854244T418738 1
f-center: 0.18542447418733082
Radius: 0.25254302103250485
Mame: C1
ok | | Cancel |

Now you can combine basic shapes to create a complex geometry. To do this, use the Set formula
field located under the toolbar. Here you can specify a geometry by using the names of basic shapes
and the following operators:

* +is the set union operator.

For example, SQ1+C2 creates a geometry comprised of all points of the square SQ1 and all points
of the circle C2.

* *is the set intersection operator.
For example, SQ1*C2 creates a geometry comprised of the points that belong to both the square
SQ1 and the circle C2.

* - is the set difference operator.

For example, SQ1-C2 creates a geometry comprised of the points of the square SQ1 that do not
belong to the circle C2.

The operators + and * have the same precedence. The operator - has a higher precedence. You can
control the precedence by using parentheses. The resulting geometrical model (called decomposed
geometry) is the set of points for which the set formula evaluates to true. By default, it is the union of
all basic shapes.

Adjust Axes Limits and Grid

To adjust axes limits:

* Select Axes Limits from the Options menu

» Specify the range of the x-axis and the y-axis as a 1-by-2 vector such as [-10 10]. If you select
Auto, the app uses automatic scaling for the corresponding axis.

4 PDE Modeler App

4-6

i =)

4 Axes Limits o @ [
X¥-axis range: [Auto
[-1.51.5]
W -axis range:] Aute
111
| Apply J | Close J

Apply the specified axes ranges by clicking Apply.
Close the dialog box by clicking Close.

To add axis grid, the snap-to-grid feature, and zoom, use the Options menu. To adjust the grid
spacing:

Select Grid Spacing from the Options menu.

By default, the app uses automatic linear grid spacing. To enable editing the fields for linear
spacing and extra ticks, clear Auto.

4 Grid Spacing E@

X-axis linear spacing: Auto

i

-1.5:0.5:1.5

K-axis extra ticks:

Y-axis linear spacing: Auto
-1:0.2:1

“-axis extra ticks:

I Apphy I I Done

Specify the grid spacing for the x-axis and y-axis. For example, change the default linear spacing
-1.5:0.5:1.5t0-1:0.2:1.

You also can add extra ticks to customize the grid and aid in drawing. To separate extra tick
entries, use spaces, commas, semicolons, or brackets.

2-D Geometry Creation in PDE Modeler App

i

4 Grid Spacing E@

¥-axis linear spacing: |:| Auto

1502158

K-axis extra ticks:

11

f-axis linear spacing: |:| Auto
-1:0.2:1

“-axis extra ticks:

-0.50.5

i Apply | | Done

* Apply the specified grid spacing by clicking Apply.
* Close the dialog box by clicking Done.

4 PDE Modeler App

4-8

0.8

0.6
0.5
0.4

0.2

0.4
0.5
06

-1.3 -1.1 -1 0.9 0.7 -0.5 0.3 -0.1 01 0.3 0.5 0.7 08 1 11 13

Create Geometry with Rounded Corners

A W N

Open the PDE Modeler app by using the pdeModeler command.
Display grid lines by selecting Options > Grid.
Align new shapes to the grid lines by selecting Options > Snap.

Set the grid spacing for x-axis to -1.5:0.1:1.5 and for y-axis to -1:0.1: 1. To do this, select
Options > Grid Spacing, clear the Auto checkboxes, and set the corresponding ranges.

Draw a rectangle with the width 2, the height 1, and the top left corner at (-1,0.5). To do this,

first click the D button. Then click the point (-1,0.5) and drag to draw a rectangle.

To edit the parameters of the rectangle, double-click it. In the resulting dialog box, specify the
exact parameters.

Draw four circles with the radius 0.2 and the centers at (-0.8,-0.3), (-0.8,0.3), (0.8,-0.3), and

(0.8,0.3).To do this, first click the & button. Then click the center of a circle using the right
mouse button and drag to draw a circle. The right mouse button constrains the shape you draw
to be a circle rather than an ellipse. If the circle is not a perfect unit circle, then double-click it.
In the resulting dialog box, specify the exact center location and radius of the circle.

15

2-D Geometry Creation in PDE Modeler App

4
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B

-1.5-14-13-12-11 1 09-08-07-06-05-04-03-02-01 0 01020304 050607 0809 1

7

Add four squares with the side 0.2, one in each corner.

C3

L

Qs |ca

R1 _

cz 7]

(| -

1112 13 14 15

Model the geometry with rounded corners by subtracting the small squares from the rectangle,
and then adding the circles. To do this, enter the following formula in the Set formula field.

R1-(SQ1+SQ2+5Q3+5Q4)+C1+C2+C3+C4

Switch to the boundary mode by clicking the

button or selecting Boundary > Boundary

Mode. The CSG model is now decomposed using the set formula, and you get a rectangle with

rounded corners.

4-9

4 pPDE Modeler App

4-10

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

]

0.1

0.2

0.3

0.4

-0.5

-0.6

-0.7

0.8

0.9

1514131211 1 049080706-050403-0201 0 01020304 0506 07 0809 1

1.1 1213 1.4 15

10 Because of the intersection of the solid objects used in the initial CSG model, a number of
subdomain borders remain. They appear as gray lines. To remove these borders, select

Boundary > Remove All Subdomain Borders.

2-D Geometry Creation in PDE Modeler App

1 T T T T T T T T T T T T T T T T T

0.9~ T
0.8 T
0.7 - T
0.6~ m

0.5 - |
0al / N\ |
0.3 S A= .
0.2 m
0.1 -1

N |
0.1 -
N2 -1
D3 -1

04l \ a

05 = - .

0.6 .
0.7 .
0.8 -

0.9 1
1 | | I N I I | | | | I N I | I N I I | | | | L1
-1.5-14-13-1211 1 09-08-07-06-05-04-03-02-01 0 010203 040506070809 1 111213 14 15

4-11

4 pPDE Modeler App

Specify Boundary Conditions in the PDE Modeler App

i}
Select Boundary Mode from the Boundary menu or click the button. Then select a
boundary or multiple boundaries for which you are specifying the conditions. Note that no if you do
not select any boundaries, then the specified conditions apply to all boundaries.
* To select a single boundary, click it using the left mouse button.

* To select several boundaries and to deselect them, use Shift+click (or click using the middle
mouse button).

* To select all boundaries, use the Select All option from the Edit menu.

Select Specify Boundary Conditions from the Boundary menu.

4| Boundary Condition E@
Boundary condition equation: h*u=r
Condition type: Coefficient “alue Description
Neumann 0
@ Dirichlet a
h 1
! 0
Ok Cancel

4-12

Specify Boundary Conditions opens a dialog box where you can specify the boundary condition for
the selected boundary segments. There are three different condition types:

* Generalized Neumann conditions, where the boundary condition is determined by the coefficients
g and g according to the following equation:

?-(cVu)+qu=g.

In the system cases, q is a 2-by-2 matrix and g is a 2-by-1 vector.

* Dirichlet conditions: u is specified on the boundary. The boundary condition equation is hu =r,
where h is a weight factor that can be applied (normally 1).
In the system cases, h is a 2-by-2 matrix and r is a 2-by-1 vector.

* Mixed boundary conditions (system cases only), which is a mix of Dirichlet and Neumann
conditions. q is a 2-by-2 matrix, g is a 2-by-1 vector, h is a 1-by-2 vector, and r is a scalar.

The following figure shows the dialog box for the generic system PDE (Options > Application >
Generic System).

Specify Boundary Conditions in the PDE Modeler App

0 Boundary Condition E@
Boundary condition equation: h*u=r
Condition type: Coefficient Value De=cription
Neumann 0
@) Dirichlet 0
Mixed 0 0
h11, h12 1 0
h21, h22

r

r2

—

Cancel

For boundary condition entries you can use the following variables in a valid MATLAB expression:

* The 2-D coordinates x and y.

* A boundary segment parameter s, proportional to arc length. s is 0 at the start of the boundary
segment and increases to 1 along the boundary segment in the direction indicated by the arrow.

* The outward normal vector components nx and ny. If you need the tangential vector, it can be
expressed using nx and ny since t, = -n, and t, = n,.

* The solution u.

e The time t.

Note If the boundary condition is a function of the solution u, you must use the nonlinear solver. If
the boundary condition is a function of the time t, you must choose a parabolic or hyperbolic PDE.

Examples: (100-80*s).*nx, and cos(x.”2)

In the nongeneric application modes, the Description column contains descriptions of the physical

interpretation of the boundary condition parameters.

4-13

4 PDE Modeler App

Specify Coefficients in PDE Modeler App

Coefficients for Scalar PDEs

To enter coefficients for your PDE, select PDE > PDE Specification.

e

"4 PDE Specification] S

Equation: -div(c*gradiu}j+a*u=f
Type of PDE: Coefficient Walue
@ Elliptic z 1.0

Parabolic Z 0.0

Hyperbolic f 10.0

Eigenmodes 1.0

oK Cancel

Enter text expressions using these conventions:

* X — x-coordinate

* y — y-coordinate

* U — Solution of equation

¢ ux — Derivative of u in the x-direction

* uy — Derivative of u in the y-direction

* t — Time (parabolic and hyperbolic equations)

¢ sd — Subdomain number

For example, you could use this expression to represent a coefficient:

(x +y)./(x."2 +y.”2+ 1) + 3 + sin(t)./(1 + u.”4)

For elliptic problems, when you include u, ux, or uy, you must use the nonlinear solver. Select Solve
> Parameters > Use nonlinear solver.

Note

* Do not use quotes or unnecessary spaces in your entries. The parser can misinterpret a space as a
vector separator, as when a MATLAB vector uses a space to separate elements of a vector.

* Use .*, ./, and .” for multiplication, division, and exponentiation operations. The text

expressions operate on row vectors, so the operations must make sense for row vectors. The row
vectors are the values at the triangle centroids in the mesh.

4-14

Specify Coefficients in PDE Modeler App

You can write MATLAB functions for coefficients as well as plain text expressions. For example,
suppose your coefficient f is given by the file fcoeff.m.

function f = fcoeff(x,y,t,sd)

f=(x.*y)./(1 + x.”2 + y.”2); % f on subdomain 1
f=Ff+ log(l + t); % include time

r = (sd == 2); % subdomain 2

f2 = cos(x + y); % coefficient on subdomain 2
f(r) = f2(r); % f on subdomain 2

Use fcoeff(x,y,t,sd) as the f coefficient in the parabolic solver.

Coefficient WValue

c 1.0

a 0.0

f fooeffix,yt,ad)
d 1.0

The coefficient c is a 2-by-2 matrix. You can give 1-, 2-, 3-, or 4-element matrix expressions. Separate
the expressions for elements by spaces. These expressions mean:

) 1-element expression: c0
0Oc
) 2-element expression: ctl) 0
0 c(2)
) 3-element expression: ol) ¢(2)
c(2) c(3)
) 4-element expression: ol) ¢(3)
c(2) c(4)

For example, c is a symmetric matrix with constant diagonal entries and cos (xy) as the off-diagonal
terms:

1.1 cos(x.*y) 5.5 (4-1)
Coefficient Walue
= 1.1 cos(x.*y) 5.5
a 0.0
f 10.0
d 1.0

4-15

4 PDE Modeler App

This corresponds to coefficients for the parabolic equation

1.1 cos(xy)

v
cos(xy) 5.5 U

= 10.

Coefficients for Systems of PDEs

You can enter coefficients for a system with N = 2 equations in the PDE Modeler app. To do so, open
the PDE Modeler app and select Generic System.

(3\ Generic System -

Generic Scalar

Generic System *

Structural Mech., Pl
Structural Mech., Plane Strain
Electrostatics
Magnetostatics

AL Power Electromagnetics
Conductive Media DC

Heat Transfer

e Stress

Diffusion

Then select PDE > PDE Specification.

4 PDE Specification =5 Eol =

Equation: ~div({c*gradiu)}+a*u=f
Type of PDE: Coefficient WValue Value
@ Elliptic cll, c12 1.0 0.0
(7 Parabolic c2l, 22 0.0 1.0
(71 Hyperbolic all, a1z 0.0 0.0
(") Eigenmodes a1, a2 0.0 0.0
f, 12 1.0 1.0
1.0 0.0
0.0 1.0

Enter character expressions for coefficients using the form in “Coefficients for Scalar PDEs” on page
4-14, with additional options for nonlinear equations. The additional options are:

* Represent the ith component of the solution u using 'u(i) ' fori =1 or 2.

4-16

Specify Coefficients in PDE Modeler App

» Similarly, represent the ith components of the gradients of the solution u using 'ux (i)' and

'uy(i) ' fori=1or?2.

Note For elliptic problems, when you include coefficients u(i), ux(i), or uy (i), you must use the
nonlinear solver. Select Solve > Parameters > Use nonlinear solver.

Do not use quotes or unnecessary spaces in your entries.

For higher-dimensional systems, do not use the PDE Modeler app. Represent your problem
coefficients at the command line.

You can enter scalars into the ¢ matrix, corresponding to these equations:

=V (c11Vuy) = V- (c12Vup) + ajqug + ajpup = f1
=V (c21Vuy) = V- (c2Vup) + aqug + axup = fo

If you need matrix versions of any of the cij coefficients, enter expressions separated by spaces. You
can give 1-, 2-, 3-, or 4-element matrix expressions. These mean:

) 1-element expression: c0
0c
) 2-element expression: ctl) 0
0 c(2)
) 3-element expression: o(l) ¢(2)
c(2) c(3)
) 4-element expression: o(l) ¢(3)
c(2) c(4)

For example, these expressions show one of each type (1-, 2-, 3-, and 4-element expressions)

4-17

4 PDE Modeler App

4. PDE Specification = Ech =
Equation: -div{c*gradiu)}+a*u=f
Type of PDE: Coefficient Walue Value
@ Eliiptic &1, e12 d+cos(x.ty) -1
Parabolic cl, c2 123 7 5 .5 expix-y)
Hyperbolic all, a1z 0.0 0.0
Eigenmodes a1, ad? 0.0 0.0
f, 12 1.0 2.0
1.0 0.0
0.0 1.0

oK Cancel

4-18

These expressions correspond to the equations

4 + cos(xy) 0 -10
-V Vup|= V- Vup| =1
((0 4 + cos(xy) ul] (01 12
1.2 7 .6
— v . v . v = 2
[(.2 3 “ .5 exp(x —y)) 12

Coefficients That Depend on Time and Space

This example shows how to enter time- and coordinate-dependent coefficients in the PDE Modeler

app.
Solve the parabolic PDE,

au _
dﬁ—v-(cVu)+au—f

with the following coefficients:

e d=5

* a=0

* fisalinear ramp up to 10, holds at 10, then ramps back down to 0:
10t 0=st=0.1

f=10*{1 0.1=t=<0.9

10-10t09=t=<1

e c=14+x2+)°

To solve this equation in the PDE Modeler app, follow these steps:

Specify Coefficients in PDE Modeler App

gua A W N

Write the file framp.m and save it on your MATLAB path.

function f = framp(t)

if t <= 0.1
f = 10*t;
elseif t <= 0.9
f=1;
else
f = 10-10*t;
end
f = 10*f;
Open the PDE Modeler app by using the pdeModeler command.
Display grid lines by selecting Options > Grid.
Align new shapes to the grid lines by selecting Options > Snap.

Draw a rectangle with the corners at (-1,-0.4), (-1,0.4), (1,0.4), and (1,-0.4). To do this, first click

the |:|

rectangle.

button. Then click one of the corners using the left mouse button and drag to draw a

Draw a circle with the radius 0.2 and the center at (0.5,0). To do this, first click the @
button. Then right-click the origin and drag to draw a circle. Right-clicking constrains the shape
you draw so that it is a circle rather than an ellipse. If the circle is not a perfect unit circle,
double-click it. In the resulting dialog box, specify the exact center location and radius of the
circle.

Model the geometry by entering R1-C1 in the Set formula field.

4-19

4 PDE Modeler App

4-20

0.8 .
0.6 n
0.4 .
0.2 n
R1
D —
0.2 .
0.4 .
0.6 .
0.8 n
1 I I I I I
-1.5 -1 0.5 0 0.5 1
Check that the application mode is set to Generic Scalar.
Specify the boundary conditions. To do this, switch to the boundary mode by selecting Boundary
> Boundary Mode. Use Shift+click to select several boundaries. Then select Boundary >
Specify Boundary Conditions.
» For the rectangle, use the Dirichlet boundary condition withh = 1and r = t*(x-y).
» For the circle, use the Neumann boundary condition withg = x.”2+y.”2andq = 1.
10 Specify the coefficients by selecting PDE > PDE Specification or clicking the PDE button on
the toolbar. Select the Parabolic type of PDE. Specify ¢ = 1+x.72+y.”2,a = 0, f =
framp(t),andd = 5.
Note Do not include quotes or spaces when you specify your coefficients the PDE Modeler app.
The parser interprets all inputs as vectors of characters. It can misinterpret a space as a vector
separator, as when a MATLAB vector uses a space to separate elements of a vector.
11 [Initialize the mesh by selecting Mesh > Initialize Mesh.
12 Refine the mesh twice by selecting Mesh > Refine Mesh.
13 Improve the triangle quality by selecting Mesh > Jiggle Mesh.

1.5

Specify Coefficients in PDE Modeler App

0.8

0.6

0.4

0.2

-1.5 -1 0.5 0 0.5 1 1.5

14 Set the initial value and the solution time. To do this, select Solve > Parameters.

In the resulting dialog box, set the time to linspace(0,1,50) and the initial value u(t;) to 0.
15 Solve the equation by selecting Solve > Solve PDE or clicking the = button on the toolbar.

4-21

4 PDE Modeler App

4-22

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

-0.8

-1

Time=1 Color: u

0.5

-0.5

=1

-1.5

-1 -0.5 o 0.5 1 1.5

16 Visualize the solution as a 3-D static plot. To do this:

Q N T 9

Select Plot > Parameters.
In the resulting dialog box, select the Color and Height (3-D plot) options.
Select the Show mesh option.

Change the colormap to jet by using the corresponding drop-down menu in the same dialog
box.

Specify Coefficients in PDE Modeler App

Time=1 Color: u Height: u

4-23

4 PDE Modeler App

Specify Mesh Parameters in the PDE Modeler App

Select Parameters from the Mesh menu to open the following dialog box containing mesh
generation parameters.

i 1

4. Mesh Parameters E@

Initmesh parameters

Maximum edge size:

Mesh growth rate:

1.3

Mesher version:

preR2013a -

| Jiggle mesh

Jigglemesh parameters

Jigigle mode:

optimize mean -

MNumber of jiggle terations:

Refinement method:

regular -

OK Cancel

The parameters used by the mesh initialization algorithm are:
* Maximum edge size: Largest triangle edge length (approximately). This parameter is optional
and must be a real positive number.

* Mesh growth rate: The rate at which the mesh size increases away from small parts of the
geometry. The value must be between 1 and 2. The default value is 1.3, i.e., the mesh size
increases by 30%.

* Mesher version: Choose the geometry triangulation algorithm. R2013a is faster, and can mesh
more geometries. preR2013a gives the same mesh as previous toolbox versions.

* Jiggle mesh: Toggles automatic jiggling of the initial mesh on/off.

The parameters used by the mesh jiggling algorithm are:

4-24

Specify Mesh Parameters in the PDE Modeler App

* Jiggle mode: Select a jiggle mode from a pop-up menu. Available modes are on, optimize
minimum, and optimize mean. on jiggles the mesh once. Using the jiggle mode optimize
minimum, the jiggling process is repeated until the minimum triangle quality stops increasing or
until the iteration limit is reached. The same applies for the optimize mean option, but it tries to
increase the mean triangle quality.

* Number of jiggle iterations: Iteration limit for the optimize minimum and optimize mean
modes. Default: 20.

For the mesh refinement algorithm refinemesh, the Refinement method can be regular or
longest. The default refinement method is regular, which results in a uniform mesh. The
refinement method longest always refines the longest edge on each triangle.

To initialize a triangular mesh, select Initialize Mesh from the Mesh menu or click the VAN button.

AN

To refine a mesh, select Refine Mesh from the Mesh menu or click the button.

4-25

4 pPDE Modeler App

Adjust Solve Parameters in the PDE Modeler App

To specify parameters for solving a PDE, select Parameters from the Solve menu. The set of solve

parameters differs depending on the type of PDE. After you adjust the parameters, solve the PDE by
selecting Solve PDE from the Solve menu or by clicking the = button.

Elliptic Equations

d Solve Parameters — O >
|:| Adaptive mode |:| Use nonlinear solver
1000 1E-4
10
orst triangles fixed
Relative tolerance
User-defined function: Z
OK Cancel

By default, no specific solve parameters are used, and the elliptic PDEs are solved using the basic
elliptic solver assempde. Optionally, the adaptive mesh generator and solver adaptmesh can be
used. For the adaptive mode, the following parameters are available:

* Adaptive mode. Toggle the adaptive mode on/off.

Maximum number of triangles. The maximum number of new triangles allowed (can be set to
Inf). A default value is calculated based on the current mesh.

Maximum number of refinements. The maximum number of successive refinements attempted.

Triangle selection method. There are two triangle selection methods, described below. You can
also supply your own function.

4-26

Adjust Solve Parameters in the PDE Modeler App

* Worst triangles. This method picks all triangles that are worse than a fraction of the value of
the worst triangle (default: 0.5).

* Relative tolerance. This method picks triangles using a relative tolerance criterion (default:
1E-3).

* User-defined function. Enter the name of a user-defined triangle selection method. See
“Poisson's Equation with Point Source and Adaptive Mesh Refinement” on page 3-222 for an
example of a user-defined triangle selection method.

* Function parameter. The function parameter allows fine-tuning of the triangle selection
methods. For the worst triangle method (pdeadworst), it is the fraction of the worst value that is
used to determine which triangles to refine. For the relative tolerance method, it is a tolerance
parameter that controls how well the solution fits the PDE.

* Refinement method. Can be regular or longest. See “Specify Mesh Parameters in the PDE
Modeler App” on page 4-24.

If the problem is nonlinear, i.e., parameters in the PDE are directly dependent on the solution u, a
nonlinear solver must be used. The following parameters are used:

* Use nonlinear solver. Toggle the nonlinear solver on/off.

* Nonlinear tolerance. Tolerance parameter for the nonlinear solver.

+ Initial solution. An initial guess. Can be a constant or a function of x and y given as a MATLAB
expression that can be evaluated on the nodes of the current mesh.

Examples: 1, and exp(x.*y). Optional parameter, defaults to zero.

* Jacobian. Jacobian approximation method: fixed (the default), a fixed point iteration, Lumped, a
“lumped” (diagonal) approximation, or full, the full Jacobian.

* Norm. The type of norm used for computing the residual. Enter as energy for an energy norm, or
as a real scalar p to give the Ip norm. The default is Inf, the infinity (maximum) norm.

Note The adaptive mode and the nonlinear solver can be used together.

4-27

4 PDE Modeler App

Parabolic Equations

4| Solve Parameters — O X

Time:

0:10

uto):

0.0

Relative tolerance:

o.M

Absolute tolerance:

0.00M

oK Cancel

The solve parameters for the parabolic PDEs are:

* Time. A MATLAB vector of times at which a solution to the parabolic PDE should be generated.
The relevant time span is dependent on the dynamics of the problem.
Examples: 0:10, and logspace(-2,0,20)

* u(t0). The initial value u(t,) for the parabolic PDE problem The initial value can be a constant or a
column vector of values on the nodes of the current mesh.

* Relative tolerance. Relative tolerance parameter for the ODE solver that is used for solving the
time-dependent part of the parabolic PDE problem.

* Absolute tolerance. Absolute tolerance parameter for the ODE solver that is used for solving the
time-dependent part of the parabolic PDE problem.

4-28

Adjust Solve Parameters in the PDE Modeler App

Hyperbolic Equations

d Solve Parameters — O X

Time:

0:10
uto):
0.0
u'(to):
0.0

Relative tolerance:

o.M

Absolute tolerance:

0.00M

oK Cancel

The solve parameters for the hyperbolic PDEs are:

* Time. A MATLAB vector of times at which a solution to the hyperbolic PDE should be generated.
The relevant time span is dependent on the dynamics of the problem.

Examples: 0:10, and logspace(-2,0,20).

* u(t0). The initial value u(t,) for the hyperbolic PDE problem. The initial value can be a constant or
a column vector of values on the nodes of the current mesh.

* u'(t0). The initial value u(t,) for the hyperbolic PDE problem. You can use the same formats as for
u(t0).

* Relative tolerance. Relative tolerance parameter for the ODE solver that is used for solving the
time-dependent part of the hyperbolic PDE problem.

* Absolute tolerance. Absolute tolerance parameter for the ODE solver that is used for solving the
time-dependent part of the hyperbolic PDE problem.

Eigenvalue Equations

For the eigenvalue PDE, the only solve parameter is the Eigenvalue search range, a two-element
vector, defining an interval on the real axis as a search range for the eigenvalues. The left side can be
-Inf.

Examples: [0 100], [-Inf 50]

4-29

4 pPDE Modeler App

4| Solve Parameters

Eigenvalue search range:

[0 100]

oK

Cancel

Nonlinear Equations

Before solving a nonlinear elliptic PDE in the PDE Modeler app, select SolveParameters. Then select
Use nonlinear solver and click OK.
4| Solve Parameters

[] Adaptive mode

Usze nonlinear zolver

Monlinear tolerance:
1000

1E-4

Initial solution:

Jacobian:

fixed

Morm:;

Inf

o]
4]

(=]
=]
[I=]
o
W

0K

Cancel

4-30

Plot the Solution in the PDE Modeler App

Plot the Solution in the PDE Modeler App

To plot a solution property, use the Plot menu. Use the Plot Selection dialog box to select which
property to plot, which plot style to use, and several other plot parameters. If you have recorded a
movie (animation) of the solution, you can export it to the workspace.

To open the Plot Selection dialog box, select Parameters from the Plot menu or click the '@

e

button.
4 Plot Selection E'@
Plot type: Property: User entry: Plot style:
| Color
u hd interpolated =had. -
Contour
Arrows -gradiu} * proportional b
Deformed mesh -gradiu) -
Height [3-D plot) u - continuous bl
Animation z
Plot in -y grid Contour plot levels: 20 | Plot solution automaticalh
Show mesh Colormap: cool - Eigenvalue;
Plot Clo=se Cancel

Parameters opens a dialog box containing options controlling the plotting and visualization.

The upper part of the dialog box contains four columns:

* Plot type (far left) contains a row of six different plot types, which can be used for visualization:

Color. Visualization of a scalar property using colored surface objects.

Contour. Visualization of a scalar property using colored contour lines. The contour lines can
also enhance the color visualization when both plot types (Color and Contour) are checked.
The contour lines are then drawn in black.

Arrows. Visualization of a vector property using arrows.

Deformed mesh. Visualization of a vector property by deforming the mesh using the vector
property. The deformation is automatically scaled to 10% of the problem domain. This plot type
is primarily intended for visualizing x- and y-displacements (u and v) for problems in structural
mechanics. If no other plot type is selected, the deformed triangular mesh is displayed.

Height (3-D plot). Visualization of a scalar property using height (z-axis) in a 3-D plot. 3-D
plots are plotted in separate figure windows. If the Color and Contour plot types are not used,

4-31

4 PDE Modeler App

4-32

the 3-D plot is simply a mesh plot. You can visualize another scalar property simultaneously
using Color and/or Contour, which results in a 3-D surface or contour plot.

* Animation. Animation of time-dependent solutions to parabolic and hyperbolic problems. If
you select this option, the solution is recorded and then animated in a separate figure window
using the MATLAB movie function.

A color bar is added to the plots to map the colors in the plot to the magnitude of the property that is
represented using color or contour lines.

* Property contains four pop-up menus containing lists of properties that are available for plotting
using the corresponding plot type. From the first pop-up menu you control the property that is
visualized using color and/or contour lines. The second and third pop-up menus contain vector
valued properties for visualization using arrows and deformed mesh, respectively. From the fourth
pop-up menu, finally, you control which scalar property to visualize using z-height in a 3-D plot.
The lists of properties are dependent on the current application mode. For the generic scalar
mode, you can select the following scalar properties:

* u. The solution itself.
* abs(grad(u)). The absolute value of Vu, evaluated at the center of each triangle.
+ abs(c*grad(u)). The absolute value of ¢ - Vu, evaluated at the center of each triangle.

* user entry. A MATLAB expression returning a vector of data defined on the nodes or the
triangles of the current triangular mesh. The solution u, its derivatives ux and uy, the x and y
components of ¢ - Vu, cux and cuy, and x and y are all available in the local workspace. You
enter the expression into the edit box to the right of the Property pop-up menu in the User
entry column.

Examples: u.*u, x+y

The vector property pop-up menus contain the following properties in the generic scalar case:

* -grad(u). The negative gradient of u, -Vu.
* -c*grad(u). c times the negative gradient of u, -c - Vu.

* user entry. A MATLAB expression [px; py] returning a 2-by-ntri matrix of data defined on
the triangles of the current triangular mesh (ntri is the number of triangles in the current
mesh). The solution u, its derivatives ux and uy, the x and y components of ¢ - Vu, cux and
cuy, and x and y are all available in the local workspace. Data defined on the nodes is
interpolated to triangle centers. You enter the expression into the edit field to the right of the
Property pop-up menu in the User entry column.

Examples: [ux;uy], [x;y]

For the generic system case, the properties available for visualization using color, contour lines, or z-
height are u, v, abs(u,v), and a user entry. For visualization using arrows or a deformed mesh, you
can choose (u,v) or a user entry. For applications in structural mechanics, u and v are the x- and y-
displacements, respectively.

The variables available in the local workspace for a user entered expression are the same for all
scalar and system modes (the solution is always referred to as u and, in the system case, v).

» User entry contains four edit fields where you can enter your own expression, if you select the
user entry property from the corresponding pop-up menu to the left of the edit fields. If the user
entry property is not selected, the corresponding edit field is disabled.

Plot the Solution in the PDE Modeler App

Plot style contains three pop-up menus from which you can control the plot style for the color,
arrow, and height plot types respectively. The available plot styles for color surface plots are

+ Interpolated shading. A surface plot using the selected colormap and interpolated shading,
i.e., each triangular area is colored using a linear, interpolated shading (the default).

+ Flat shading. A surface plot using the selected colormap and flat shading, i.e., each triangular
area is colored using a constant color.

You can use two different arrow plot styles:

* Proportional. The length of the arrow corresponds to the magnitude of the property that you
visualize (the default).

* Normalized. The lengths of all arrows are normalized, i.e., all arrows have the same length.
This is useful when you are interested in the direction of the vector field. The direction is
clearly visible even in areas where the magnitude of the field is very small.

For height (3-D plots), the available plot styles are:

* Continuous. Produces a “smooth” continuous plot by interpolating data from triangle
midpoints to the mesh nodes (the default).

* Discontinuous. Produces a discontinuous plot where data and z-height are constant on each
triangle.

A total of three properties of the solution—two scalar properties and one vector field—can be
visualized simultaneously. If the Height (3-D plot) option is turned off, the solution plot is a 2-D plot
and is plotted in the main axes of the PDE Modeler app. If the Height (3-D plot) option is used, the
solution plot is a 3-D plot in a separate figure window. If possible, the 3-D plot uses an existing figure
window. If you would like to plot in a new figure window, simply type figure at the MATLAB
command line.

Additional Plot Control Options

In the middle of the dialog box are a number of additional plot control options:

Plot in x-y grid. If you select this option, the solution is converted from the original triangular
grid to a rectangular x-y grid. This is especially useful for animations since it speeds up the
process of recording the movie frames significantly.

Show mesh. In the surface plots, the mesh is plotted using black color if you select this option. By
default, the mesh is hidden.

Contour plot levels. For contour plots, the number of level curves, e.g., 15 or 20 can be entered.
Alternatively, you can enter a MATLAB vector of levels. The curves of the contour plot are then
drawn at those levels. The default is 20 contour level curves.

Examples: [0:100:1000], logspace(-1,1,30)
Colormap. Using the Colormap pop-up menu, you can select from a number of different color
maps: cool, gray, bone, pink, copper, hot, jet, hsv, prism, and parula.

Plot solution automatically. This option is normally selected. If turned off, there will not be a
display of a plot of the solution immediately upon solving the PDE. The new solution, however, can
be plotted using this dialog box.

For the parabolic and hyperbolic PDEs, the bottom right portion of the Plot Selection dialog box
contains the Time for plot parameter.

4-33

4 PDE Modeler App

4-34

Time for plot. A pop-up menu allows you to select which of the solutions to plot by selecting the
corresponding time. By default, the last solution is plotted.

4. Animation O... E'@

Animation rate (fps):

P

&

Number of repeats:

:.

Replay movie

0K I l Cancel

Also, the Animation plot type is enabled. In its property field you find an Options button. If you
press it, an additional dialog box appears. It contains parameters that control the animation:

* Animation rate (fps). For the animation, this parameter controls the speed of the movie in
frames per second (fps).

* Number of repeats. The number of times the movie is played.

Replay movie. If you select this option, the current movie is replayed without rerecording the
movie frames. If there is no current movie, this option is disabled.

Plot =olution automaticalby

Eigenvalue:]
1472 4

Cancel 29.81

4415
3458
59.62
8297
91.74
§5.09

For eigenvalue problems, the bottom right part of the dialog box contains a drop-down menu with all
eigenvalues. The plotted solution is the eigenvector associated with the selected eigenvalue. By
default, the smallest eigenvalue is selected.

You can rotate the 3-D plots by clicking the plot and, while keeping the mouse button down, moving
the mouse. For guidance, a surrounding box appears. When you release the mouse, the plot is
redrawn using the new viewpoint. Initially, the solution is plotted using -37.5 degrees horizontal
rotation and 30 degrees elevation.

Plot the Solution in the PDE Modeler App

If you click the Plot button, the solution is plotted immediately using the current plot setup. If there
is no current solution available, the PDE is first solved. The new solution is then plotted. The dialog
box remains on the screen.

If you click the Done button, the dialog box is closed. The current setup is saved but no additional
plotting takes place.

If you click the Cancel button, the dialog box is closed. The setup remains unchanged since the last
plot.
Tooltip Displays for Mesh and Plots

In mesh mode, you can use the mouse to display the node number and the triangle number at the
position where you click. Press the left mouse button to display the node number on the information
line. Use the left mouse button and the Shift key to display the triangle number on the information
line.

In plot mode, you can use the mouse to display the numerical value of the plotted property at the
position where you click. Press the left mouse button to display the triangle number and the value of
the plotted property on the information line.

The information remains on the information line until you release the mouse button.

4-35

Functions

5 Functions

5-2

adaptmesh

Package: pde

Create adaptive 2-D mesh and solve PDE

Note This page describes the legacy workflow. New features might not be compatible with the legacy
workflow. In the recommended workflow, see generateMesh for mesh generation and solvepde for
PDE solution.

Syntax

[u,p,e,t] = adaptmesh(g,b,c,a,f)

[u,p,e,t] = adaptmesh(g,b,c,a,f,Name,Value)
Description

[u,p,e,t] = adaptmesh(g,b,c,a,f) generates an adaptive [p, e, t] mesh and returns the
solution u for an elliptic 2-D PDE problem

-V (cVu)+au=f
for (x,y) € Q, or the elliptic system PDE problem
-V-(c®Vu)+au=f

with the problem geometry and boundary conditions given by g and b. The mesh is described by the
p, €, and t matrices.

Upon termination, the function issues one of these messages:

* Adaption completed. (This means that the Tripick function returned zero triangles to refine.)
e Maximum number of triangles obtained.
* Maximum number of refinement passes obtained.

[u,p,e,t] = adaptmesh(g,b,c,a,f,Name,Value) performs adaptive mesh generation and PDE
solution for elliptic 2-D PDE problems using one or more Name, Value pair arguments.

Examples

Adaptive Mesh Generation and Mesh Refinement

Solve the Laplace equation over a circle sector, with Dirichlet boundary conditions u =
cos(2/3atan2(y,x)) along the arc and u = 0 along the straight lines, and compare the resulting solution
to the exact solution. Set the options so that adaptmesh refines the triangles using the worst error
criterion until it obtains a mesh with at least 500 triangles.

c45 = cos(pi/4);
L1 =[2 -c45 0 c45010000]';

adaptmesh

[1
[1

c45 c45 -
c45 -c45

c45 -
c45
c45

g = [L1 L2 C1 C2 C3];

[u’p’e’

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

t]

of
of
of
of
of
of
of
of
of
of
of

= adaptmesh(g, '‘cirsb',1,0,0, '"Maxt',500,...
'Tripick', 'pdeadworst', 'Ngen',Inf);

triangles:
triangles:
triangles:
triangles:
triangles:
triangles:
triangles:
triangles:
triangles:
triangles:
triangles:

204
208
217
230
265
274
332
347
460
477
699

[2 -c45 0 -c45 01 00
[1 -c45 c45 -

c45
c45
c45

0
1
1
1

Maximum number of triangles obtained.

Find the maximal absolute error.

x=p(l,:); y =p(2,:);

exact =

((x.”2 + y.”2).7(1/3) .*cos(2/3*atan2(y,x)))"';

max(abs(u - exact))

ans = 0.0028

Find the number of triangles.

size(t,

ans = 6

2)
99

Plot the mesh.

pdemesh(p,e, t)

5-3

5 Functions

5-4

1
0.8
0.6
0.4 F
0.2F
ok
> v '
Ai~-ﬁﬁﬂ A\
04r 4 AVAVA j}‘(?

R, (s o
0.6 } "r "
08F

-1 1
-1

Test how many refinements you need with a uniform triangle mesh.

[p,e,t] initmesh(qg);

[p,e,t] refinemesh(g,p,e, t);

u = assempde('cirsb',p,e,t,1,0,0);

X =p(l,:);

y =p(2,:);

exact = ((x.”2 + y."2).7(1/3).*cos(2/3*atan2(y,x)))";
max(abs(u - exact))

ans = 0.0116

Find the number of triangles in this case.
size(t,2)

ans = 816

Refine the mesh one more time. The maximal absolute error for uniform meshing is still greater than
for adaptive meshing.

[p,e,t] = refinemesh(g,p,e,t);

u = assempde('cirsb',p,e,t,1,0,0);
X =p(l,:);
y =p(2,:);

exact = ((x.72 + y.”2).7(1/3).*cos(2/3*atan2(y,x)))";
max(abs(u - exact))

ans = 0.0075

adaptmesh

Find the number of triangles in this case.
size(t,2)

ans = 3264

Plot the mesh.

pdemesh(p,e,t)

0.8r 7

06T 7

Uniform refinement with more triangles produces a larger error. Typically, a problem with regular
solution has an O(h?) error. However, this solution is singular since u =~ r!/3 at the origin.

Input Arguments

g — Geometry description
decomposed geometry matrix | geometry function | handle to geometry function

Geometry description, specified as a decomposed geometry matrix, a geometry function, or a handle
to the geometry function. For details about a decomposed geometry matrix, see decsg. For details
about a geometry function, see “Parametrized Function for 2-D Geometry Creation” on page 2-10.

A geometry function must return the same result for the same input arguments in every function call.
Thus, it must not contain functions and expressions designed to return a variety of results, such as
random number generators.

5-5

5 Functions

Data Types: double | char | string | function handle

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. Typically, you export a boundary matrix from the PDE Modeler app.

Example: b = 'circlebl',b = "circlebl",orb = @circlebl

Data Types: double | char | string | function handle

¢ — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. ¢ represents the ¢ coefficient in the scalar PDE

-V-(cVu)+au=f
or in the system of PDEs
-V:-(c®Vu)+au=f

The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the
value of 'Nonlin' to 'on'. The coefficients cannot be functions of the time t.

Example: 'cosh(x+y.”2)"'

Data Types: double | char | string | function handle

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

-V (cVu)+au=f
or in the system of PDEs
-V-(c®Vu)+au=f

The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the
value of 'Nonlin' to 'on'. The coefficients cannot be functions of the time t.

Example: 2*eye(3)
Data Types: double | char | string | function handle

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. T represents the f coefficient in the scalar PDE

-V (cVu)+au=f

or in the system of PDEs

adaptmesh

-V:(c®Vu)+au=f
The coefficients c, a, and f can depend on the solution u if you use the nonlinear solver by setting the
value of 'Nonlin' to 'on'. The coefficients cannot be function of the time t.
Example: char('sin(x)"'; 'cos(y)"'; 'tan(z)")

Data Types: double | char | string | function handle
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: [u,p,e,t] =
adaptmesh(g, 'cirsb',1,0,0, 'Maxt',500, 'Tripick', 'pdeadworst', 'Ngen',Inf)

Maxt — Maximum number of new triangles
Inf (default) | positive integer

Maximum number of new triangles, specified as the comma-separated pair consisting of 'Maxt' and
a positive integer.
Data Types: double

Ngen — Maximum number of triangle generations
10 (default) | positive integer

Maximum number of triangle generations, specified as the comma-separated pair consisting of
'Ngen' and a positive integer.
Data Types: double

Mesh — Initial mesh
mesh generated by initmesh (default) | [p, e, t] mesh

Initial mesh, specified as the comma-separated pair consisting of 'Mesh' and a mesh specified by
[p,e,t] triples. By default, the function uses the mesh generated by the initmesh function.
Data Types: double

Tripick — Triangle selection method
indices of triangles returned by pdeadworst (default) | MATLAB function

Triangle selection method, specified as the comma-separated pair consisting of 'Tripick' and a
MATLAB function. By default, the function uses the indices of triangles returned by the pdeadworst
function.

Given the error estimate computed by the function pdejmps, the triangle selection method identifies
the triangles to be refined in the next triangle generation. The function is called using the arguments
p, t, cc, aa, ff, u, errf, and Par.

* p and t represent the current generation of triangles.

* CC, aa, and ff are the current coefficients for the PDE problem, expanded to the triangle
midpoints.

5-7

5 Functions

* U is the current solution.
* errfisthe computed error estimate.
* Par is the optional argument of adaptmesh.

The matrices cc, aa, ff, and errf all have Nt columns, where Nt is the current number of triangles.
The numbers of rows in cc, aa, and ff are exactly the same as the input arguments c, a, and f. errf
has one row for each equation in the system. The two standard triangle selection methods are
pdeadworst and pdeadgsc.

* pdeadworst identifies triangles where errf exceeds a fraction of the worst value. The default
fraction value is 0.5. You can change it by specifying the Par argument value when calling
adaptmesh.

* pdeadgsc selects triangles using a relative tolerance criterion.
Data Types: double

Par — Function parameter for triangle selection method
0.5 (default) | number

Function parameter for the triangle selection method, specified as the comma-separated pair
consisting of 'Par' and a number between 0 and 1. The pdeadworst triangle selection method uses
it as its wlevel argument. The pdeadgsc triangle selection method uses it as its tol argument.

Data Types: double

Rmethod — Triangle refinement method
"longest' (default) | 'regular!’

Triangle refinement method, specified as the comma-separated pair consisting of 'Rmethod' and
either 'longest' or 'regular'. For details on the refinement method, see refinemesh.

Data Types: char | string

Nonlin — Toggle to use a nonlinear solver
"off' (default) | 'on'

Toggle to use a nonlinear solver, specified as the comma-separated pair consisting of 'Nonlin' and
‘on' or 'off".
Data Types: char | string

Toln — Nonlinear tolerance
le-4 (default) | positive number

Nonlinear tolerance, specified as the comma-separated pair consisting of ' Toln' and a positive
number. The function passes this argument to pdenonlin, which iterates until the magnitude of the
residual is less than Toln.

Data Types: double

Init — Nonlinear initial value
0 (default) | scalar | vector of characters | vector of numbers

Nonlinear initial value, specified as the comma-separated pair consisting of 'Init' and a scalar, a
vector of characters, or a vector of numbers. The function passes this argument to pdenonlin, which
uses it as an initial guess in its 'U@"' argument.

adaptmesh

Data Types: double

Jac — Nonlinear Jacobian calculation
'fixed' (default) | ' lumped' | 'full'’

Nonlinear Jacobian calculation, specified as the comma-separated pair consisting of 'Jac' and either
'fixed', 'lumped', or 'full'. The function passes this argument to pdenonlin, which uses it as
an initial guess in its 'Jacobian' argument.

Data Types: char | string

Norm — Nonlinear solver residual norm
Inf (default) | p value for LP norm

Nonlinear solver residual norm, specified as the comma-separated pair consisting of 'Norm' and p
value for LP norm. p can be any positive real value, Inf, or -Inf. The p norm of a vector v is
sum(abs(v)”p)~(1/p). The function passes this argument to pdenonlin, which uses it as an
initial guess in its 'Norm' argument.

Data Types: double | char | string

MesherVersion — Algorithm for generating initial mesh
'preR2013a' (default) | 'R2013a"

Algorithm for generating initial mesh, specified as the comma-separated pair consisting of
'MesherVersion' and either 'R2013a' or 'preR2013a'. The 'R2013a"' algorithm runs faster,
and can triangulate more geometries than the 'preR2013a"' algorithm. Both algorithms use
Delaunay triangulation.

Data Types: char | string

Output Arguments

u — PDE solution
vector

PDE solution, returned as a vector.

» Ifthe PDE is scalar, meaning that it has only one equation, then u is a column vector representing
the solution u at each node in the mesh.

» Ifthe PDE is a system of N > 1 equations, then u is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u represent the solution of
equation 1, the next Np elements represent the solution of equation 2, and so on.

p — Mesh points
2-by-Np matrix

Mesh points, returned as a 2-by-Np matrix. Np is the number of points (nodes) in the mesh. Column k
of p consists of the x-coordinate of point k in p(1, k) and the y-coordinate of point k in p(2, k). For
details, see “Mesh Data as [p,e,t] Triples” on page 2-150.

e — Mesh edges

7-by-Ne matrix

5-9

5 Functions

5-10

Mesh edges, returned as a 7-by-Ne matrix. Ne is the number of edges in the mesh. An edge is a pair of
points in p containing a boundary between subdomains, or containing an outer boundary. For details,
see “Mesh Data as [p,e,t] Triples” on page 2-150.

t — Mesh elements
4-by-Nt matrix

Mesh elements, returned as a 4-by-Nt matrix. Nt is the number of triangles in the mesh.

The t(1,k), with i ranging from 1 through end-1, contain indices to the corner points of element k.
For details, see “Mesh Data as [p,e,t] Triples” on page 2-150. The last row, t (end, k), contains the
subdomain numbers of the elements.

Algorithms
Mesh Refinement for Improving Solution Accuracy

Partial Differential Equation Toolbox provides the refinemesh function for global, uniform mesh
refinement for 2-D geometries. It divides each triangle into four similar triangles by creating new
corners at the mid-sides, adjusting for curved boundaries. You can assess the accuracy of the
numerical solution by comparing results from a sequence of successively refined meshes. If the
solution is smooth enough, more accurate results can be obtained by extrapolation.

The solutions of equations often have geometric features such as localized strong gradients. An
example of engineering importance in elasticity is the stress concentration occurring at reentrant
corners, such as the MATLAB L-shaped membrane. In such cases, it is more efficient to refine the
mesh selectively. The selection that is based on estimates of errors in the computed solutions is called
adaptive mesh refinement.

The adaptive refinement generates a sequence of solutions on successively finer meshes, at each
stage selecting and refining those elements that are judged to contribute most to the error. The
process stops34 when the maximum number of elements is exceeded, when each triangle contributes
less than a preset tolerance, or when an iteration limit is reached. You can provide an initial mesh, or
let adaptmesh call initmesh automatically. You also choose selection and termination criteria
parameters. The three components of the algorithm are the error indicator function (computes an
estimate of the element error contribution), the mesh refiner (selects and subdivides elements), and
the termination criteria.

Error Estimate for FEM Solution

The adaptation is a feedback process. It is easily applied to a larger range of problems than those for
which its design was tailored. Estimates, selection criteria, and so on must be optimal for giving the
most accurate solution at fixed cost or lowest computational effort for a given accuracy. Such results
have been proven only for model problems, but generally, the equidistribution heuristic has been
found nearly optimal. Element sizes must be chosen so that each element contributes the same to the
error. The theory of adaptive schemes makes use of a priori bounds for solutions in terms of the
source function f. For nonelliptic problems, such bounds might not exist, while the refinement scheme
is still well defined and works.

The error indicator function used in the software is an elementwise estimate of the contribution,
based on [1] and [2]. For Poisson's equation -Au = f on Q, the following error estimate for the FEM-
solution uy, holds in the L,-norm | - |:

IV(u = up)ll = alhf|| + BDn(up)

adaptmesh

where h = h(x) is the local mesh size, and

2] av 2
hT[a_nT]

1/2

The braced quantity is the jump in normal derivative of v across the edge T, h, is the length of the
edge T, and the sum runs over E;, the set of all interior edges of the triangulation. The coefficients a
and f are independent of the triangulation. This bound is turned into an elementwise error indicator
function E(K) for the element K by summing the contributions from its edges.

The general form of the error indicator function for the elliptic equation

V-(cVu)+au=f (5-1)
is

1/2

1

EK) = alh(f ~aw)lx +fl7 3, e cTup’
TEJ

where n; is the unit normal of the edge T and the braced term is the jump in flux across the element

edge. The L, norm is computed over the element K. The pdejmps function computes this error
indicator.

Mesh Refinement Functions

Partial Differential Equation Toolbox mesh refinement is geared to elliptic problems. For reasons of
accuracy and ill-conditioning, such problems require the elements not to deviate too much from being
equilateral. Thus, even at essentially one-dimensional solution features, such as boundary layers, the
refinement technique must guarantee reasonably shaped triangles.

When an element is refined, new nodes appear on its midsides, and if the neighbor triangle is not
refined in a similar way, it is said to have hanging nodes. The final triangulation must have no
hanging nodes, and they are removed by splitting neighbor triangles. To avoid further deterioration of
triangle quality in successive generations, the "longest edge bisection" scheme is used in [3], in which
the longest side of a triangle is always split, whenever any of the sides have hanging nodes. This
guarantees that no angle is ever smaller than half the smallest angle of the original triangulation.

There are two selection criteria. One, pdeadworst, refines all elements with value of the error
indicator larger than half the worst of any element. The other, pdeadgsc, refines all elements with an
indicator value exceeding a specified dimensionless tolerance. The comparison with the tolerance is
properly scaled with respect to domain, solution size, and so on.

Mesh Refinement Termination Criteria

For smooth solutions, error equidistribution can be achieved by the pdeadgsc selection if the
maximum number of elements is large enough. The pdeadworst adaptation only terminates when
the maximum number of elements has been exceeded or when the iteration limit is reached. This
mode is natural when the solution exhibits singularities. The error indicator of the elements next to
the singularity might never vanish, regardless of element size, making equidistribution impossible.

5-11

5 Functions

5-12

References

[1] Johnson, C. Numerical Solution of Partial Differential Equations by the Finite Element Method.
Lund, Sweden: Studentlitteratur, 1987.

[2] Johnson, C., and K. Eriksson. Adaptive Finite Element Methods for Parabolic Problems I: A Linear
Model Problem. SIAM J. Numer. Anal, 28, (1991), pp. 43-77.

[3] Rosenberg, I.G., and F. Stenger. A lower bound on the angles of triangles constructed by bisecting
the longest side. Mathematics of Computation. Vol 29, Number 10, 1975, pp 390-395.

See Also
initmesh | refinemesh

Topics
“Mesh Data as [p,e,t] Triples” on page 2-150

Introduced before R2006a

addCell

addCell

Combine two geometries by adding one inside a cell of another

Syntax
g3 = addCell(gl,g2)

Description

g3 = addCell(gl,g2) creates nonempty cells inside g1 using all cells of g2. All cells of the
geometry g2 must be contained inside one cell of the geometry gl. Ensure that the geometries do not
have enclosed cavities and do not intersect one another.

The combined geometry contains cells from both geometries. The cells from g1 retain their original
IDs, while the cells from g2 are numbered starting with N+1, where N is the number of cells in g1.

Note Added cells modify a geometry, but they do not modify the corresponding mesh. After
modifying a geometry, always call generateMesh to ensure a proper mesh association with the new
geometry.

Examples

Combine Two Geometries

Create and plot a geometry.

gl = multicuboid(2,2,2,'Zoffset',-1);
pdegplot(gl, 'CellLabels', 'on', 'FaceAlpha',0.5)

5-13

5 Functions

Import and plot another geometry.

g2 = importGeometry('DampingMounts.stl"');
pdegplot(g2, 'CellLabels', 'on', 'FaceAlpha',0.5)

5-14

addCell

200 1500

-400

1500

Scale and move the second geometry to fit entirely within the cube g1.

scale(g2,[1/1500 1/1500 1/100]);
translate(g2,[-0.5 -0.5 -0.5]);

g2
g2

Plot the result.
pdegplot(g2, 'CellLabels', 'on', 'FaceAlpha',0.5)

5-15

5 Functions

5-16

0.5 +

Combine the geometries and plot the result. The combined geometry g3 contains cells from both
geometries. The cell from g1 keeps its ID, and the cells from g2 are now C2, C3, C4, and C5.

g3 = addCell(gl,g2);
pdegplot(g3, 'CellLabels','on', 'FaceAlpha',0.4)

addCell

|:|.._ C"“i li
=) i
0.5 Q_—:)

Input Arguments

gl — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

g2 — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

Output Arguments

g3 — Resulting 3-D geometry
DiscreteGeometry object

Resulting 3-D geometry, returned as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

See Also
addFace | addVertex | addVoid | DiscreteGeometry

5-17

5 Functions

Introduced in R2021a

5-18

addFace

addFace

Package: pde

Fill void regions in 2-D and split cells in 3-D geometry

Syntax

h = addFace(g,edges)
[h,FaceID] = addFace(g,edges)

Description

h = addFace(g,edges) adds a new face to the geometry g. The specified edges must form a closed
contour. For a 2-D geometry, adding a new face lets you fill voids in the geometry. For a 3-D geometry,
adding a new face lets you split one cell into multiple cells.

You can add several new faces simultaneously by specifying their contours in a cell array. Each
contour in the cell array must be unique.

Note New faces modify a geometry, but they do not modify the mesh. After modifying a geometry,
always call generateMesh to ensure a proper mesh association with the new geometry.

[h,FaceID] = addFace(g,edges) also returns a row vector containing IDs of the added faces.

Examples

Fill Void Region in 2-D Geometry

Add a face to a 2-D geometry to fill an internal void.

Create a PDE model.

model = createpde();

Import the geometry. This geometry has one face.

gm = importGeometry(model, 'PlateSquareHolePlanar.stl")

gm =
DiscreteGeometry with properties:

NumCells: 0
NumFaces: 1
NumEdges: 8
NumVertices: 8
[

Vertices: [8x3 double]

Plot the geometry and display the face labels.

5-19

5 Functions

pdegplot(gm, 'FacelLabels', 'on")

2001
180
160

F1
140 1

120

1001 :

80 r

60

40 t

20T

0 50 100

Zoom in and display the edge labels of the small hole at the center.
figure

pdegplot(gm, 'EdgeLabels"', 'on")
axis([49 51 99 101])

5-20

addFace

101

100.8

100.6

100.4

100.2

100

99.8

g99.6

99.4

g9.2

g9

E1

EB

49 49.5 50 50.5 51

Fill the hole by adding a face. The number of faces in the geometry changes to 2.

addFace(gm,[1 8 4 5])

DiscreteGeometry with properties:

gm =

gm =
NumCells:
NumFaces:
NumEdges:
NumVertices:
Vertices:

0
2
8
8
[8x3 double]

Plot the modified geometry and display the face labels.

pdegplot(gm, 'FacelLabels', 'on')

5-21

5 Functions

200
180
160
F1
140 1

120

100t F2

0 50 100

Split Cells in 3-D Geometry
Add a face in a 3-D geometry to split a cell into two cells.

Create a PDE model.

model = createpde();

Import the geometry. The geometry consists of one cell.
gm = importGeometry(model, 'MotherboardFragmentl.stl"')

gm =
DiscreteGeometry with properties:

NumCells: 1

NumFaces: 26

NumEdges: 46
NumVertices: 34

Vertices: [34x3 double]

Plot the geometry and display the edge labels. Zoom in on the corresponding part of the geometry to
see the edge labels there more clearly.

5-22

addFace

pdegplot(gm, 'EdgeLabels', 'on', 'FaceAlpha',0.5)

0.04 - 4:_
1] y :-,._- E i
- 43
0.02 F 7 B 2

Split the cuboid on the right side into a separate cell. For this, add a face bounded by edges 1, 3, 6,

and 12.
[gm,ID] = addFace(gm,[1 3 6 12])

gm =
DiscreteGeometry with properties:
NumCells: 2
NumFaces: 27
NumEdges: 46

NumVertices: 34
Vertices: [34x3 doublel]

ID = 27
Plot the modified geometry and display the cell labels.

pdegplot(gm, 'CellLabels"', 'on', 'FaceAlpha',0.5)

5-23

5 Functions

0.04 -

0.02 ~

-0.02

N

0.02

0.04

Now split the cuboid on the left side of the board and all cylinders into separate cells by adding a face
at the bottom of each shape. To see edge labels more clearly, zoom and rotate the plot. Use a cell
array to add several new faces simultaneously.

[gm,IDs] = addFace(gm,{[5 7 8 101,
30, ...
31,
32,
33, ...
13})

gm =
DiscreteGeometry with properties:

NumCells: 8

NumFaces: 33

NumEdges: 46
NumVertices: 34

Vertices: [34x3 double]

IDs = 6x1

28
29
30
31
32

5-24

addFace

33

Plot the modified geometry and display the cell labels.

pdegplot(gm, 'CellLabels', 'on', 'FaceAlpha',0.5)

0.04

0.02 ~

-0.02

L

0.02

0.04

Input Arguments

g — Geometry
DiscreteGeometry object | AnalyticGeometry object

Geometry, specified as a DiscreteGeometry or AnalyticGeometry object.

edges — Edges forming unique closed flat contour
vector of positive integers | cell array of vectors of positive integers

Edges forming a unique closed flat contour, specified as a vector of positive integers or a cell array of
such vectors. You can specify edges within a vector in any order.

When you use a cell array to add several new faces, each contour in the cell array must be unique.

Example: addFace(g,[1 3 4 7])

5-25

5 Functions

Output Arguments

h — Resulting geometry
handle

Resulting geometry, returned as a handle.

FaceID — Face ID
positive number | row vector of positive numbers

Face ID, returned as a positive number or a row vector of positive numbers. Each number represents
a face ID. When you add a new face to a geometry with N faces, the ID of the added face is N + 1.

Tips
* addFace errors when the specified contour defines an already existing face.

* addFace always modifies the original geometry g.

See Also

DiscreteGeometry Properties | AnalyticGeometry Properties | addVertex | pdegplot |
importGeometry | geometryFromMesh | generateMesh | structuralBoundarylLoad |
structuralBC

Introduced in R2020a

5-26

addVertex

addVertex

Package: pde

Add a vertex on a geometry boundary

Syntax

VertexID = addVertex(g, 'Coordinates',Coords)

Description

VertexID = addVertex(g, 'Coordinates',Coords) adds a new isolated vertex at the point with
coordinates Coords to a boundary of the geometry g. To add several vertices simultaneously, specify
Coords as an N-by-2 matrix for a 2-D geometry or an N-by-3 matrix for a 3-D geometry. Here, N is the
number of new points.

If a point with the specified coordinates is slightly offset (within an internally specified tolerance)
from a geometry boundary, addVertex approximates it to a point on the boundary. If a vertex already
exists at the specified location, addVertex returns the ID of the existing vertex instead of creating
one.

Examples

Add Vertices on Edge of Block

Use addVertex to add a single vertex and multiple vertices on a side of a block geometry.
Create a PDE model.

model = createpde();

Import the geometry.

g = importGeometry(model, 'Block.stl');

Plot the geometry and display the vertex labels.
pdegplot(g, 'VertexLabels', 'on', 'FaceAlpha',0.5)

5-27

5 Functions

5-28

40 -

20~

100

Add a vertex on the edge of a block.

VertexID = addVertex(g, 'Coordinates',[20 0 50])
VertexID = 9

Plot the geometry and display the vertex labels.

pdegplot(g, 'VertexLabels', 'on', 'FaceAlpha',0.5)

addVertex

40 -

20~

Add three more vertices on the same edge of the block.

V = ([40 0 50; 60 0 50; 80 0 50]);
VertexIDs = addVertex(g, 'Coordinates',V)

VertexIDs = 3x1
10

11
12

Plot the geometry and display the vertex labels.

pdegplot(g, 'VertexLabels', 'on','FaceAlpha',0.5)

100

5-29

5 Functions

40 - 1

20~

100

Add a vertex at the corner of the block. Since there is already a vertex at the corner, addVertex does
not create a new vertex, but returns the ID of the existing vertex.

VertexID = addVertex(g, 'Coordinates',[100 0 50])

VertexID

5

Input Arguments

g — Geometry
DiscreteGeometry object

Geometry, specified as a DiscreteGeometry object.

Coords — Coordinates of new vertex
N-by-2 numeric matrix | N-by-3 numeric matrix

Coordinates of a new vertex, specified as an N-by-2 or N-by-3 numeric matrix for a 2-D or 3-D
geometry, respectively. Here, N is the number of new vertices.
Example: 'Coordinates',[0;0;1]

Data Types: double

5-30

addVertex

Output Arguments

VertexID — Vertex ID
row vector

Vertex ID, returned as a row vector of positive numbers. Each number represents a vertex ID. When

you add a new vertex to a geometry with N vertices, the ID of the added vertexis N + 1. If a vertex
already exists at the specified location, addVertex returns the ID of the existing vertex.

Limitations

* addVertex does not work with AnalyticGeometry objects. See AnalyticGeometry.

See Also

DiscreteGeometry Properties | addFace | pdegplot | importGeometry | geometryFromMesh |
generateMesh | structuralBoundaryLoad | structuralBC

Introduced in R2019b

5-31

5 Functions

addVoid

Create void regions inside 3-D geometry

Syntax

g3 = addVoid(gl,g2)

Description

g3 = addVoid(gl,g2) creates void regions inside g1 using all cells of g2. All cells of the geometry
g2 must be contained inside one cell of the geometry g1. Ensure that the geometries do not have
enclosed cavities and do not intersect one another.

Note Added void regions modify a geometry, but they do not modify the corresponding mesh. After
modifying a geometry, always call generateMesh to ensure a proper mesh association with the new
geometry.

Examples

Add Void Regions Inside Cube

Create and plot a geometry.

gl = multicuboid(2,2,2,'Zoffset',-1);
pdegplot(gl, 'CellLabels', 'on', 'FaceAlpha',0.5)

5-32

addVoid

Import and plot another geometry.

g2 = importGeometry('DampingMounts.stl"');
pdegplot(g2, 'CellLabels', 'on', 'FaceAlpha',0.5)

5-33

5 Functions

5-34

200 1500

-400

1500

Scale and move the second geometry to fit entirely within the cube g1.

scale(g2,[1/1500 1/1500 1/100]);
translate(g2,[-0.5 -0.5 -0.5]);

g2
g2

Plot the result.
pdegplot(g2, 'CellLabels', 'on', 'FaceAlpha',0.5)

addVoid

0.5 +

Create void regions inside the cube using the cells of the geometry g2. Plot the result.

g3 = addVoid(gl,g2);
pdegplot(g3, 'CellLabels', 'on', 'FaceAlpha',0.4)

5-35

5 Functions

)
.. (=
(=
0.5 - -
0 - = =
=
0.5 =)

Input Arguments

gl — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

g2 — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

Output Arguments

g3 — Resulting 3-D geometry
DiscreteGeometry object

Resulting 3-D geometry, returned as a DiscreteGeometry object. For more information, see
DiscreteGeometry.

See Also
addCell | addFace | addVertex | DiscreteGeometry

5-36

addVoid

Introduced in R2021a

5-37

5 Functions

5-38

AnalyticGeometry Properties

Analytic 2-D geometry description

Description

AnalyticGeometry describes a 2-D geometry in the form of an analytic geometry object. PDEMode',
StructuralModel, and ThermalModel objects have a Geometry property, which can be an
AnalyticGeometry or DiscreteGeometry object.

Add a 2-D analytic geometry to your model by using decsg to create the geometry and
geometryFromEdges to attach it to the model.

Properties
Properties

NumEdges — Number of geometry edges
positive integer

Number of geometry edges, returned as a positive integer.

Data Types: double

NumFaces — Number of geometry faces
positive integer

Number of geometry faces, returned as a positive integer. If your geometry is one connected region,
then NumFaces = 1.

Data Types: double

NumVertices — Number of geometry vertices
positive integer

Number of geometry vertices, returned as a positive integer.

Data Types: double

Vertices — Coordinates of geometry vertices
N-by-2 numeric matrix

Coordinates of geometry vertices, specified as an N-by-2 numeric matrix where N is the number of
vertices.

Data Types: double

See Also
geometryFromEdges | decsg | PDEModel | StructuralModel | ThermalModel |
DiscreteGeometry Properties

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

AnalyticGeometry Properties

Introduced in R2015a

5-39

5 Functions

5-40

applyBoundaryCondition

Package: pde

Add boundary condition to PDEModel container

Syntax

applyBoundaryCondition(model, 'dirichlet',RegionType,RegionID,Name,Value)
applyBoundaryCondition(model, 'neumann',RegionType,RegionID,Name,Value)
applyBoundaryCondition(model, 'mixed',RegionType,RegionID,Name,Value)

bc = applyBoundaryCondition()

Description

applyBoundaryCondition(model, 'dirichlet',RegionType,RegionID,Name,Value) adds a
Dirichlet boundary condition to model. The boundary condition applies to boundary regions of type
RegionType with ID numbers in RegionID, and with arguments r, h, u, EquationIndex specified
in the Name, Value pairs. For Dirichlet boundary conditions, specify either both arguments r and h,
or the argument u. When specifying u, you can also use EquationIndex.

applyBoundaryCondition(model, 'neumann',RegionType,RegionID,Name,Value) adds a
Neumann boundary condition to model. The boundary condition applies to boundary regions of type
RegionType with ID numbers in RegionID, and with values g and q specified in the Name, Value
pairs.

applyBoundaryCondition(model, 'mixed',RegionType,RegionID,Name,Value) adds an
individual boundary condition for each equation in a system of PDEs. The boundary condition applies
to boundary regions of type RegionType with ID numbers in RegionID, and with values specified in
the Name, Value pairs. For mixed boundary conditions, you can use Name, Value pairs from both
Dirichlet and Neumann boundary conditions as needed.

bc = applyBoundaryCondition() returns the boundary condition object.

Examples

Dirichlet Boundary Conditions

Create a PDE model and geometry.

model = createpde(1l);

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]1";
g = decsg(R1);

geometryFromEdges (model,g);

View the edge labels.

pdegplot(model, 'EdgelLabels', 'on")
xlim([-1.2,1.2])
axis equal

applyBoundaryCondition

0.4 . . =3 . ;
0.2 1
or B4 B2 -
0.2[1
0.4 : : £ : :
-1 0.5 0.5 1

Apply zero Dirichlet condition on the edge 1.

applyBoundaryCondition(model, 'dirichlet’,
'Edge',1,'u',0);

On other edges, apply Dirichlet condition h*u = r, whereh = land r = 1.
applyBoundaryCondition(model, 'dirichlet’,

'Edge',2:4,
Irlllllhlll);

Neumann Boundary Conditions

Create a PDE model and geometry.

model = createpde(2);

R1 = [3,4,-1,1,1,-1,-.4,-.4,.4,.4]1";
g = decsg(Rl);

geometryFromEdges (model,g);

View the edge labels.
pdegplot(model, 'EdgelLabels', 'on")

xlim([-1.2,1.2])
axis equal

5-41

5 Functions

0.4 T T B3 T T
0.2 7
o0r B4 B2 A
021 7
0.4 : : E :
-1 -0.5 0.5 1

Apply the following Neumann boundary conditions on the edge 4.

applyBoundaryCondition(model, 'neumann',

"Edge',4, ...
'g',[0;.123],
'q',[0;0;0;01);

Dirichlet and Neumann Boundary Conditions for Different Boundaries

Apply both types of boundary conditions to a scalar problem. First, create a PDE model and import a
simple block geometry.

model = createpde;
importGeometry(model, 'Block.stl');

View the face labels.

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

5-42

applyBoundaryCondition

40 -

20~

Fe&

F3

EA

100

Set zero Dirichlet conditions on the narrow faces, which are labeled 1 through 4.

applyBoundaryCondition(model, 'dirichlet’,
'Face',1:4,'u',0);

Set Neumann boundary conditions with opposite signs on faces 5 and 6.

applyBoundaryCondition(model, 'neumann', ...
'"Face',5,'qg',1);

applyBoundaryCondition(model, 'neumann’, .
'Face',6,'g',-1);

Solve an elliptic PDE with these boundary conditions, and plot the result.

specifyCoefficients(model, 'm',0,'d"',0,'c',1,'a"',0,'f",0);
generateMesh(model);

results = solvepde(model);

u = results.NodalSolution;

pdeplot3D(model, 'ColorMapData',u)

5-43

5 Functions

r

Individual Boundary Conditions for Equations in a System

Create a PDE model and import a simple block geometry.

model = createpde(3);
importGeometry(model, 'Block.stl');

View the face labels.

pdegplot(model, 'FacelLabels', 'on', 'FaceAlpha',0.5)

5-44

applyBoundaryCondition

40 -

20~

Fe&

F3

100

Set zero Dirichlet conditions on faces 1 and 2.

applyBoundaryCondition(model, 'dirichlet', ...
'Face',1:2,'u',[0,0,0]);

Set Neumann boundary conditions with opposite signs on faces 4, 5, and 6.

applyBoundaryCondition(model, 'neumann', .
'Face',4:5,'g',[1;1;1]);

applyBoundaryCondition(model, 'neumann', .
'Face',6,'g',[-1;-1;-11);

For face 3, apply generalized Neumann boundary condition for the first equation and Dirichlet
boundary conditions for the second and third equations.

[000;010;001];

[0;3;3];

[100;000;000];

[10;0;0];

pplyBoundaryCondition(model, 'mixed', 'Face',3,
'h',h,'r',r,'g'.gllql»Q);

h
r
q
g
a

Solve an elliptic PDE with these boundary conditions, and plot the result.
specifyCoefficients(model, 'm'

generateMesh(model);
results = solvepde(model);

5-45

5 Functions

u = results.NodalSolution;
pdeplot3D(model, 'ColorMapData',u(:,1))

Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde

RegionType — Geometric region type
"Face' for 3-D geometry | 'Edge ' for 2-D geometry

Geometric region type, specified as 'Face' for 3-D geometry or 'Edge' for 2-D geometry.
Example: applyBoundaryCondition(model, 'dirichlet', 'Face',3,'u’',0)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, specified as a vector of positive integers. Find the region IDs using pdegplot
with the 'FacelLabels' (3-D) or 'Edgelabels' (2-D) value setto 'on'.

5-46

applyBoundaryCondition

Example: applyBoundaryCondition(model, 'dirichlet', 'Face',3:6,'u',0)
Data Types: double

Name-Value Pair Arguments
Example: applyBoundaryCondition(model, 'dirichlet', 'Face',1:4,'u',0)

r — Dirichlet condition h*u = r
zeros (N, 1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, specified as a vector with N elements or a function handle. N is the
number of PDEs in the system. For the syntax of the function handle form of r, see “Nonconstant
Boundary Conditions” on page 2-116.

Example: 'r',[0;4;-1]
Data Types: double | function handle
Complex Number Support: Yes

h — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N~2 elements | function handle

Dirichlet condition h*u = r, specified as an N-by-N matrix, a vector with N~2 elements, or a
function handle. N is the number of PDEs in the system. For the syntax of the function handle form of
h, see “Nonconstant Boundary Conditions” on page 2-116.

Example: 'h',[2,1;1,2]

Data Types: double | function handle
Complex Number Support: Yes

g — Generalized Neumann condition n- (¢cxVu) + qu = ¢
zeros (N, 1) (default) | vector with N elements | function handle

Generalized Neumann condition n- (cxVu) + qu = g, specified as a vector with N elements or a
function handle. N is the number of PDEs in the system. For scalar PDEs, the generalized Neumann
condition is n- (cVu) + qu = g. For the syntax of the function handle form of g, see “Nonconstant
Boundary Conditions” on page 2-116.

Example: 'g',[3;2;-1]

Data Types: double | function handle
Complex Number Support: Yes

g — Generalized Neumann condition n- (¢cxVu) + qu = ¢
zeros (N) (default) | N-by-N matrix | vector with N*2 elements | function handle

Generalized Neumann condition n+ (cxVu) + qu = g, specified as an N-by-N matrix, a vector with
N"2 elements, or a function handle. N is the number of PDEs in the system. For the syntax of the
function handle form of q, see “Nonconstant Boundary Conditions” on page 2-116.

Example: 'q',eye(3)

Data Types: double | function handle
Complex Number Support: Yes

u — Dirichlet conditions
zeros (N, 1) (default) | vector of up to N elements | function handle

5-47

5 Functions

5-48

Dirichlet conditions, specified as a vector of up to N elements or as a function handle. If u has less
than N elements, then you must also use EquationIndex. The u and EquationIndex arguments
must have the same length. If u has N elements, then specifying EquationIndex is optional.

For the syntax of the function handle form of u, see “Nonconstant Boundary Conditions” on page 2-
116.

Example: applyBoundaryCondition(model, 'dirichlet', 'Face',[2,4,11],"'u',0)

Data Types: double

Complex Number Support: Yes

EquationIndex — Index of the known u components
1:N (default) | vector of integers with entries from 1 to N

Index of the known u components, specified as a vector of integers with entries from 1 to N.
EquationIndex and u must have the same length.

When using EquationIndex to specify Dirichlet boundary conditions for a subset of components,
use the mixed argument instead of dirichlet. The remaining components satisfy the default
Neumann boundary condition with the zero values for 'g' and 'q"'.

Example: applyBoundaryCondition(model, 'mixed', 'Face',[2,4,11],"'u",
[3,-1], "EquationIndex',[2,3])

Data Types: double

Vectorized — Vectorized function evaluation
"off' (default) | 'on'

Vectorized function evaluation, specified as 'on' or 'off'. This evaluation applies when you pass a
function handle as an argument. To save time in function handle evaluation, specify 'on', assuming
that your function handle computes in a vectorized fashion. See “Vectorization”. For details of this
evaluation, see “Nonconstant Boundary Conditions” on page 2-116.

Example: applyBoundaryCondition(model, 'dirichlet’, 'Face',
[2,4,11],'u',@ucalculator, 'Vectorized', 'on'")

Data Types: char | string

Output Arguments

bc — Boundary condition
BoundaryCondition object

Boundary condition, returned as a BoundaryCondition object. The model object contains a vector of
BoundaryCondition objects. bc is the last element of this vector.

Tips
* When there are multiple boundary condition assignments to the same geometric region, the
toolbox uses the last applied setting.

» To avoid assigning boundary conditions to a wrong region, ensure that you are using the correct
geometric region IDs by plotting and visually inspecting the geometry.

applyBoundaryCondition

» If you do not specify a boundary condition for an edge or face, the default is the Neumann
boundary condition with the zero values for 'g' and 'q"'.

See Also
findBoundaryConditions | BoundaryCondition | PDEModel

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

5-49

5 Functions

area

Package: pde

Area of 2-D mesh elements

Syntax

A = area(mesh)

[A,AE] = area(mesh)

A = area(mesh,elements)
Description

A = area(mesh) returns the area A of the entire mesh.

[A,AE] = area(mesh) also returns a row vector AE containing areas of each individual element of
the mesh.

A = area(mesh,elements) returns the combined area of the specified elements of the mesh.

Examples

Area of Entire 2-D Mesh

Generate a 2-D mesh and find its area.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function 1shapeg. Plot the geometry.

geometryFromEdges (model,@lshapeg);
pdegplot(model, 'FacelLabels', 'on')

5-50

area

F1

F2 F3

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh (model)

5-51

5 Functions

Compute the area of the entire mesh.

ma

area(mesh)

ma 3.0000

Area of Individual Elements of 2-D Mesh
Generate a 2-D mesh and find the area of each element.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function Lshapeg. Plot the geometry.

geometryFromEdges (model,@lshapeg) ;
pdegplot(model, 'FacelLabels', 'on")

5-52

area

F1

F2 F3

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh (model)

5-53

5 Functions

Compute the area of the entire mesh and the area of each individual element of the mesh. Display the
areas of the first 5 elements.

[ma,mi] = area(mesh);
mi(1l:5)

ans = 1x5

0.0047 0.0054 0.0053 0.0048 0.0061

Total Area of Group of Elements
Find the combined area of the elements associated with a particular face of a 2-D mesh.

Create a PDE model.

model = createpde;

Include the geometry of the built-in function 1shapeg. Plot the geometry.

geometryFromEdges (model,@lshapeg) ;
pdegplot(model, 'FaceLabels', 'on")

5-54

area

F1

F2 F3

Generate a mesh and plot it.

mesh = generateMesh(model);
figure
pdemesh (model)

5-35

5 Functions

5-56

0.8r]

Find the elements associated with face 1 and compute the total area of these elements.

Efl = findElements(mesh, 'region', 'Face',1);
mafl = area(mesh,Ef1)

mafl = 1.0000
Find how much of the total mesh area belongs to these elements. Return the result as a percentage.
mafl percent = mafl/area(mesh)*100

mafl percent = 33.3333

Input Arguments

mesh — Mesh object
Mesh property of a PDEModel object | output of generateMesh

Mesh object, specified as the Mesh property of a PDEModel object or as the output of
generateMesh.

Example: model.Mesh

elements — Element IDs
positive integer | matrix of positive integers

Element IDs, specified as a positive integer or a matrix of positive integers.

area

Example: [10 68 81 97 113 130 136 164]

Output Arguments

A — Area
positive number

Area of the entire mesh or the combined area of the specified elements of the mesh, returned as a
positive number.

AE — Areas of individual elements
row vector of positive numbers

Areas of individual elements, returned as a row vector of positive numbers.

See Also
volume | findElements | findNodes | meshQuality | FEMesh Properties

Topics
“Finite Element Method Basics” on page 1-11

Introduced in R2018a

3-57

5 Functions

asséma

(Not recommended) Assemble area integral contributions

Note assema is not recommended. Use assembleFEMatrices instead.

Syntax

[K,M,F] = assema(model,c,a,f)
[K,M,F] = assema(p,t,c,a,f)
Description

[K,M,F] = assema(model, c,a,f) assembles the stiffness matrix K, the mass matrix M, and the
load vector F using the mesh contained in model, and the PDE coefficients ¢, a, and f.

[K,M,F] = assema(p,t,c,a,f) assembles the matrices from the mesh data in p and t.

Examples

Assemble Finite Element Matrices
Assemble finite element matrices for an elliptic problem on complicated geometry.
The PDE is Poisson's equation,
-V-Vu=1.
Partial Differential Equation Toolbox™ solves equations of the form
-V-(cVu)+au=f.
So, represent Poisson's equation in toolbox syntax by settingc=1,a =0, and f = 1.

C 1;
0;
1

’

a
f
Create a PDE model container. Import the ForearmLink. st file into the model and examine the
geometry.

model = createpde;

importGeometry(model, 'ForearmLink.stl');
pdegplot(model, 'FaceAlpha',0.5)

5-58

assema

60

40 -

20 -

=20 y

40 -

50 0

100 20

Create a mesh for the model.

generateMesh(model) ;

Create the finite element matrices from the mesh and the coefficients.

[K,M,F] = assema(model,c,a,f);

The returned matrix K is quite sparse. M has no nonzero entries.

disp(['Fraction of nonzero entries in K is ',num2str(nnz(K)/numel(K))1)
Fraction of nonzero entries in K is 0.001094

disp(['Number of nonzero entries in M is ',num2str(nnz(M))])

Number of nonzero entries in M is 0

Assemble Finite Element Matrices Using [p,e,t] Mesh
Assemble finite element matrices for the 2-D L-shaped region, using the [p,e,t] mesh representation.
Define the geometry using the 1shapeg function included your software.

g = @lshapeg;

5-59

5 Functions

5-60

Use coefficientsc = 1,a = 0,and f = 1.

C 1;
0;
1

’

a
f
Create a mesh and assemble the finite element matrices.

initmesh(qg);
assema(p,t,c,a,f);

[p,e,t]
[K,M,F]

The returned matrix M has all zeros. The K matrix is quite sparse.
disp(['Fraction of nonzero entries in K is ',num2str(nnz(K)/numel(K))])
Fraction of nonzero entries in K is 0.042844

disp(['Number of nonzero entries in M is ',num2str(nnz(M))])

Number of nonzero entries in M is 0

Input Arguments

model — PDE model
PDEModel object

PDE model, specified as a PDEModel object.

Example: model = createpde

¢ — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. ¢ represents the ¢ coefficient in the scalar PDE

-V (cVu)+au=f
or in the system of PDEs

-V-(c®Vu)+au=f
Example: 'cosh(x+y.”2)"

Data Types: double | char | string | function handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

-V (cVu)+au=f
or in the system of PDEs

-V-(c®Vu)+au=f

assema

Example: 2*eye(3)

Data Types: double | char | string | function handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. f represents the f coefficient in the scalar PDE

-V (cVu)+au=f
or in the system of PDEs
-V-(c®Vu)+au=f

Example: char('sin(x)"';'cos(y)"'; 'tan(z)")

Data Types: double | char | string | function handle
Complex Number Support: Yes

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

Output Arguments

K — Stiffness matrix
sparse matrix

Stiffness matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

Typically, you use K in a subsequent call to assempde.

5-61

5 Functions

M — Mass matrix
sparse matrix

Mass matrix. returned as a sparse matrix. See “Elliptic Equations” on page 5-93.
Typically, you use M in a subsequent call to a solver such as assempde or hyperbolic.

F — Load vector
vector

Load vector, returned as a vector. See “Elliptic Equations” on page 5-93.

Typically, you use F in a subsequent call to assempde.

See Also
assembleFEMatrices

Introduced before R2006a

5-62

assemb

assemb

(Not recommended) Assemble boundary condition contributions

Note assemb is not recommended. Use assembleFEMatrices instead.

Syntax

[Q,G,H,R] = assemb(model)
[Q,G,H,R] = assemb(b,p,e)
[Q,G,H,R] = assemb(_ ,[],sdl)
Description

[Q,G,H,R] = assemb(model) assembles the matrices Q and H, and the vectors G and R. Q should
be added to the system matrix and contains contributions from mixed boundary conditions.

[Q,G,H,R] = assemb(b,p,e) assembles the matrices based on the boundary conditions specified
in b and the mesh data in p and e.

[Q,G,H,R] = assemb(,[],sdl), for any of the previous input arguments, restricts the finite
element matrices to those that include the subdomain specified by the subdomain labels in sd1. The
empty argument is required in this syntax for historic and compatibility reasons.

Examples

Assemble Boundary Condition Matrices

Assemble the boundary condition matrices for an elliptic PDE.

The PDE is Poisson's equation,
-V-Vu=1.

Partial Differential Equation Toolbox™ solves equations of the form
-V-(cVu)+au=f.

So, represent Poisson's equation in toolbox syntax by settingc=1,a =0, and f = 1.

C

1;
0;
1

’

a
f
Create a PDE model container. Import the ForearmLink. st file into the model and examine the

geometry.

model = createpde;
importGeometry(model, 'Block.stl');

5-63

5 Functions

5-64

h = pdegplot(model, 'FaceLabels','on');
h(1l).FaceAlpha = 0.5;

<

40 -

20 ~ F6

F3

100

Set zero Dirichlet boundary conditions on the narrow faces (numbered 1 through 4).
applyBoundaryCondition(model, 'Face',1:4,'u',0);
Set a Neumann condition with g = -1 on face 6, and g = 1 on face 5.

applyBoundaryCondition(model, 'Face',6,'qg"',-1);
applyBoundaryCondition(model, 'Face',5,'g"',1);

Create a mesh for the model.

generateMesh(model);

Create the boundary condition matrices for the model.

[Q,G,H,R] = assemb(model);

The H matrix is quite sparse. The Q matrix has no nonzero entries.
disp(['Fraction of nonzero entries in H is ',num2str(nnz(H)/numel(H))])
Fraction of nonzero entries in H is 7.8796e-05

disp(['Number of nonzero entries in Q is ',num2str(nnz(Q))])

Number of nonzero entries in Q is 0

assemb

Assemble Boundary Matrices Using [p,e,t] Mesh

Assemble boundary condition matrices for the 2-D L-shaped region with Dirichlet boundary
conditions, using the [p,e,t] mesh representation.

Define the geometry and boundary conditions using functions included in your software.

@lshapeg;
@lshapeb;

9
b

Create a mesh for the geometry.

[p,e,t] = initmesh(g);

Create the boundary matrices.

[Q,G,H,R] = assemb(b,p,e);

Only one of the resulting matrices is nonzero, namely H. The H matrix is quite sparse.
disp(['Fraction of nonzero entries in H is ',num2str(nnz(H)/numel(H))])

Fraction of nonzero entries in H is 0.0066667

Input Arguments

model — PDE model
PDEMode'l object

PDE model, specified as a PDEModel object.

Example: model = createpde

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler

app.
Example:b = 'circlebl',b = "circlebl",orb = @circlebl

Data Types: double | char | string | function handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)

5-65

5 Functions

5-66

Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

sdl — Subdomain labels
vector of positive integers

Subdomain labels, specified as a vector of positive integers. For 2-D geometry only. View the
subdomain labels in your geometry using the command

pdegplot(g, 'SubdomainLabels"', 'on')

Example: sdl = [1,3:5];
Data Types: double

Output Arguments

Q — Neumann boundary condition matrix
sparse matrix

Neumann boundary condition matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-
93.

Typically, you use Q in a subsequent call to a solver such as assempde or hyperbolic.

G — Neumann boundary condition vector
Sparse vector

Neumann boundary condition vector, returned as a sparse vector. See “Elliptic Equations” on page 5-
93.

Typically, you use G in a subsequent call to a solver such as assempde or hyperbolic.

H — Dirichlet matrix
sparse matrix

Dirichlet matrix, returned as a sparse matrix. See “Algorithms” on page 5-67.
Typically, you use H in a subsequent call to assempde.

R — Dirichlet vector
sparse vector

Dirichlet vector, returned as a sparse vector. See “Algorithms” on page 5-67.

assemb

Typically, you use R in a subsequent call to assempde.

Algorithms

As explained in “Elliptic Equations” on page 5-93, the finite element matrices and vectors
correspond to the reduced linear system and are the following.

* Qs the integral of the q boundary condition against the basis functions.

* Gis the integral of the g boundary condition against the basis functions.

* His the Dirichlet condition matrix representing hu = r.

* Ris the Dirichlet condition vector for Hu = R.

For more information on the reduced linear system form of the finite element matrices, see the
assempde “More About” on page 5-93 section, and the linear algebra approach detailed in “Systems
of PDEs” on page 5-99.

See Also
assembleFEMatrices

Introduced before R2006a

5-67

5 Functions

5-68

assembleFEMatrices

Assemble finite element matrices

Syntax

FEM = assembleFEMatrices(model)

FEM = assembleFEMatrices(model,matrices)
FEM = assembleFEMatrices(model,bcmethod)
FEM = assembleFEMatrices(,state)
Description

FEM = assembleFEMatrices(model) returns a structural array containing all finite element
matrices for a PDE problem specified as a model.

FEM = assembleFEMatrices(model,matrices) returns a structural array containing only the
specified finite element matrices.

FEM = assembleFEMatrices(model,bcmethod) assembles finite element matrices and imposes
boundary conditions using the method specified by bcmethod.

FEM = assembleFEMatrices(,state) assembles finite element matrices using the input
time or solution specified in the state structure array. The function uses the time field of the
structure for time-dependent models and the solution field u for nonlinear models. You can use this
argument with any of the previous syntaxes.

Examples

Finite Element Matrices for 2-D Problem

Create a PDE model for the Poisson equation on an L-shaped membrane with zero Dirichlet boundary
conditions.

model = createpde(1l);

geometryFromEdges (model,@lshapeq);

specifyCoefficients(model, 'm',0,'d"',0,'c',1,'a",0,'f",1);

applyBoundaryCondition(model, 'Edge',1l:model.Geometry.NumEdges,
‘u',0);

Generate a mesh and obtain the default finite element matrices for the problem and mesh.

generateMesh(model, 'Hmax',0.2);
FEM = assembleFEMatrices(model)

FEM struct with fields:
[401x401 double]
[401x401 double]
[401x1 double]
[401x401 double]

[

401x1 double]

oo > X

assembleFEMatrices

H: [80x401 double]
R: [80x1 double]
M: [401x401 double]

Specified Set of Finite Element Matrices
Make computations faster by specifying which finite element matrices to assemble.

Create a transient thermal model and include the geometry of the built-in function squareg.

thermalmodel = createpde('thermal', 'steadystate');
geometryFromEdges (thermalmodel,@squareqg) ;

Plot the geometry with the edge labels.

pdegplot(thermalmodel, 'EdgelLabels', 'on")
xlim([-1.1 1.11)
ylim([-1.1 1.1])

08r1]

0.2r T

Specify the thermal conductivity of the material and the internal heat source.

thermalProperties(thermalmodel, 'ThermalConductivity',0.2);
internalHeatSource(thermalmodel, 10);

Set the boundary conditions.

5-69

5 Functions

thermalBC(thermalmodel, 'Edge',[1,3], 'Temperature',100);
Generate a mesh.

generateMesh(thermalmodel);

Assemble the stiffness and mass matrices.

FEM_KM

assembleFEMatrices(thermalmodel, 'KM")

FEM KM = struct with fields:
K: [1541x1541 doublel
M: [1541x1541 double]

Now, assemble the finite element matrices M, K, A, and F.

FEM_MKAF

assembleFEMatrices(thermalmodel, 'MKAF")

FEM MKAF = struct with fields:

M: [1541x1541 double]
[1541x1541 doublel]
[1541x1541 doublel]
[1541x1 double]

m > X

The four matrices M, K, A, and F correspond to discretized versions of the PDE coefficients m, c, a,
and f. These four matrices also represent the domain of the finite-element model of the PDE. Instead
of specifying them explicitly, you can use the domain argument.

FEMd = assembleFEMatrices(thermalmodel, 'domain')

FEMd = struct with fields:
[1541x1541 double]

[1541x1541 doublel]

[1541x1541 double]

[1541x1 double]

mr>» X =

The four matrices Q, G, H, and R, correspond to discretized versions of ¢, g, h, and r in the Neumann
and Dirichlet boundary condition specification. These four matrices also represent the boundary of
the finite-element model of the PDE. Use the boundary argument to assemble only these matrices.

FEMb = assembleFEMatrices(thermalmodel, 'boundary")

FEMb = struct with fields:
[74x1541 double]
[74x1 double]
[1541x1 double]
[1541x1541 double]

oo XIT

Finite Element Matrices with nullspace and stiff-spring Methods

Create a PDE model for the Poisson equation on an L-shaped membrane with zero Dirichlet boundary
conditions.

5-70

assembleFEMatrices

model = createpde(1l);

geometryFromEdges (model,@lshapeg);

specifyCoefficients(model, 'm',0,'d"',0,'c',1,'a"',0,'f",1);

applyBoundaryCondition(model, 'Edge’',1l:model.Geometry.NumEdges,
‘u',0);

Generate a mesh.

generateMesh(model, 'Hmax',0.2);

Obtain the finite element matrices after imposing the boundary condition using the null-space
approach. This approach eliminates the Dirichlet degrees of freedom and provides a reduced system
of equations.

FEMn = assembleFEMatrices(model, 'nullspace')

FEMn = struct with fields:
Kc: [321x321 double]
Fc: [321x1 double]
B: [401x321 double]
ud: [401x1 double]
M: [321x321 double]

Obtain the solution to the PDE using the nullspace finite element matrices.

un = FEMn.B*(FEMn.Kc\FEMn.Fc) + FEMn.ud;

Compare this result to the solution given by solvepde. The two solutions are identical.

ul = solvepde(model);
norm(un - ul.NodalSolution)

ans = 0

Obtain the finite element matrices after imposing the boundary condition using the stiff-spring
approach. This approach retains the Dirichlet degrees of freedom, but imposes a large penalty on
them.

FEMs = assembleFEMatrices(model, 'stiff-spring')

FEMs = struct with fields:
Ks: [401x401 double]
Fs: [401x1 double]
M: [401x401 double]

Obtain the solution to the PDE using the stiff-spring finite element matrices. This technique gives a
less accurate solution.

us = FEMs.Ks\FEMs.Fs;
norm(us - ul.NodalSolution)

ans = 0.0098

5-71

5 Functions

Finite Element Matrices for Time-Dependent Problem
Assemble finite element matrices for the first and last time steps of a transient structural problem.

Create a transient structural model for solving a solid (3-D) problem.

structuralmodel = createpde('structural', 'transient-solid');

Create the geometry and include it in the model. Plot the geometry.

gm = multicylinder(0.01,0.05);

addVertex(gm, 'Coordinates',[0,0,0.05]);
structuralmodel.Geometry = gm;

pdegplot(structuralmodel, 'FacelLabels', 'on', 'FaceAlpha',0.5)

$

0.05 -

0.04

0.03 A

0.02

0.01

-0.01

L

-0.02

0.01

Specify the Young's modulus and Poisson's ratio.
structuralProperties(structuralmodel, 'Cell', 1, 'YoungsModulus',6201E9,
'PoissonsRatio', 0.3,
'MassDensity',7800);
Specify that the bottom of the cylinder is a fixed boundary.

structuralBC(structuralmodel, 'Face',1, 'Constraint', 'fixed');

Specify the harmonic pressure on the top of the cylinder.

5-72

assembleFEMatrices

structuralBoundarylLoad(structuralmodel, 'Face',2, ...
'Pressure',5E7,
'Frequency',50);
Specify the zero initial displacement and velocity.

structuralIC(structuralmodel, 'Displacement',[0;0;0],
'Velocity',[0;0;0]);

Generate a linear mesh.

generateMesh(structuralmodel, 'GeometricOrder"', 'linear"');
tlist = linspace(0,1,300);

Assemble the finite element matrices for the initial time step.

state.time
FEM domain

tlist(1);
assembleFEMatrices(structuralmodel, state)

FEM domain = struct with fields:
: [6633x6633 double]
[6633x6633 double]
[6633x1 double]
[6633x6633 double]
[6633x1 double]

[249x6633 double]

[249x1 doublel]

[6633x6633 double]

EXITOOoT> X

Pressure applied at the top of the cylinder is the only time-dependent quantity in the model. To model
the dynamics of the system, assemble the boundary-load finite element matrix G for the initial,
intermediate, and final time steps.

state.time = tlist(1l);
FEM boundary init = assembleFEMatrices(structuralmodel, 'G',state)

FEM boundary init = struct with fields:
G: [6633x1 double]
state.time = tlist(floor(length(tlist)/2));
FEM boundary half = assembleFEMatrices(structuralmodel, 'G',state)
FEM boundary half = struct with fields:
G: [6633x1 double]

state.time = tlist(end);
FEM boundary final = assembleFEMatrices(structuralmodel, 'G', state)

FEM boundary final = struct with fields:
G: [6633x1 double]

5-73

5 Functions

Finite Element Matrices for Nonlinear Problem

Assemble finite element matrices for a heat transfer problem with temperature-dependent thermal
conductivity.

Create a steady-state thermal model.
thermalmodelS = createpde('thermal', 'steadystate');

Create a 2-D geometry by drawing one rectangle the size of the block and a second rectangle the size
of the slot.

ri=[34-.5.5.5-.5 -.8-.8.8.8];
rz=1_[34-.05 .05 .05 -.05 -.4 -.4 .4 .4];
gdm = [rl; r2]';

Subtract the second rectangle from the first to create the block with a slot.
g = decsg(gdm, 'R1-R2',['R1'; 'R2']');

Convert the decsg format into a geometry object. Include the geometry in the model and plot the
geometry.

geometryFromEdges (thermalmodelS,g);

figure

pdegplot(thermalmodelS, 'EdgelLabels', 'on');
axis([-.9 .9 -.9 .9]);

06| 1
0.4 Es| i
0.2} 1

Or =5 EB H3 =y 1
02r]
04T ES]
06T]
08T E7]

0.8 06 -04 02 0 0.2 04 06 08

5-74

assembleFEMatrices

Set the temperature on the left edge to 100 degrees. Set the heat flux out of the block on the right
edge to -10. The top and bottom edges and the edges inside the cavity are all insulated: there is no
heat transfer across these edges.

thermalBC(thermalmodelS, 'Edge',6, 'Temperature',100);
thermalBC(thermalmodelS, 'Edge',1, 'HeatFlux', -10);

Specify the thermal conductivity of the material as a simple linear function of temperature u.

k = @(~,state) 0.7+0.003*state.u;
thermalProperties(thermalmodelS, 'ThermalConductivity', k) ;

Generate a mesh.

generateMesh(thermalmodelS);

Calculate the steady-state solution.

Rnonlin = solve(thermalmodelS);

Because the thermal conductivity is nonlinear (depends on the temperature), compute the system
matrices corresponding to the converged temperature. Assign the temperature distribution to the u
field of the state structure array. Because the u field must contain a row vector, transpose the
temperature distribution.

state.u = Rnonlin.Temperature."';
Assemble finite element matrices using the temperature distribution at the nodal points.
FEM = assembleFEMatrices(thermalmodelS, 'nullspace’',state)
FEM = struct with fields:
Kc: [1277x1277 double]
Fc: [1277x1 double]
B: [1320x1277 doublel]

ud: [1320x1 double]
M: [1277x1277 doublel

Compute the solution using the system matrices to verify that they yield the same temperature as
Rnonlin.

u = FEM.B*(FEM.Kc\FEM.Fc) + FEM.ud;

Compare this result to the solution given by solve.

norm(u - Rnonlin.Temperature)

ans = 5.9035e-05

Input Arguments
model — Model object

PDEModel object | ThermalModel object | StructuralModel object | ELlectroMagneticModel
object

3-75

5 Functions

5-76

Model object, specified as a PDEModel object, ThermalModel object, StructuralModel object, or
ElectroMagneticModel object.

assembleFEMatrices does not support assembling FE matrices for 3-D magnetostatic analysis
models.

Example: model = createpde(1l)
Example: thermalmodel = createpde('thermal’', 'steadystate')
Example: structuralmodel = createpde('structural', 'static-solid')

Example: emagmodel = createpde('electromagnetic', 'electrostatic')

bcmethod — Method for including boundary conditions
‘none’ (default) | 'nullspace’ | 'stiff-spring’

Method for including boundary conditions, specified as 'none', 'nullspace’', or 'stiff-
spring'. For more information, see “Algorithms” on page 5-77.

Example: FEM = assembleFEMatrices(model, 'nullspace')

Data Types: char | string

matrices — Matrices to assemble
matrix identifiers | 'boundary' | 'domain’

Matrices to assemble, specified as:

* Matrix identifiers, such as 'F', '"MKF', 'K', and so on — Assemble the corresponding matrices.
Each uppercase letter represents one matrix: K, A, F, Q, G, H, R, M, and T. You can combine several
letters into one character vector or string, such as 'MKF'.

* ‘'boundary' — Assemble all matrices related to geometry boundaries.
* 'domain' — Assemble all domain-related matrices.

Example: FEM = assembleFEMatrices(model, 'KAF'")
Data Types: char | string

state — Time for time-dependent models and solution for nonlinear models
structure array

Time for time-dependent models and solution for nonlinear models, specified in a structure array. The
array fields represent the following values:

* state.time contains a nonnegative number specifying the time value for time-dependent
models.

* state.u contains a solution matrix of size N-by-Np that can be used to assemble matrices in a
nonlinear problem setup, where coefficients are functions of state.u. Here, N is the number of
equations in the system, and Np is the number of nodes in the mesh.

Example: state.time = tlist(end); FEM =
assembleFEMatrices(model, 'boundary',state)

assembleFEMatrices

Output Arguments

FEM — Finite element matrices
structural array

Finite element matrices, returned as a structural array. Use the bcmethod and matrices arguments
to specify which finite element matrices you want to assemble.

The fields in the structural array depend on bcmethod:

o Ifthe value is 'none’, then the fields are K, A, F, Q, G, H, R, and M.
» Ifthe valueis 'nullspace’, then the fields are Kc, Fc, B, ud, and M.
o Ifthevalueis 'stiff-spring’, then the fields are Ks, Fs, and M.

The fields in the structural array also depend on matrices:

« Ifthe value is boundary, then the fields are all matrices related to geometry boundaries.
» If the value is domain, then the fields are all domain-related matrices.

» If the value is a matrix identifier or identifiers, such as 'F', 'MKF', 'K"', and so on, then the fields
are the corresponding matrices.

For more information, see “Algorithms” on page 5-77.

Algorithms
Partial Differential Equation Toolbox solves equations of the form
maz—u+d6—u—v-(c®Vu)+au—f
8t2 ot h

and eigenvalue equations of the form

-V :(c® Vu)+au = Adu
or

—V-(c®Vu)+au=A2mu

with the Dirichlet boundary conditions, hu = r, and Neumann boundary conditions,
n-(c®Vu)+qu=g.

assembleFEMatrices returns the following full finite element matrices and vectors that represent
the corresponding PDE problem:
* Kis the stiffness matrix, the integral of the discretized version of the c coefficient.

* Mis the mass matrix, the integral of the discretized version of the m or d coefficients. M is nonzero
for time-dependent and eigenvalue problems.

* Ais the integral of the discretized version of the a coefficient.

* Fis the integral of the discretized version of the f coefficient. For thermal, electromagnetic, and
structural problems, F is a source or body load vector.

* Qis the integral of the discretized version of the q term in a Neumann boundary condition.

5-77

5 Functions

5-78

* G is the integral of the discretized version of the g term in a Neumann boundary condition. For
structural problems, G is a boundary load vector.

* The H and R matrices come directly from the Dirichlet conditions and the mesh.
Imposing Dirichlet Boundary Conditions

The 'nullspace’ technique eliminates Dirichlet conditions from the problem using a linear algebra
approach. It generates the combined finite-element matrices Kc, Fc, B, and vector ud corresponding
to the reduced system Kc*u = Fc¢, whereKc = B'*(K + A + Q)*B,and Fc = B'*(F + G). The
B matrix spans the null space of the columns of H (the Dirichlet condition matrix representing h*ud =
r). The R vector represents the Dirichlet conditions in H*ud = R. The ud vector has the size of the
solution vector. Its elements are zeros everywhere except at Dirichlet degrees-of-freedom (DoFs)
locations where they contain the prescribed values.

From the 'nullspace' matrices, you can compute the solution u as
u = B*(Kc\Fc) + ud.

If you assembled a particular set of matrices, for example G and M, you can impose the boundary
conditions on G and M as follows. First, compute the nullspace of columns of H.

[B,0r] = pdenullorth(H);
ud = Or*((H*Or\R)); % Vector with known value of the constraint DoF.

Then use the B matrix as follows. To eliminate Dirichlet degrees of freedom from the load vector G,
use:

GwithBC = B'*G
To eliminate Dirichlet degrees of freedom from mass matrix, use:
M = B'*M*B

You can eliminate Dirichlet degrees of freedom from other vectors and matrices using the same
technique.

The 'stiff-spring’' technique converts Dirichlet boundary conditions to Neumann boundary
conditions using a stiff-spring approximation. It returns a matrix Ks and a vector Fs that together
represent a different type of combined finite element matrices. The approximate solution is u = Ks
\Fs. Compared to the 'nullspace"' technique, the 'stiff-spring' technique generates matrices
more quickly, but generally gives less accurate solutions.

Note Internally, the toolbox uses the 'nullspace' approach to impose Dirichlet boundary
conditions while computing the solution using solvepde and solve.

Degrees of Freedom (DoFs)

If the number of nodes in a model is NumNodes, and the number of equations is N, then the length of
column vectors u and ud is N*NumNodes. The toolbox assigns the IDs to the degrees of freedom in u
and ud:

* Entries from 1 to NumNodes correspond to the first equation.

* Entries from NumNodes+1 to 2*NumNodes correspond to the second equation.

assembleFEMatrices

* Entries from 2*NumNodes+1 to 3*NumNodes correspond to the third equation.
The same approach applies to all other entries, up to N*NumNodes.

For example, in a 3-D structural model, the length of a solution vector u is 3*NumNodes. The first
NumNodes entries correspond to the x-displacement at each node, the next NumNodes entries
correspond to the y-displacement, and the next NumNodes entries correspond to the z-displacement.

Thermal, Structural, and Electromagnetic Analysis

In thermal analysis, the m and a coefficients are zeros. The thermal conductivity maps to the ¢
coefficient. The product of the mass density and the specific heat maps to the d coefficient. The
internal heat source maps to the f coefficient. The temperature on a boundary corresponds to the
Dirichlet boundary condition term r with h = 1. Various forms of boundary heat flux, such as the
heat flux itself, emissivity, and convection coefficient, map to the Neumann boundary condition terms
g and g.

In structural analysis, the a coefficient is zero. The Young's modulus and Poisson's ratio map to the c
coefficient. The mass density maps to the m coefficient. The body loads map to the f coefficient.
Displacements, constraints, and components of displacement along the axes, map to the Dirichlet
boundary condition terms h and r. Boundary loads, such as pressure, surface tractions, and
translational stiffnesses, correspond to the Neumann boundary condition terms q and g. When you
specify the damping model by using the Rayleigh damping parameters Alpha and Beta, the
discretized damping matrix C is computed by using the mass matrix M and the stiffness matrix K as C
= Alpha*M + Beta*K.

In electrostatic and magnetostatic analyses, the m, a, and d coefficients are zeros. The relative
permittivity and relative permeability map to the c coefficient. The charge density and current
density map to the f coefficient. The voltage and magnetic potential on a boundary correspond to the
Dirichlet boundary condition term r with h = 1.

Note Assembling FE matrices does not work for 3-D magnetostatic analysis.

See Also
PDEModel | ThermalModel | StructuralModel | ElectromagneticModel | solvepde | solve

Topics
“Finite Element Method Basics” on page 1-11
“Equations You Can Solve Using PDE Toolbox” on page 1-3

Introduced in R2016a

5-79

5 Functions

5-80

assempde

(Not recommended) Assemble finite element matrices and solve elliptic PDE

Note assempde is not recommended. Use solvepde instead.

Syntax

u
u

assempde(model,c,a,f)
assempde(b,p,e,t,c,a,f)

[Kc,Fc,B,ud] = assempde()
[Ks,Fs] = assempde()

assempde()
assempde(,[],sdl)

u = assempde(K,M,F,Q,G,H,R)
[Ks,Fs] = assempde(K,M,F,Q,G,H,R)
[Kc,Fc,B,ud] = assempde(K,M,F,Q,G,H,R)

Description

u = assempde(model, c,a, f) solves the PDE
-V (cVu)+au=f

with geometry, boundary conditions, and finite element mesh in model, and coefficients c, a, and f. If
the PDE is a system of equations (model.PDESystemSize > 1), then assempde solves the system of
equations

-V:-(c®Vu)+au=f

u = assempde(b,p,e,t,c,a,f) solves the PDE with boundary conditions b, and finite element
mesh (p,e,t).

[Kc,Fc,B,ud] = assempde(), for any of the previous input syntaxes, assembles finite
element matrices using the reduced linear system form, which eliminates any Dirichlet boundary
conditions from the system of linear equations. You can calculate the solution u at node points by the
command u = B*(Kc\Fc) + ud. See “Reduced Linear System” on page 5-93.

[Ks,Fs] = assempde() assembles finite element matrices that represent any Dirichlet
boundary conditions using a stiff-spring approximation. You can calculate the solution u at node
points by the command u = Ks\Fs. See “Stiff-Spring Approximation” on page 5-93.

[K,M,F,Q,G,H,R] = assempde() assembles finite element matrices that represent the PDE
problem. This syntax returns all the matrices involved in converting the problem to finite element
form. See “Algorithms” on page 5-93.

assempde

[K,M,F,Q,G,H,R] = assempde(_ ,[],sdl) restricts the finite element matrices to those that
include the subdomain specified by the subdomain labels in sd1. The empty argument is required in
this syntax for historic and compatibility reasons.

u = assempde(K,M,F,Q,G,H,R) returns the solution u based on the full collection of finite
element matrices.

[Ks,Fs] = assempde(K,M,F,Q,G,H,R) returns finite element matrices that approximate
Dirichlet boundary conditions using the stiff-spring approximation. See “Algorithms” on page 5-93.

[Kc,Fc,B,ud] = assempde(K,M,F,Q,G,H,R) returns finite element matrices that eliminate any
Dirichlet boundary conditions from the system of linear equations. See “Algorithms” on page 5-93.

Examples

Solve a Scalar PDE
Solve an elliptic PDE on an L-shaped region.

Create a scalar PDE model. Incorporate the geometry of an L-shaped region.

model = createpde;
geometryFromEdges (model,@lshapeg);

Apply zero Dirichlet boundary conditions to all edges.
applyBoundaryCondition(model, 'Edge',1l:model.Geometry.NumEdges, 'u',0);
Generate a finite element mesh.

generateMesh(model, 'GeometricOrder', 'linear"');

Solve the PDE —V - (cVu) + au = f with parametersc = 1,a = 0,and f = 5.

1
0
5
a

ssempde(model,c,a, f);

Cc O O

Plot the solution.

pdeplot(model, 'XYData',u)

5-81

5 Functions

3-D Elliptic Problem

Solve a 3-D elliptic PDE using a PDE model.

Create a PDE model container, import a 3-D geometry description, and view the geometry.
model = createpde;

importGeometry(model, 'Block.stl');

pdegplot(model, 'FacelLabels', 'on',
'FaceAlpha',0.5)

5-82

assempde

40 -

20~

Fe&

EA

100

F3

Set zero Dirichlet conditions on faces 1 through 4 (the edges). Set Neumann conditions withg = -1

on face 6 and g = 1 on face 5.

applyBoundaryCondition(model, 'Face',1:4,

‘u',0);
applyBoundaryCondition(model, 'Face',6,

‘g',-1);
applyBoundaryCondition(model, 'Face',5,

'g',1);

Set coefficientsc = 1,a = 0,and f = 0.1.

C

a
f
Create a mesh and solve the problem.

generateMesh(model);
u = assempde(model,c,a,f);

Plot the solution on the surface.

pdeplot3D(model, 'ColorMapData',u)

5-83

5 Functions

r

2-D PDE Using [p,e,t] Mesh

Solve a 2-D PDE using the older syntax for mesh.
Create a circle geometry.

g = @circleg;

Set zero Dirichlet boundary conditions.

b = @circlebl;

Create a mesh for the geometry.

[p,e,t] = initmesh(g);

Solve the PDE =V - (cVu) + au = f with parameters ¢ = 1,a = 0,and f = sin(x).
1;

0;

'sin(x)"';
assempde(b,p,e,t,c,a,f);

C O O

Plot the solution.

pdeplot(p,e,t, 'XYData',u)

5-84

assempde

Finite Element Matrices

Obtain the finite-element matrices that represent the problem using a reduced linear algebra

representation of Dirichlet boundary conditions.

Create a scalar PDE model. Import a simple 3-D geometry.

model = createpde;
importGeometry(model, 'Block.stl');

Set zero Dirichlet boundary conditions on all the geometry faces.

applyBoundaryCondition(model, 'dirichlet"’,
'Face',l:model.Geometry.NumFaces,
‘u',0);

Generate a mesh for the geometry.

generateMesh(model);

0.04

0.03

.02

0.01

-0.01

-0.02

-0.03

-0.04

Obtain finite element matrices K, F, B, and ud that represent the equation —V - (cVu) + au = f with

parametersc=1,a=0,and f = log(l +x+ 1L+z)

C
a

1;
0;

5-85

5 Functions

f = 'log(l+x+y./(1+2))";
[K,F,B,ud] = assempde(model,c,a,f);

You can obtain the solution u of the PDE at mesh nodes by executing the command
u = B*(K\F) + ud;

Generally, this solution is slightly more accurate than the stiff-spring solution, as calculated in the
next example.

Stiff-Spring Finite Element Solution
Obtain the stiff-spring approximation of finite element matrices.

Create a scalar PDE model. Import a simple 3-D geometry.

model = createpde;
importGeometry(model, 'Block.stl');

Set zero Dirichlet boundary conditions on all the geometry faces.
applyBoundaryCondition(model, 'Face',l:model.Geometry.NumFaces, 'u',0);
Generate a mesh for the geometry.

generateMesh(model);

Obtain finite element matrices Ks and Fs that represent the equation —V - (cVu) + au = f with

parametersc=1,a =0, and f = log(l X+ 1L+z)

C 1;
a 0;
f "Tog (1+x+y./(1+z))"';

[Ks,Fs] = assempde(model,c,a,f);

You can obtain the solution u of the PDE at mesh nodes by executing the command
u = Ks\Fs;

Generally, this solution is slightly less accurate than the reduced linear algebra solution, as calculated
in the previous example.

Full Collection of Finite Element Matrices
Obtain the full collection of finite element matrices for an elliptic problem.

Import geometry and set up an elliptic problem with Dirichlet boundary conditions. The Torus.stl
geometry has only one face, so you need set only one boundary condition.

model = createpde();

importGeometry(model, 'Torus.stl');
applyBoundaryCondition(model, 'Face',1,'u',0);

5-86

assempde

c=1;
a=0;
f=1;
generateMesh(model);

Create the finite element matrices that represent this problem.

[KIMIFIQIGIH]R] = o
assempde(model,c,a,f);

Most of the resulting matrices are quite sparse. G, M, Q, and R are all zero sparse matrices.

howsparse = @(x)nnz(x)/numel(x);
disp(['Maximum fraction of nonzero'

' entries in K or His ',...
num2str(max(howsparse(K) ,howsparse(H)))]1)

Maximum fraction of nonzero entries in K or H is 0.002006
To find the solution to the PDE, call assempde again.

u = assempde(K,M,F,Q,G,H,R);

Input Arguments

model — PDE model
PDEMode'l object

PDE model, specified as a PDEModel object.

Example: model = createpde

¢ — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. ¢ represents the ¢ coefficient in the scalar PDE

-V (cVu)+au=f
or in the system of PDEs
-V:(c®Vu)+au=f

Example: 'cosh(x+y.”2)"

Data Types: double | char | string | function handle
Complex Number Support: Yes

a — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. a represents the a coefficient in the scalar PDE

-V (cVu)+au=f

5-87

5 Functions

or in the system of PDEs
-V:-(c®Vu)+au=f
Example: 2*eye(3)

Data Types: double | char | string | function handle
Complex Number Support: Yes

f — PDE coefficient
scalar | matrix | character vector | character array | string scalar | string vector | coefficient function

PDE coefficient, specified as a scalar, matrix, character vector, character array, string scalar, string
vector, or coefficient function. T represents the f coefficient in the scalar PDE

-V (cVu)+au=f
or in the system of PDEs
-V-(c®Vu)+au=f

Example: char('sin(x)"';'cos(y)"'; 'tan(z)")

Data Types: double | char | string | function handle
Complex Number Support: Yes

b — Boundary conditions
boundary matrix | boundary file

Boundary conditions, specified as a boundary matrix or boundary file. Pass a boundary file as a
function handle or as a file name. A boundary matrix is generally an export from the PDE Modeler

app.
Example: b = 'circlebl',b = "circlebl",orb = @circlebl
Data Types: double | char | string | function handle

p — Mesh points
matrix

Mesh points, specified as a 2-by-Np matrix of points, where Np is the number of points in the mesh.
For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

e — Mesh edges
matrix

Mesh edges, specified as a 7-by-Ne matrix of edges, where Ne is the number of edges in the mesh. For
a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

5-88

assempde

Example: [p,e,t] = initmesh(gd)
Data Types: double

t — Mesh triangles
matrix

Mesh triangles, specified as a 4-by-Nt matrix of triangles, where Nt is the number of triangles in the
mesh. For a description of the (p,e,t) matrices, see “Mesh Data as [p,e,t] Triples” on page 2-150.

Typically, you use the p, e, and t data exported from the PDE Modeler app, or generated by
initmesh or refinemesh.

Example: [p,e,t] = initmesh(gd)
Data Types: double

K — Stiffness matrix
sparse matrix | full matrix

Stiffness matrix, specified as a sparse matrix or full matrix. Generally, you obtain K from a previous
call to assema or assempde. For the meaning of stiffness matrix, see “Elliptic Equations” on page 5-
93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)

Data Types: double
Complex Number Support: Yes

M — Mass matrix
sparse matrix | full matrix

Mass matrix, specified as a sparse matrix or full matrix. Generally, you obtain M from a previous call
to assema or assempde. For the meaning of mass matrix, see “Elliptic Equations” on page 5-93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)

Data Types: double
Complex Number Support: Yes

F — Finite element f representation
vector

Finite element f representation, specified as a vector. Generally, you obtain F from a previous call to
assema or assempde. For the meaning of this representation, see “Elliptic Equations” on page 5-93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)

Data Types: double
Complex Number Support: Yes

Q — Neumann boundary condition matrix
sparse matrix | full matrix

Neumann boundary condition matrix, specified as a sparse matrix or full matrix. Generally, you obtain
Q from a previous call to assemb or assempde. For the meaning of this matrix, see “Elliptic
Equations” on page 5-93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,)

5-89

5 Functions

5-90

Data Types: double
Complex Number Support: Yes

G — Neumann boundary condition vector
sparse vector | full vector

Neumann boundary condition vector, specified as a sparse vector or full vector. Generally, you obtain
G from a previous call to assemb or assempde. For the meaning of this vector, see “Elliptic
Equations” on page 5-93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)

Data Types: double
Complex Number Support: Yes

H — Dirichlet boundary condition matrix
sparse matrix | full matrix

Dirichlet boundary condition matrix, specified as a sparse matrix or full matrix. Generally, you obtain
H from a previous call to assemb or assempde. For the meaning of this matrix, see “Algorithms” on
page 5-93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,)

Data Types: double
Complex Number Support: Yes

R — Dirichlet boundary condition vector
sparse vector | full vector

Dirichlet boundary condition vector, specified as a sparse vector or full vector. Generally, you obtain R
from a previous call to assemb or assempde. For the meaning of this vector, see “Algorithms” on
page 5-93.

Example: [K,M,F,Q,G,H,R] = assempde(model,c,a,f)

Data Types: double
Complex Number Support: Yes

sdl — Subdomain labels
vector of positive integers

Subdomain labels, specified as a vector of positive integers. For 2-D geometry only. View the
subdomain labels in your geometry using the command

pdegplot(g, 'SubdomainLabels"', 'on")

Example: sdl = [1,3:5];
Data Types: double

Output Arguments

u — PDE solution
vector

PDE solution, returned as a vector.

assempde

» Ifthe PDE is scalar, meaning only one equation, then u is a column vector representing the
solution u at each node in the mesh. u(1i) is the solution at the ith column of
model.Mesh.Nodes or the ith column of p.

» Ifthe PDE is a system of N > 1 equations, then u is a column vector with N*Np elements, where
Np is the number of nodes in the mesh. The first Np elements of u represent the solution of
equation 1, then next Np elements represent the solution of equation 2, etc.

To obtain the solution at an arbitrary point in the geometry, use pdeInterpolant.

To plot the solution, use pdeplot for 2-D geometry, or see “3-D Solution and Gradient Plots with
MATLAB® Functions” on page 3-317.

Kc — Stiffness matrix
sparse matrix

Stiffness matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

ul = Kc\Fc returns the solution on the non-Dirichlet points. To obtain the solution u at the nodes of
the mesh,

u = B*(Kc\Fc) + ud
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

Fc — Load vector
vector

Load vector, returned as a vector. See “Elliptic Equations” on page 5-93.
u = B*(Kc\Fc) + ud
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

B — Dirichlet nullspace
sparse matrix

Dirichlet nullspace, returned as a sparse matrix. See “Algorithms” on page 5-93.
u = B*(Kc\Fc) + ud
Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

ud — Dirichlet vector
vector

Dirichlet vector, returned as a vector. See “Algorithms” on page 5-93.

u = B*(Kc\Fc) + ud

Generally, Kc, Fc, B, and ud make a slower but more accurate solution than Ks and Fs.

Ks — Stiffness matrix corresponding to the stiff-spring approximation for Dirichlet

boundary condition
sparse matrix

5-91

5 Functions

5-92

Finite element matrix for stiff-spring approximation, returned as a sparse matrix. See “Algorithms” on
page 5-93.

To obtain the solution u at the nodes of the mesh,
u = Ks\Fs.
Generally, Ks and Fs make a quicker but less accurate solution than K¢, Fc, B, and ud.

Fs — Load vector corresponding to the stiff-spring approximation for Dirichlet boundary
condition
vector

Load vector corresponding to the stiff-spring approximation for Dirichlet boundary condition,
returned as a vector. See “Algorithms” on page 5-93.

To obtain the solution u at the nodes of the mesh,
u = Ks\Fs.
Generally, Ks and Fs make a quicker but less accurate solution than Kc, Fc, B, and ud.

K — Stiffness matrix
sparse matrix

Stiffness matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-93.

K represents the stiffness matrix alone, unlike Kc or Ks, which are stiffness matrices combined with
other terms to enable immediate solution of a PDE.

Typically, you use K in a subsequent call to a solver such as assempde or hyperbolic.

M — Mass matrix
sparse matrix

Mass matrix. returned as a sparse matrix. See “Elliptic Equations” on page 5-93.
Typically, you use M in a subsequent call to a solver such as assempde or hyperbolic.

F — Load vector
vector

Load vector, returned as a vector. See “Elliptic Equations” on page 5-93.

F represents the load vector alone, unlike Fc or Fs, which are load vectors combined with other
terms to enable immediate solution of a PDE.

Typically, you use F in a subsequent call to a solver such as assempde or hyperbolic.

Q — Neumann boundary condition matrix
sparse matrix

Neumann boundary condition matrix, returned as a sparse matrix. See “Elliptic Equations” on page 5-
93.

Typically, you use Q in a subsequent call to a solver such as assempde or hyperbolic.

assempde

G — Neumann boundary condition vector
sparse vector

Neumann boundary condition vector, returned as a sparse vector. See “Elliptic Equations” on page 5-
93.

Typically, you use G in a subsequent call to a solver such as assempde or hyperbolic.

H — Dirichlet matrix
sparse matrix

Dirichlet matrix, returned as a sparse matrix. See “Algorithms” on page 5-93.
Typically, you use H in a subsequent call to a solver such as assempde or hyperbolic.

R — Dirichlet vector
sparse vector

Dirichlet vector, returned as a sparse vector. See “Algorithms” on page 5-93.

Typically, you use R in a subsequent call to a solver such as assempde or hyperbolic.

More About

Reduced Linear System

This form of the finite element matrices eliminates Dirichlet conditions from the problem using a
linear algebra approach. The finite element matrices reduce to the solution u = B*(Kc\Fc) + ud,
where B spans the null space of the columns of H (the Dirichlet condition matrix representing hu = r).
R is the Dirichlet condition vector for Hu = R. ud is the vector of boundary condition solutions for the
Dirichlet conditions. ul = Kc\Fc returns the solution on the non-Dirichlet points.

See “Systems of PDEs” on page 5-99 for details on the approach used to eliminate Dirichlet
conditions.

Stiff-Spring Approximation

This form of the finite element matrices converts Dirichlet boundary conditions to Neumann boundary
conditions using a stiff-spring approximation. Using this approximation, assempde returns a matrix
Ks and a vector Fs that represent the combined finite element matrices. The approximate solution u
isu = Ks\Fs.

See “Elliptic Equations” on page 5-93. For details of the stiff-spring approximation, see “Systems of
PDEs” on page 5-99.

Algorithms
Elliptic Equations

Partial Differential Equation Toolbox solves equations of the form

2
“u , ,ou _
m?+dﬁ—v (cVu)+au=f

5-93

5 Functions

5-94

When the m and d coefficients are 0, this reduces to
-V (cVu)+au=f

which the documentation calls an elliptic equation, whether or not the equation is elliptic in the
mathematical sense. The equation holds in Q, where Q is a bounded domain in two or three
dimensions. ¢, q, f, and the unknown solution u are complex functions defined on Q. ¢ can also be a 2-
by-2 matrix function on Q. The boundary conditions specify a combination of u and its normal
derivative on the boundary:

* Dirichlet: hu = r on the boundary 9Q.

Generalized Neumann: 1 - (cVu) + qu = g on Q.
* Mixed: Only applicable to systems. A combination of Dirichlet and generalized Neumann.

7 is the outward unit normal. g, g, h, and r are functions defined on Q.

Our nomenclature deviates slightly from the tradition for potential theory, where a Neumann
condition usually refers to the case g = 0 and our Neumann would be called a mixed condition. In
some contexts, the generalized Neumann boundary conditions is also referred to as the Robin
boundary conditions. In variational calculus, Dirichlet conditions are also called essential boundary
conditions and restrict the trial space. Neumann conditions are also called natural conditions and
arise as necessary conditions for a solution. The variational form of the Partial Differential Equation
Toolbox equation with Neumann conditions is given below.

The approximate solution to the elliptic PDE is found in three steps:

1 Describe the geometry of the domain Q and the boundary conditions. For 2-D geometry, create
geometry using the PDE Modeler app or through MATLAB files. For 3-D geometry, import the
geometry in STL file format.

2 Build a triangular mesh on the domain Q. The software has mesh generating and mesh refining
facilities. A mesh is described by three matrices of fixed format that contain information about
the mesh points, the boundary segments, and the elements.

3 Discretize the PDE and the boundary conditions to obtain a linear system Ku = F. The unknown
vector u contains the values of the approximate solution at the mesh points, the matrix K is
assembled from the coefficients c, a, h, and q and the right-hand side F contains, essentially,
averages of f around each mesh point and contributions from g. Once the matrices K and F are
assembled, you have the entire MATLAB environment at your disposal to solve the linear system
and further process the solution.

More elaborate applications make use of the Finite Element Method (FEM) specific information
returned by the different functions of the software. Therefore we quickly summarize the theory and
technique of FEM solvers to enable advanced applications to make full use of the computed
quantities.

FEM can be summarized in the following sentence: Project the weak form of the differential equation
onto a finite-dimensional function space. The rest of this section deals with explaining the preceding
statement.

We start with the weak form of the differential equation. Without restricting the generality, we
assume generalized Neumann conditions on the whole boundary, since Dirichlet conditions can be
approximated by generalized Neumann conditions. In the simple case of a unit matrix h, setting

g = qr and then letting q — « yields the Dirichlet condition because division with a very large ¢

assempde

cancels the normal derivative terms. The actual implementation is different, since the preceding
procedure may create conditioning problems. The mixed boundary condition of the system case
requires a more complicated treatment, described in “Systems of PDEs” on page 5-99.

Assume that u is a solution of the differential equation. Multiply the equation with an arbitrary test
function v and integrate on Q:

J(—(V - cVu)v + auv)dx = vadx

Integrate by parts (i.e., use Green's formula) to obtain

((cVu) - Vv + auv)dx — n- (cVu)vds = | fvdx
!] /

The boundary integral can be replaced by the boundary condition:

f((cVu) - Vv +auv)dx - f(—qu +g)vds = ffvdx
Q kYo, Q

Replace the original problem with Find u such that

f((cVu) - Vv+auv - fv)dx — f(—qu +g)vds =0 Vv
Q :10}

This equation is called the variational, or weak, form of the differential equation. Obviously, any
solution of the differential equation is also a solution of the variational problem. The reverse is true
under some restrictions on the domain and on the coefficient functions. The solution of the variational
problem is also called the weak solution of the differential equation.

The solution u and the test functions v belong to some function space V. The next step is to choose an
Np-dimensional subspace Vy » C V. Project the weak form of the differential equation onto a finite-

dimensional function space simply means requesting u and v to lie in VNP rather than V. The solution
of the finite dimensional problem turns out to be the element of VNp that lies closest to the weak
solution when measured in the energy norm. Convergence is guaranteed if the space Vi » tends to V

as N,—=. Since the differential operator is linear, we demand that the variational equation is satisfied
for N, test-functions @; eVNp that form a basis, i.e.,

f((cw) - Uy + audy — foy) dx — f(—qu +g)ids =0, i=1,.,N,

Q aQ
Expand u in the same basis of VNp elements

Np
u(x) = > Ujppj(x)
Jj=1
and obtain the system of equations

Y

Jj=1

J((cv¢j) - Ve + ad) dx + fq¢j¢ids)Uj=Jf¢idx+ fgq)ids, i=1,..,N,
Q0 aQ

5-95

5 Functions

5-96

Use the following notations:

K j= f(ch)j) - V¢idx (stiffness matrix)
Q

M; ;= (Sf agp;dx (mass matrix)
Q= fQ¢j¢idS

a0
E=J%M

Gi= [otids
0

and rewrite the system in the form
K+M+QU=F+G. (5-2)

K, M, and Q are N,-by-N, matrices, and F and G are N,-vectors. K, M, and F are produced by assema,
while Q, G are produced by assemb. When it is not necessary to distinguish K, M, and Q or F and G,
we collapse the notations to KU = F, which form the output of assempde.

When the problem is self-adjoint and elliptic in the usual mathematical sense, the matrix K + M + Q
becomes symmetric and positive definite. Many common problems have these characteristics, most
notably those that can also be formulated as minimization problems. For the case of a scalar
equation, K, M, and Q are obviously symmetric. If c(x) = 6 > 0, a(x) = 0 and q(x) = 0 with q(x) > 0 on
some part of 9Q, then, if U = 0.

UK +M+Q)U = f(c|u|2+au2)dx+ fqu2d5>0, ifU=#0
o) a0

UT(K + M + Q)U is the energy norm. There are many choices of the test-function spaces. The
software uses continuous functions that are linear on each element of a 2-D mesh, and are linear or
quadratic on elements of a 3-D mesh. Piecewise linearity guarantees that the integrals defining the
stiffness matrix K exist. Projection onto Vy » is nothing more than linear interpolation, and the

evaluation of the solution inside an element is done just in terms of the nodal values. If the mesh is
uniformly refined, VNp approximates the set of smooth functions on Q.

A suitable basis for Vi » in 2-D is the set of “tent” or “hat” functions ¢,. These are linear on each

element and take the value 0 at all nodes x; except for x;. For the definition of basis functions for 3-D
geometry, see “Finite Element Basis for 3-D” on page 5-101. Requesting ¢;(x;) = 1 yields the very
pleasant property

Np
u(x) = '21 Ujpi(x) = Uj
=

That is, by solving the FEM system we obtain the nodal values of the approximate solution. The basis
function ¢; vanishes on all the elements that do not contain the node x;. The immediate consequence

assempde

is that the integrals appearing in K;j, M;, Q;;, F; and G; only need to be computed on the elements
that contain the node x;. Secondly, it means that K;; andM; ; are zero unless x; and x; are vertices of the
same element and thus K and M are very sparse matrices. Their sparse structure depends on the

ordering of the indices of the mesh points.
The integrals in the FEM matrices are computed by adding the contributions from each element to
the corresponding entries (i.e., only if the corresponding mesh point is a vertex of the element). This
process is commonly called assembling, hence the name of the function assempde.
The assembling routines scan the elements of the mesh. For each element they compute the so-called
local matrices and add their components to the correct positions in the sparse matrices or vectors.

The discussion now specializes to triangular meshes in 2-D. The local 3-by-3 matrices contain the

integrals evaluated only on the current triangle. The coefficients are assumed constant on the
triangle and they are evaluated only in the triangle barycenter. The integrals are computed using the

midpoint rule. This approximation is optimal since it has the same order of accuracy as the piecewise

linear interpolation.
Consider a triangle given by the nodes P;, P,, and P; as in the following figure.

1

IIIII ; \ Pb

."III P c \ h .

— B

"1
X4

The Local Triangle P1P2P3
Note The local 3-by-3 matrices contain the integrals evaluated only on the current triangle. The
coefficients are assumed constant on the triangle and they are evaluated only in the triangle

barycenter.

5-97

The simplest computations are for the local mass matrix m:

5 Functions

my= [aPose dx = a(p) 2P gy
AP1PP3

where P, is the center of mass of A P,P,Ps, i.e.,

_P1+P2+P3

P 3

The contribution to the right side F is just

fi= F(P,) area(AglPZP;;)

For the local stiffness matrix we have to evaluate the gradients of the basis functions that do not
vanish on P,P,P5. Since the basis functions are linear on the triangle P,P,P;, the gradients are
constants. Denote the basis functions ¢,, ¢,, and ¢; such that ¢(P;) = 1. If P, - P; = [x3,y;]” then we
have that

V1

_ 1
V01 = 3 area(AP;P,P3)

and after integration (taking ¢ as a constant matrix on the triangle)

W

1

ki, j= 4area(AP1P2P3)[yJ' = Xje(Pe)

If two vertices of the triangle lie on the boundary 9Q, they contribute to the line integrals associated
to the boundary conditions. If the two boundary points are P, and P,, then we have

IP1 = Py .
Qj= Q(Pb)T(l +6;), L,j=1,2

and

IP1 — Pl

Gi=g(P) 52, i=1,2

where P, is the midpoint of P;P,.

For each triangle the vertices P,, of the local triangle correspond to the indices i,, of the mesh points.
The contributions of the individual triangle are added to the matrices such that, e.g.,
K;

t—=K; +Kkm,n, mn=1,2,3

mIn mIn

This is done by the function assempde. The gradients and the areas of the triangles are computed by
the function pdetrg.

The Dirichlet boundary conditions are treated in a slightly different manner. They are eliminated from
the linear system by a procedure that yields a symmetric, reduced system. The function assempde
can return matrices K, F, B, and ud such that the solution is u = Bv + ud where Kv = F. u is an N,-
vector, and if the rank of the Dirichlet conditions is rD, then v has N, - rD components.

To summarize, assempde performs the following steps to obtain a solution u to an elliptic PDE:

5-98

assempde

1 Generate the finite element matrices [K,M,F,Q,G,H,R]. This step is equivalent to calling assema to
generate the matrices K, M, and F, and also calling assemb to generate the matrices Q, G, H, and
R.

2 Generate the combined finite element matrices [Kc,Fc,B,ud]. The combined stiffness matrix is for
the reduced linear system, Kc = K + M + Q. The corresponding combined load vector is Fc =
F + G. The B matrix spans the null space of the columns of H (the Dirichlet condition matrix
representing hu = r). The R vector represents the Dirichlet conditions in Hu = R. The ud vector
represents boundary condition solutions for the Dirichlet conditions.

3 Calculate the solution u via
u = B*(Kc\Fc) + ud.

assempde uses one of two algorithms for assembling a problem into combined finite element matrix
form. A reduced linear system form leads to immediate solution via linear algebra. You choose the
algorithm by the number of outputs. For the reduced linear system form, request four outputs:

[Kc,Fc,B,ud] = assempde()
For the stiff-spring approximation, request two outputs:
[Ks,Fs] = assempde()

For details, see “Reduced Linear System” on page 5-93 and “Stiff-Spring Approximation” on page 5-
93.

Systems of PDEs

Partial Differential Equation Toolbox software can also handle systems of N partial differential
equations over the domain Q. We have the elliptic system

-V-(c®Vu)+au=f

the parabolic system
a2 -7 (ce Vu)+au=f

the hyperbolic system

2
da—u—V-(c®Vu)+au=f

ot?
and the eigenvalue system
-V :(c® Vu) +au = Adu
where c is an N-by-N-by-D-by-D tensor, and D is the geometry dimensions, 2 or 3.

For 2-D systems, the notation V - (c ® Vu) represents an N-by-1 matrix with an (i,1)-component

S (Lot 210t + Lo a1 Lt La 0Ly,
£ \ax DL box oax bhblay ooy Ml etax ooy b ecay)T

For 3-D systems, the notation V - (c ® Vu) represents an N-by-1 matrix with an (i,1)-component

5-99

5 Functions

5-100

o d C o T 7
6y1J216X aleZZGy ay 1,],2,362 j

9, 0 R AT
az Cj3 15 T 52760325y T 52603357)4
The symbols a and d denote N-by-N matrices, and f denotes a column vector of length N.

The elements ¢y, ay, dy;, and f; of ¢, a, d, and f are stored row-wise in the MATLAB matrices c, a, d,
and f. The case of identity, diagonal, and symmetric matrices are handled as special cases. For the
tensor ¢, this applies both to the indices i and j, and to the indices k and I.

Partial Differential Equation Toolbox software does not check the ellipticity of the problem, and it is
quite possible to define a system that is not elliptic in the mathematical sense. The preceding
procedure that describes the scalar case is applied to each component of the system, yielding a
symmetric positive definite system of equations whenever the differential system possesses these
characteristics.

The boundary conditions now in general are mixed, i.e., for each point on the boundary a combination
of Dirichlet and generalized Neumann conditions,

hu=r
n-(c®Vu)+qu=g+h'p
For 2-D systems, the notation n - (¢ ® Vu) represents an N-by-1 matrix with (i,1)-component
N 9 9 9 9
121 (cos(a)ci, j 1,155 *cos(a)c, 125y + sin(a)c;, 2,15, + sin(a)ci,ﬂ,z@ u

where the outward normal vector of the boundary is n = (cos(a), sin(a)).

For 3-D systems, the notation n - (c ® Vu) represents an N-by-1 matrix with (i,1)-component

IpNA=Z

—_

d d d
(cos(a)ci, iLigg t cos(a)c;, |, L23y + cos(a)g;, j, 1135)%

.

+

d d d
(COS(B)Ci, Ji2.13¢ tcos(Ble, j,2, 29y + cos(B)c;, j, 2,35)111'

.
—_

+

Nz 1Nz

—_

3 b) b
(COS(V)Ci, Ji3.13y 1 0os(y)c,)3, 23y + cos(y)ci, j, 3,35)111

.

where the outward normal to the boundary is
n = (cos(a), cos(p), cos(y))

There are M Dirichlet conditions and the h-matrix is M-by-N, M = 0. The generalized Neumann
condition contains a source h'y, where the Lagrange multipliers y are computed such that the
Dirichlet conditions become satisfied. In a structural mechanics problem, this term is exactly the
reaction force necessary to satisfy the kinematic constraints described by the Dirichlet conditions.

assempde

The rest of this section details the treatment of the Dirichlet conditions and may be skipped on a first
reading.

Partial Differential Equation Toolbox software supports two implementations of Dirichlet conditions.
The simplest is the “Stiff Spring” model, so named for its interpretation in solid mechanics. See
“Elliptic Equations” on page 5-93 for the scalar case, which is equivalent to a diagonal h-matrix. For
the general case, Dirichlet conditions

hu=r
are approximated by adding a term
L(h'hu —h'r)

to the equations KU = F, where L is a large number such as 10* times a representative size of the
elements of K.

When this number is increased, hu = r will be more accurately satisfied, but the potential ill-
conditioning of the modified equations will become more serious.

The second method is also applicable to general mixed conditions with nondiagonal h, and is free of
the ill-conditioning, but is more involved computationally. Assume that there are N, nodes in the
mesh. Then the number of unknowns is N,N = N,. When Dirichlet boundary conditions fix some of
the unknowns, the linear system can be correspondingly reduced. This is easily done by removing
rows and columns when u values are given, but here we must treat the case when some linear
combinations of the components of u are given, hu = r. These are collected into HU = R where H is
an M-by-N, matrix and R is an M-vector.

With the reaction force term the system becomes
KU+H u=F

HU =R.

The constraints can be solved for M of the U-variables, the remaining called V, an N, - M vector. The
null space of H is spanned by the columns of B, and U = BV + u,; makes U satisfy the Dirichlet
conditions. A permutation to block-diagonal form exploits the sparsity of H to speed up the following

computation to find B in a numerically stable way. u can be eliminated by pre-multiplying by B since,
by the construction, HB = 0 or B'H" = 0. The reduced system becomes

B KBV =B F-B'Kuy

which is symmetric and positive definite if K is.

Finite Element Basis for 3-D

The finite element method for 3-D geometry is similar to the 2-D method described in “Elliptic
Equations” on page 5-93. The main difference is that the elements in 3-D geometry are tetrahedra,

which means that the basis functions are different from those in 2-D geometry.

It is convenient to map a tetrahedron to a canonical tetrahedron with a local coordinate system (r,s,t).

5-101

5 Functions

p2 3
r S

In local coordinates, the point p1 is at (0,0,0), p2 is at (1,0,0), p3 is at (0,1,0), and p4 is at (0,0,1).
For a linear tetrahedron, the basis functions are

$r=1-r-s—t

$r=r
p3=s
Pa=t

For a quadratic tetrahedron, there are additional nodes at the edge midpoints.

5-102

assempde

The corresponding basis functions are

dr=21-r-s—t)’-(1-r-s—t)

¢y =2ri—r
¢3=2s*-s
by =262 —t

¢ps=4r(l-r-s-t)
g = 4rs

¢7=4s(1-r—-s—t)

g =4t(l -r—s—t)
(g = 4rt
¢10 = 4st

As in the 2-D case, a 3-D basis function ¢; takes the value 0 at all nodes j, except for node i, where it
takes the value 1.

See Also
assembleFEMatrices | solvepde

Introduced before R2006a

5-103

5 Functions

5-104

cellEdges

Find edges attached to specified cells

Syntax

EdgeID
EdgeID

cellEdges(g,RegionID)
cellEdges(g,RegionID,FilterType)

Description

EdgeID = cellEdges(g,RegionID) finds edges attached to the cells with ID numbers listed in
RegionID.

EdgeID = cellEdges(g,RegionID,FilterType) returns internal, external, or all edges attached
to the cells with ID numbers listed in RegionID.

Examples

Edges Attached to Specified Cells
Find edges attached to two middle cylinders in a geometry consisting of four stacked cylinders.

Create a geometry that consists of four stacked cylinders.
gm = multicylinder(5,[1 2 3 4], 'Z0ffset',[0 1 3 6])

gm =
DiscreteGeometry with properties:

NumCells: 4
NumFaces: 9
NumEdges: 5
NumVertices: 5
[

Vertices: [5x3 double]

Plot the geometry with the cell and edge labels.

pdegplot(gm, 'CellLabels','on', 'EdgeLabels', 'on', 'FaceAlpha',0.2)

cellEdges

Find edges attached to cells 2 and 3.
edgeIDs = cellEdges(gm,[2 3])
edgelDs = Ix3

2 3 4

Cell Edges Attached to Internal and External Faces
Find edges attached to the outer cuboid in a geometry consisting of two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.
gm = multicuboid([2 51,[4 10],3)

gm =
DiscreteGeometry with properties:

NumCells: 2

NumFaces: 12

NumEdges: 24
NumVertices: 16

Vertices: [16x3 double]

5-105

5 Functions

5-106

Plot the geometry with the cell labels.
pdegplot(gm, 'CellLabels"','on', 'FaceAlpha',0.2)

Find all edges attached to the outer cell. Show the first 10 edges.

edgeIDs = cellEdges(gm,2);
edgeIDs(1:10)

ans = 1x10

1 2 3 4 5 6 7 8 9 10

From all edges attached to the outer cell, return the edges attached to only the internal faces.
Internal faces are faces shared between multiple cells.

edgeIDs int = cellEdges(gm,2, 'internal')
1x4

edgeIDs int

9 10 11 12

From all edges attached to the outer cell, return the edges attached to the external faces. Show the
first 10 edges.

edgeIDs ext = cellEdges(gm,2, 'external');
edgeIDs ext(1:10)

cellEdges

ans = 1x10

Input Arguments

g — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object.

RegionID — Cell ID
positive number | vector of positive numbers

Cell ID, specified as a positive number or a vector of positive numbers. Each number represents a cell
ID.

FilterType — Type of edges to return
'all’' (default) | 'internal' | 'external’

Type of edges to return, specified as 'internal’, 'external’, or 'all’'. Depending on this
argument, cellEdges returns these types of faces:

* 'internal' — Edges attached to only internal faces. Internal faces are faces shared between
multiple cells.

+ ‘'external' — Edges attached to only external faces. External faces are faces not shared
between multiple cells.

* 'all' — All edges attached to the specified cells.
Output Arguments

EdgeID — IDs of edges attached to specified cells
positive number | vector of positive numbers

IDs of edges attached to the specified cells, returned as a positive number or a vector of positive
numbers.

See Also
cellFaces | faceEdges | facesAttachedToEdges | nearestEdge | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

5-107

5 Functions

cellFaces

Find faces attached to specified cells

Syntax

FacelD
FacelD

cellFaces(g,RegionID)
cellFaces(g,RegionID,FilterType)

Description

FaceID = cellFaces(g,RegionID) finds faces attached to the cells with ID numbers listed in
RegionID.

FaceID = cellFaces(g,RegionID,FilterType) returns internal, external, or all faces attached
to the cells with ID numbers listed in RegionID.

Examples

Faces Attached to Specified Cells

Find faces attached to two cuboids in a geometry consisting of four stacked cuboids.
Create a geometry that consists of four stacked cuboids.

gm = multicuboid(5,10,[1 2 3 4], 'Z0ffset',[0 1 3 6])

gm =
DiscreteGeometry with properties:

NumCells: 4

NumFaces: 21

NumEdges: 36
NumVertices: 20

Vertices: [20x3 double]

Plot the geometry with the cell labels.

pdegplot(gm, 'CellLabels','on', 'FaceAlpha',0.2)

5-108

cellFaces

C4

/.z"

L1

6 - L]
Cc3 ra

Find faces attached to cells 1 and 3.
faceIDs = cellFaces(gm,[1 3])

facelDs = 1Ix12

1 2 3 4 5 6 7 12 13 14 15 16

Plot the geometry with the face labels.

pdegplot(gm, 'FacelLabels', 'on', 'FaceAlpha',0.2)

5-109

5 Functions

5-110

F20

2

@
N

B
A
I

M3

Internal and External Faces Attached to Specified Cells
Find faces attached to the outer cuboid in a geometry consisting of two nested cuboids.

Create a geometry that consists of two nested cuboids of the same height.
gm = multicuboid([2 51,[4 10],3)

gm =
DiscreteGeometry with properties:

NumCells: 2

NumFaces: 12

NumEdges: 24
NumVertices: 16

Vertices: [16x3 double]

Plot the geometry with the cell labels.

pdegplot(gm, 'CellLabels','on', 'FaceAlpha',0.2)

cellFaces

Find all faces attached to the outer cell.

faceIDs = cellFaces(gm,2)
faceIDs = 1Ix10
3 4 5 6 7 8 9

10

11

12

Find only the internal faces attached to the outer cell. Internal faces are faces shared between

multiple cells.

faceIDs int = cellFaces(gm,2, ' 'internal')

faceIDs_int 1x4

3 4 5 6

Find only the external faces attached to the outer cell.

faceIDs ext = cellFaces(gm,2, 'external')

1x6

faceIDs ext

7 8 9 10 11 12

Plot the geometry with the face labels.

5-111

5 Functions

pdegplot(gm, 'FacelLabels', 'on', 'FaceAlpha',0.2)

Input Arguments

g — 3-D geometry
DiscreteGeometry object

3-D geometry, specified as a DiscreteGeometry object.

RegionID — Cell ID
positive number | vector of positive numbers

Cell ID, specified as a positive number or a vector of positive numbers. Each number represents a cell
ID.

FilterType — Type of faces to return
‘all’ (default) | 'internal’' | 'external’

Type of faces to return, specified as 'internal’, 'external’, or 'all’'. Depending on this
argument, cellFaces returns these types of faces:

* ‘'internal' — Internal faces, that is, faces shared between multiple cells.
+ 'external' — External faces, that is, faces not shared between multiple cells.
* 'all' — All faces attached to the specified cells.

5-112

cellFaces

Output Arguments

FaceID — IDs of faces attached to specified cells
positive number | vector of positive numbers

IDs of faces attached to the specified cells, returned as a positive number or a vector of positive
numbers.

See Also
cellEdges | faceEdges | facesAttachedToEdges | nearestEdge | nearestFace |
DiscreteGeometry Properties | AnalyticGeometry Properties

Introduced in R2021a

5-113

5 Functions

5-114

BodyLoadAssignment Properties

Body load assignments

Description

A BodyLoadAssignment object contains a description of the body loads for a structural analysis
model. A StructuralModel container has a vector of BodyLoadAssignment objects in its
BodyLoads .BodyLoadAssignments property.

To create body load assignments for your structural analysis model, use the structuralBodyLoad
function.

Properties
Properties of BodyLoadAssignment

RegionType — Region type

'Face' | 'Cell’

Region type, returned as 'Face' for a 2-D region or 'Cell' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function, setting ' FaceLabels"' to 'on".
Data Types: double

GravitationalAcceleration — Acceleration due to gravity
numeric vector

Acceleration due to gravity, returned as a numeric vector. This property must be specified in units
consistent with those of the geometry and material properties.

Example: structuralBodyLoad(structuralmodel, 'GravitationalAcceleration',
[0,0,-9.8])

Data Types: double

AngularVelocity — Angular velocity for axisymmetric model
positive number

Angular velocity for an axisymmetric model, returned as a positive number. This property must be
specified in units consistent with those of the geometry and material properties.

Example: structuralBodyLoad(structuralmodel, 'AngularVelocity',2.3)

Data Types: double

BodyLoadAssignment Properties

Temperature — Thermal load
real number | StaticThermalResults object | TransientThermalResults object

Thermal load, returned as a real number, a StaticThermalResults object, or a
TransientThermalResults object. This property must be specified in units consistent with those
of the geometry and material properties.

Example: structuralBodyLoad(structuralmodel, 'Temperature',b300)

Data Types: double

TimeStep — Time index for thermal load
positive integer

Time index for thermal load, returned as a positive integer.

Example:
structuralBodyLoad(structuralmodel, 'Temperature',f Tresults, 'TimeStep',21)

Data Types: double

Label — Label for use with linearizeInput
character vector | string

Label for use with linearizeInput, returned as a character vector or a string.

Data Types: char | string

See Also
findBodylLoad | structuralBodylLoad

Introduced in R2017b

5-115

5 Functions

5-116

BoundaryCondition Properties

Boundary condition for PDE model

Description

A BoundaryCondition object specifies the type of PDE boundary condition on a set of geometry
boundaries. A PDEModel object contains a vector of BoundaryCondition objects in its
BoundaryConditions property.

Specify boundary conditions for your model using the applyBoundaryCondition function.

Properties
Properties

BCType — Type of boundary condition

‘dirichlet' | 'neumann' | 'mixed’

Boundary type, returned as 'dirichlet', 'neumann’', or 'mixed"'.

Example: applyBoundaryCondition(model, 'dirichlet', 'Face',3,'u',0)
Data Types: char

RegionType — Geometric region type
'Face' for 3-D geometry | 'Edge’ for 2-D geometry

Geometric region type, returned as 'Face' for 3-D geometry or 'Edge’ for 2-D geometry.
Example: applyBoundaryCondition(model, 'dirichlet', 'Face',3,'u',0)
Data Types: char | string

RegionID — Geometric region ID
vector of positive integers

Geometric region ID, returned as a vector of positive integers. Find the region IDs by using
pdegplot with the 'FacelLabels' (3-D) or 'EdgelLabels' (2-D) value setto 'on".

Example: applyBoundaryCondition(model, 'dirichlet', 'Face',3:6,'u',0)
Data Types: double

r — Dirichlet condition h*u = r
zeros (N, 1) (default) | vector with N elements | function handle

Dirichlet condition h*u = r, returned as a vector with N elements or a function handle. N is the
number of PDEs in the system. For the syntax of the function handle form of r, see “Nonconstant
Boundary Conditions” on page 2-116.

Example: 'r',[0;4;-1]

Data Types: double | function handle
Complex Number Support: Yes

BoundaryCondition Properties

h — Dirichlet condition h*u = r
eye(N) (default) | N-by-N matrix | vector with N~2 elements | function handle

Dirichlet condition h*u = r, returned as an N-by-N matrix, a vector with N~2 elements, or a
function handle. N is the number of PDEs in the system. For the syntax of the function handle form of
h, see “Nonconstant Boundary Conditions” on page 2-116.

Example: 'h',[2,1;1,2]
Data Types: double | function handle
Complex Number Support: Yes

g — Generalized Neumann condition n- (¢cxVu) + qu = ¢
zeros (N, 1) (default) | vector with N elements | function handle

Generalized Neumann condition n+ (cxVu) + qu = g, returned as a vector with N elements or a
function handle. N is the number of PDEs in the system. For scalar PDEs, the generalized Neumann
condition is n- (cVu) + qu = g. For the syntax of the function handle form of g, see “Nonconstant
Boundary Conditions” on page 2-116.

Example: 'g',[3;2;-1]
Data Types: double | function handle
Complex Number Support: Yes

g — Generalized Neumann condition n- (¢cxVu) + qu = ¢
zeros (N) (default) | N-by-N matrix | vector with N*2 elements | function handle

Generalized Neumann condition n+ (cxVu) + qu = g, returned as an N-by-N matrix, a vector with
N"2 elements, or a function handle. N is the number of PDEs in the system. For the syntax of the
function handle form of q, see “Nonconstant Boundary Conditions” on page 2-116.

Example: 'q',eye(3)
Data Types: double | function handle
Complex Number Support: Yes

u — Dirichlet conditions
zeros (N, 1) (default) | vector of up to N elements | function handle

Dirichlet conditions, returned as a vector of up to N elements or as a function handle. If u has less
than N elements, then you must also use EquationIndex. The u and EquationIndex arguments
must have the same length. If u has N elements, then specifying EquationIndex is optional.

For the syntax of the function handle form of u, see “Nonconstant Boundary Conditions” on page 2-
116.

Example: applyBoundaryCondition(model, 'dirichlet', 'Face',[2,4,11],"'u',0)

Data Types: double
Complex Number Support: Yes

EquationIndex — Index of the known u components
1:N (default) | vector of integers with entries from 1 to N

Index of the known u components, returned as a vector of integers with entries from 1 to N.
EquationIndex and u must have the same length.

5-117

5 Functions

5-118

Example: applyBoundaryCondition(model, 'mixed', 'Face',[2,4,11],"'u"',
[3,-1], 'EquationIndex',[2,3])

Data Types: double

Vectorized — Vectorized function evaluation
"off' (default) | 'on'

Vectorized function evaluation, returned as 'on' or 'off'. This evaluation applies when you pass a
function handle as an argument. To save time in function handle evaluation, specify 'on', assuming
that your function handle computes in a vectorized fashion. See “Vectorization”. For details of this
evaluation, see “Nonconstant Boundary Conditions” on page 2-116.

Example: applyBoundaryCondition(model, 'dirichlet’, 'Face',
[2,4,11],"'u',@ucalculator, 'Vectorized', 'on'")

Data Types: char

See Also
applyBoundaryCondition | findBoundaryConditions | PDEModel

Topics

“Specify Boundary Conditions” on page 2-113

“View, Edit, and Delete Boundary Conditions” on page 2-128
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2015a

CoefficientAssignment Properties

CoefficientAssignment Properties

Coefficient assignments

Description

A CoefficientAssignment object contains a description of the PDE coefficients. A PDEModel
container has a vector of CoefficientAssignment objects in its
EquationCoefficients.CoefficientAssignments property.

Coefficients are the m, d, c, a, and f variables in the PDE

2
9°u , ,ou _
mW‘FdW— \YJ (CVu)+au—f
or the eigenvalue problem

-V (cVu) +au = Adu
or

-V:(cVu)+au= A2mu

Create coefficients for your model using the specifyCoefficients function.

Properties

Properties

RegionType — Region type

‘face' | 'cell’

Region type, returned as ' face' for a 2-D region, or 'cell"' for a 3-D region.
Data Types: char | string

RegionID — Region ID
vector of positive integers

Region ID, returned as a vector of positive integers. To determine which ID corresponds to which
portion of the geometry, use the pdegplot function. Set the 'FaceLabels' name-value pair to
‘on'.

Data Types: double

m — Second-order time derivative coefficient
scalar | column vector | function handle

Second-order time derivative coefficient, returned as a scalar, column vector, or function handle. For
details of the m coefficient specification, see “m, d, or a Coefficient for specifyCoefficients” on page 2-
91.

Data Types: double | function handle

5-119

5 Functions

5-120

Complex Number Support: Yes

d — First-order time derivative coefficient
scalar | column vector | function handle

First-order time derivative coefficient, returned as a scalar, column vector, or function handle. For
details of the d coefficient specification, see “m, d, or a Coefficient for specifyCoefficients” on page 2-
91.

Data Types: double | function handle
Complex Number Support: Yes

¢ — Second-order space derivative coefficient
scalar | column vector | function handle

Second-order space derivative coefficient, returned as a scalar, column vector, or function handle. For
details of the c coefficient specification, see “c Coefficient for specifyCoefficients” on page 2-76.

Data Types: double | function handle

Complex Number Support: Yes

a — Solution multiplier coefficient
scalar | column vector | function handle

Solution multiplier coefficient, returned as a scalar, column vector, or function handle. For details of
the a coefficient specification, see “m, d, or a Coefficient for specifyCoefficients” on page 2-91.

Data Types: double | function handle
Complex Number Support: Yes

f — Source coefficient
scalar | column vector | function handle

Source coefficient, returned as a scalar, column vector, or function handle. For details of the f
coefficient specification, see “f Coefficient for specifyCoefficients” on page 2-74.

Data Types: double | function handle
Complex Number Support: Yes

See Also
findCoefficients | specifyCoefficients

Topics
“Solve Problems Using PDEModel Objects” on page 2-2

Introduced in R2016a

createpde

createpde

Create model

Syntax

structuralmodel = createpde('structural',StructuralAnalysisType)
thermalmodel = createpde('thermal’',ThermalAnalysisType)

emagmodel = createpde('electromagnetic',ElectromagneticAnalysisType)
model = createpde(N)

Description

structuralmodel = createpde('structural',StructuralAnalysisType) returns a
structural analysis model for the specified analysis type. This model lets you solve small-strain linear
elasticity problems.

thermalmodel = createpde('thermal',ThermalAnalysisType) returns a thermal analysis
model for the specified analysis type.

emagmodel = createpde('electromagnetic',ElectromagneticAnalysisType) returns an
electromagnetic analysis model for the specified analysis type.

model = createpde(N) returns a PDE model object for a system of N equations. A complete PDE
model object contains a description of the problem you want to solve, including the geometry, mesh,
and boundary conditions.

Examples

Create Structural Model

Create a static structural model for solving a solid (3-D) problem.
staticStructural = createpde('structural', 'static-solid"')

staticStructural =
StructuralModel with properties:

AnalysisType: 'static-solid’

Geometry:
MaterialProperties:
BodyLoads:
BoundaryConditions:
ReferenceTemperature:
SuperelementInterfaces:
Mesh:

SolverOptions:

[
[]
[]
[]
[]
[]
[]
[1x1 pde.PDESolverOptions]

Create a transient structural model for solving a plane-stress (2-D) problem.

transientStructural = createpde('structural', 'transient-planestress')

5-121

5 Functions

transientStructural =
StructuralModel with properties:
AnalysisType: ransient-planestress'

Geometry:
MaterialProperties:
BodyLoads:
BoundaryConditions:
DampingModels:
InitialConditions:
SuperelementInterfaces:
Mesh:

t
]
]
]
]
]
]
]
|
SolverOptions: [1

S S S

x1 pde.PDESolverOptions]

Create a modal analysis structural model for solving a plane-strain (2-D) problem.
modalStructural = createpde('structural', 'modal-planestrain')

modalStructural =
StructuralModel with properties:

AnalysisType:

Geometry:
MaterialProperties:
BoundaryConditions:
SuperelementInterfaces:
Mesh:

SolverOptions:

odal-planestrain'

et oy p— — =

m
I
I
I
I
|
1x1 pde.PDESolverOptions]

Create a frequency response analysis structural model for solving an axisymmetric problem. An
axisymmetric model simplifies a 3-D problem to a 2-D problem using symmetry around the axis of
rotation.

frStructural = createpde('structural','frequency-axisymmetric')

frStructural =
StructuralModel with properties:
AnalysisType: requency-axisymmetric'

Geometry:
MaterialProperties:
BodyLoads:
BoundaryConditions:
DampingModels:
SuperelementInterfaces:
Mesh:

f
|
|
|
|
|
|
]
SolverOptions: [1

ety o oy oy o =

x1 pde.PDESolverOptions]

Create Thermal Model

Create a model for a steady-state thermal problem.

thermalmodel = createpde('thermal', 'steadystate')

5-122

createpde

thermalmodel =
ThermalModel with properties:

AnalysisType: "steadystate"

Geometry: []
MaterialProperties: []
HeatSources: []
StefanBoltzmannConstant: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
[1

SolverOptions: x1 pde.PDESolverOptions]

Create a model for a transient thermal problem.
thermalmodel = createpde('thermal', 'transient')

thermalmodel =
ThermalModel with properties:

AnalysisType: "transient"

Geometry: []
MaterialProperties: []
HeatSources: []
StefanBoltzmannConstant: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
[1

SolverOptions: x1 pde.PDESolverOptions]

Create a transient thermal model for solving an axisymmetric problem. An axisymmetric model
simplifies a 3-D problem to a 2-D problem using symmetry around the axis of rotation.

thermalmodel = createpde('thermal', 'transient-axisymmetric"')

thermalmodel =
ThermalModel with properties:

AnalysisType: "transient-axisymmetric"

Geometry: []
MaterialProperties: []
HeatSources: []
StefanBoltzmannConstant: []
BoundaryConditions: []
InitialConditions: []
Mesh: []
[1

SolverOptions: x1 pde.PDESolverOptions]

Create Electromagnetic Model

Create a model for electrostatic analysis.

emagE = createpde('electromagnetic', 'electrostatic"')

5-123

5 Functions

emagE =
ElectromagneticModel with properties:
AnalysisType: ‘'electrostatic’

Geometry:
MaterialProperties:
Sources:
BoundaryConditions:
VacuumPermittivity:
Mesh:

,_”_”_”_”_”_,_
[Y

Create an axisymmetric model for magnetostatic analysis. An axisymmetric model simplifies a 3-D
problem to a 2-D problem using symmetry around the axis of rotation.

emagMA = createpde('electromagnetic', 'magnetostatic-axisymmetric')

emagMA =
ElectromagneticModel with properties:

AnalysisType: 'magnetostatic-axisymmetric'
Geometry: []
MaterialProperties: []
Sources: []
BoundaryConditions: []
VacuumPermeability: []
[

Mesh:

Create General PDE Model

Create a model for a general linear or nonlinear single (scalar) PDE.
model = createpde

model =
PDEModel with properties:

PDESystemSize: 1
IsTimeDependent: 0
Geometry: []
EquationCoefficients: []
BoundaryConditions: []
InitialConditions: []
Mesh: []

SolverOptions: [1x1 pde.PDESolverOptions]

Create a PDE model for a system of three equations.
model = createpde(3)

model =
PDEModel with properties:

PDESystemSize: 3

5-124

createpde

IsTimeDependent: 0
Geometry: [
EquationCoefficients: [
BoundaryConditions: [
InitialConditions: [
Mesh: [

[

SolverOptions: x1 pde.PDESolverOptions]

Input Arguments

StructuralAnalysisType — Type of structural analysis

'static-solid' | 'static-planestress' | 'static-planestrain' | 'static-
axisymmetric' | 'transient-solid' | 'transient-planestress' | 'transient-
planestrain' | 'transient-axisymmetric' | 'modal-solid' | 'modal-planestress’ |
'modal-planestrain' | 'modal-axisymmetric' | 'frequency-solid' | 'frequency-
planestress' | 'frequency-planestrain' | 'frequency-axisymmetric'

Type of analysis, specified as one of the following values.
For static analysis, use these values:

+ 'static-solid' to create a structural model for static analysis of a solid (3-D) problem.

+ 'static-planestress' to create a structural model for static analysis of a plane-stress
problem.

* 'static-planestrain' to create a structural model for static analysis of a plane-strain
problem.

* 'static-axisymmetric' to create an axisymmetric (2-D) structural model for static analysis.
For transient analysis, use these values:

* ‘'transient-solid' to create a structural model for transient analysis of a solid (3-D) problem.

* 'transient-planestress' to create a structural model for transient analysis of a plane-stress
problem.

* ‘'transient-planestrain' to create a structural model for transient analysis of a plane-strain
problem.

* 'transient-axisymmetric' to create an axisymmetric (2-D) structural model for transient
analysis.

For modal analysis, use these values:

* 'modal-solid' to create a structural model for modal analysis of a solid (3-D) problem.

* 'modal-planestress' to create a structural model for modal analysis of a plane-stress problem.
* 'modal-planestrain' to create a structural model for modal analysis of a plane-strain problem.
* 'modal-axisymmetric' to create an axisymmetric (2-D) structural model for modal analysis.

For frequency response analysis, use these values:

+ 'frequency-solid' to create a structural model for frequency response analysis of a solid (3-D)
problem.

5-125

5 Functions

5-126

+ ‘'frequency-planestress' to create a structural model for frequency response analysis of a
plane-stress problem.

+ ‘'frequency-planestrain' to create a structural model for frequency response analysis of a
plane-strain problem.

* 'frequency-axisymmetric' to create an axisymmetric (2-D) structural model for frequency
response analysis.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing
through r = 0.

Example: model = createpde('structural', 'static-solid')

Data Types: char | string

ThermalAnalysisType — Type of thermal analysis
‘steadystate' | 'transient’' | 'steadystate-axisymmetric' | 'transient-
axisymmetric'

Type of thermal analysis, specified as one of the following values:
* 'steadystate' creates a steady-state thermal model. If you do not specify
ThermalAnalysisType for a thermal model, createpde creates a steady-state model.

* ‘'transient' creates a transient thermal model.

* 'steadystate-axisymmetric' creates an axisymmetric (2-D) thermal model for steady-state
analysis.

* ‘'transient-axisymmetric' creates an axisymmetric (2-D) thermal model for transient
analysis.

For axisymmetric models, the toolbox assumes that the axis of rotation is the vertical axis passing

through r = 0.

Example: model = createpde('thermal', 'transient')

Data Types: char | string

ElectromagneticAnalysisType — Type of electromagnetic analysis
‘electrostatic' | 'magnetostatic' | 'electrostatic-axisymmetric' | 'magnetostatic-
axisymmetric'

Type of electromagnetic analysis, specified as one of the following values:

+ 'electrostatic' creates a model for electrostatic analysis.
* 'magnetostatic' creates a model for magnetostatic analysis.

+ ‘'electrostatic-axisymmetric' creates an axisymmetric (2-D) model for electrostatic
analysis.

* 'magnetostatic-axisymmetric' creates an axisymmetric (2-D) model for magnetostatic
analysis.

Example: model = createpde('electromagnetic', 'electrostatic')

Data Types: char | string

N — Number of equations
1 (default) | positive integer

createpde

Number of equations, specified as a positive integer. You do not need to specify N for a model where
N = 1.

Example: model = createpde
Example: model = createpde(3);

Data Types: double

Output Arguments

structuralmodel — Structural model
StructuralModel object

Structural model, returned as a StructuralModel object.

Example: structuralmodel = createpde('structural', 'static-solid')

thermalmodel — Thermal model
ThermalModel object

Thermal model, returned as a ThermalModel object.

Example: thermalmodel = createpde('thermal', 'transient')

emagmodel — Electromagnetic model
ElectromagneticModel ohject

Electromagnetic model, returned as an ElectromagneticModel object.

Example: thermalmodel = createpde('electromagnetic', 'magnetostatic')

model — PDE model
PDEModel object

PDE model, returned